HW5 -- Artificial Artificial Intelligence

In [60]:
import pandas as pd
import numpy as np

neg = pd.read_csv('AMT_neg.csv')
pos = pd.read_csv('AMT_pos.csv')

Initial EDA

In [61]:
neg[:3]
Out[61]:
HITId HITTypeId Title Description Keywords Reward CreationTime MaxAssignments RequesterAnnotation AssignmentDurationInSeconds ... RejectionTime RequesterFeedback WorkTimeInSeconds LifetimeApprovalRate Last30DaysApprovalRate Last7DaysApprovalRate Input.text Answer.sentiment.label Approve Reject
0 3IQ9O0AYW6ZI3GD740H32KGG2SWITJ 3N0K7CX2I27L2NR2L8D93MF8LIRA5J Sentiment analysis Sentiment analysis sentiment, text $0.02 Fri Nov 01 12:08:17 PDT 2019 3 BatchId:3821423;OriginalHitTemplateId:928390909; 10800 ... NaN NaN 44 0% (0/0) 0% (0/0) 0% (0/0) Missed Opportunity\nI had been very excited to... Neutral NaN NaN
1 3IQ9O0AYW6ZI3GD740H32KGG2SWITJ 3N0K7CX2I27L2NR2L8D93MF8LIRA5J Sentiment analysis Sentiment analysis sentiment, text $0.02 Fri Nov 01 12:08:17 PDT 2019 3 BatchId:3821423;OriginalHitTemplateId:928390909; 10800 ... NaN NaN 7 0% (0/0) 0% (0/0) 0% (0/0) Missed Opportunity\nI had been very excited to... Negative NaN NaN
2 3IQ9O0AYW6ZI3GD740H32KGG2SWITJ 3N0K7CX2I27L2NR2L8D93MF8LIRA5J Sentiment analysis Sentiment analysis sentiment, text $0.02 Fri Nov 01 12:08:17 PDT 2019 3 BatchId:3821423;OriginalHitTemplateId:928390909; 10800 ... NaN NaN 449 0% (0/0) 0% (0/0) 0% (0/0) Missed Opportunity\nI had been very excited to... Positive NaN NaN

3 rows × 31 columns

In [62]:
pos[:3]
Out[62]:
HITId HITTypeId Title Description Keywords Reward CreationTime MaxAssignments RequesterAnnotation AssignmentDurationInSeconds ... RejectionTime RequesterFeedback WorkTimeInSeconds LifetimeApprovalRate Last30DaysApprovalRate Last7DaysApprovalRate Input.text Answer.sentiment.label Approve Reject
0 3VMV5CHJZ8F47P7CECH0H830NF4GTP 3N0K7CX2I27L2NR2L8D93MF8LIRA5J Sentiment analysis Sentiment analysis sentiment, text $0.02 Fri Nov 01 12:11:19 PDT 2019 3 BatchId:3821427;OriginalHitTemplateId:928390909; 10800 ... NaN NaN 355 0% (0/0) 0% (0/0) 0% (0/0) funny like a clown\nGreetings again from the d... Positive NaN NaN
1 3VMV5CHJZ8F47P7CECH0H830NF4GTP 3N0K7CX2I27L2NR2L8D93MF8LIRA5J Sentiment analysis Sentiment analysis sentiment, text $0.02 Fri Nov 01 12:11:19 PDT 2019 3 BatchId:3821427;OriginalHitTemplateId:928390909; 10800 ... NaN NaN 487 0% (0/0) 0% (0/0) 0% (0/0) funny like a clown\nGreetings again from the d... Neutral NaN NaN
2 3VMV5CHJZ8F47P7CECH0H830NF4GTP 3N0K7CX2I27L2NR2L8D93MF8LIRA5J Sentiment analysis Sentiment analysis sentiment, text $0.02 Fri Nov 01 12:11:19 PDT 2019 3 BatchId:3821427;OriginalHitTemplateId:928390909; 10800 ... NaN NaN 1052 0% (0/0) 0% (0/0) 0% (0/0) funny like a clown\nGreetings again from the d... Positive NaN NaN

3 rows × 31 columns

In [63]:
neg.columns.tolist()
Out[63]:
['HITId',
 'HITTypeId',
 'Title',
 'Description',
 'Keywords',
 'Reward',
 'CreationTime',
 'MaxAssignments',
 'RequesterAnnotation',
 'AssignmentDurationInSeconds',
 'AutoApprovalDelayInSeconds',
 'Expiration',
 'NumberOfSimilarHITs',
 'LifetimeInSeconds',
 'AssignmentId',
 'WorkerId',
 'AssignmentStatus',
 'AcceptTime',
 'SubmitTime',
 'AutoApprovalTime',
 'ApprovalTime',
 'RejectionTime',
 'RequesterFeedback',
 'WorkTimeInSeconds',
 'LifetimeApprovalRate',
 'Last30DaysApprovalRate',
 'Last7DaysApprovalRate',
 'Input.text',
 'Answer.sentiment.label',
 'Approve',
 'Reject']

How many unique turkers worked on each dataframe?

In [64]:
def get_unique(df, column):
    unique = np.unique(df[column], return_counts=True)
    df = pd.DataFrame(zip(unique[0], unique[1]))
    return len(unique[0]), unique, df

num_neg, unique_neg, u_neg_df = get_unique(neg, 'WorkerId')    
num_pos, unique_pos, u_pos_df = get_unique(pos, 'WorkerId')

print(num_neg, 'Turkers worked on NEG batch')
print(num_pos, 'Turkers worked on POS batch')
53 Turkers worked on NEG batch
38 Turkers worked on POS batch

How many HITS did each unique turker do?

In [65]:
u_neg_df.plot(kind='bar',x=0,y=1)
Out[65]:
<matplotlib.axes._subplots.AxesSubplot at 0x11aa920b8>
In [66]:
u_pos_df.plot(kind='bar',x=0,y=1)
Out[66]:
<matplotlib.axes._subplots.AxesSubplot at 0x11c0be898>

What's the max and min HIT for unique turkers

In [67]:
print('For {}, the min was: {} and the max was: {}'.format('neg', unique_neg[1].min(), unique_neg[1].max())) 
print('For {}, the min was: {} and the max was: {}'.format('pos', unique_pos[1].min(), unique_pos[1].max())) 
For neg, the min was: 1 and the max was: 37
For pos, the min was: 1 and the max was: 40

Did a specitic Sentiment take longer for turkers to assess?

In [68]:
import seaborn as sns
import matplotlib.pyplot as plt
sns.catplot(x="Answer.sentiment.label", 
            y="WorkTimeInSeconds", 
            kind="bar", 
            order=['Negative', 'Neutral', 'Positive'], 
            data=neg);
plt.title('Negative')
Out[68]:
Text(0.5, 1, 'Negative')
In [69]:
sns.catplot(x="Answer.sentiment.label", 
            y="WorkTimeInSeconds", 
            kind="bar", 
            order=['Negative', 'Neutral', 'Positive'], 
            data=pos)
plt.title('Positive')
Out[69]:
Text(0.5, 1, 'Positive')

How many turkers had less than 10 second response time?

In [70]:
response_time = neg[neg['WorkTimeInSeconds'] < 10]
response_time_check = neg[neg['WorkTimeInSeconds'] > 10]
In [71]:
len(response_time)
Out[71]:
48
In [72]:
len(response_time_check)
Out[72]:
312

Checking for potential bots

Did anyone have a consistent average low response time?

In [73]:
count = pos.groupby(['WorkerId'])['HITId'].count()
work_time = pos.groupby(['WorkerId'])['WorkTimeInSeconds'].mean()
new_df = pd.DataFrame([work_time, count]).T
new_df[:5]
Out[73]:
WorkTimeInSeconds HITId
WorkerId
A13CLN8L5HFT46 7.230769 13.0
A18WFPSLFV4FKY 47.000000 2.0
A1IQV3QUWRA8G1 22.000000 1.0
A1N1ULK71RHVMM 10.000000 3.0
A1S2MN0E9BHPVA 173.444444 27.0

Did anyone have a consistent average high response time?

In [74]:
new_df['WorkTimeInMin'] = new_df['WorkTimeInSeconds']/60
new_df[:5]
Out[74]:
WorkTimeInSeconds HITId WorkTimeInMin
WorkerId
A13CLN8L5HFT46 7.230769 13.0 0.120513
A18WFPSLFV4FKY 47.000000 2.0 0.783333
A1IQV3QUWRA8G1 22.000000 1.0 0.366667
A1N1ULK71RHVMM 10.000000 3.0 0.166667
A1S2MN0E9BHPVA 173.444444 27.0 2.890741
In [75]:
count = pos.groupby(['WorkerId', 'Answer.sentiment.label'])['Answer.sentiment.label'].count()
# count = pos.groupby(['WorkerId'])['Answer.sentiment.label'].count()
count
Out[75]:
WorkerId        Answer.sentiment.label
A13CLN8L5HFT46  Neutral                    2
                Positive                  11
A18WFPSLFV4FKY  Positive                   2
A1IQV3QUWRA8G1  Positive                   1
A1N1ULK71RHVMM  Negative                   1
                                          ..
AMC42JMQA8A5U   Positive                   1
AO2WNSGOXAX52   Neutral                    3
                Positive                   1
AOMFEAWQHU3D8   Neutral                    1
                Positive                   6
Name: Answer.sentiment.label, Length: 74, dtype: int64

Did anyone answer ONLY pos/neg/neutral?

In [76]:
pnn = pd.DataFrame()
pnn['Neutral'] = pos.groupby('WorkerId')['Answer.sentiment.label'].apply(lambda x: (x=='Neutral').sum())
pnn['Positive'] = pos.groupby('WorkerId')['Answer.sentiment.label'].apply(lambda x: (x=='Positive').sum())
pnn['Negative'] = pos.groupby('WorkerId')['Answer.sentiment.label'].apply(lambda x: (x=='Negative').sum())
pnn['Total'] = pos.groupby('WorkerId')['Answer.sentiment.label'].apply(lambda x: x.count())
pnn[:5]
Out[76]:
Neutral Positive Negative Total
WorkerId
A13CLN8L5HFT46 2 11 0 13
A18WFPSLFV4FKY 0 2 0 2
A1IQV3QUWRA8G1 0 1 0 1
A1N1ULK71RHVMM 0 2 1 3
A1S2MN0E9BHPVA 2 21 4 27

This is getting a little confusing, let's just look at our top performers

In [77]:
top = pnn.sort_values(by=['Total'], ascending=False)
In [78]:
top[:10]
Out[78]:
Neutral Positive Negative Total
WorkerId
A681XM15AN28F 13 20 7 40
A1Y66T7FKJ8PJA 5 23 7 35
A33ENZVC1XB4BA 0 34 0 34
A1S2MN0E9BHPVA 2 21 4 27
A37L5E8MHHQGZM 6 13 3 22
AE03LUY7RH400 4 10 7 21
A2G44A4ZPWRPXU 4 12 2 18
A1YK1IKACUJMV4 0 15 0 15
A3AW887GI0NLKF 3 10 2 15
A3HAEQW13YPT6A 0 14 0 14

Interesting!! Looking from here, we have three workers who ONLY chose positive.

Let's look at their response time to see if we can determine if they are a bot!!

In [79]:
top['Avg_WorkTimeInSeconds'] = pos.groupby('WorkerId')['WorkTimeInSeconds'].apply(lambda x: x.mean())
top['Avg_WorkTimeInMin'] = pos.groupby('WorkerId')['WorkTimeInSeconds'].apply(lambda x: x.mean()/60)
top['Min_WorkTimeInMin'] = pos.groupby('WorkerId')['WorkTimeInSeconds'].apply(lambda x: x.min()/60)
top['Max_WorkTimeInMin'] = pos.groupby('WorkerId')['WorkTimeInSeconds'].apply(lambda x: x.max()/60)
In [80]:
top[:10]
Out[80]:
Neutral Positive Negative Total Avg_WorkTimeInSeconds Avg_WorkTimeInMin Min_WorkTimeInMin Max_WorkTimeInMin
WorkerId
A681XM15AN28F 13 20 7 40 13.575000 0.226250 0.100000 0.833333
A1Y66T7FKJ8PJA 5 23 7 35 695.857143 11.597619 0.216667 22.000000
A33ENZVC1XB4BA 0 34 0 34 366.647059 6.110784 0.616667 9.916667
A1S2MN0E9BHPVA 2 21 4 27 173.444444 2.890741 0.400000 4.983333
A37L5E8MHHQGZM 6 13 3 22 346.272727 5.771212 2.150000 8.283333
AE03LUY7RH400 4 10 7 21 102.238095 1.703968 0.100000 3.433333
A2G44A4ZPWRPXU 4 12 2 18 221.277778 3.687963 0.383333 7.383333
A1YK1IKACUJMV4 0 15 0 15 593.600000 9.893333 1.716667 11.000000
A3AW887GI0NLKF 3 10 2 15 269.400000 4.490000 1.616667 7.216667
A3HAEQW13YPT6A 0 14 0 14 442.928571 7.382143 0.866667 11.100000

Even more interesting! These two don't appear to be bots, based on our current metric which is time variability.

HOWEVER, worker A681XM15AN28F appears to only work for an average of 13 seconds per review which doesn't seem like enough time to read and judge a review...

PART 2: Second submission to AMT

TOO MANY REVIEWERS!

Here is when we realized that doing a kappa score with over 30 individual reviewers would be tricky, so we rusubmitted to AMT and required the turkers to be 'Master' in the hopes that this additional barrier-to-entry would help reduce the amount of turkers working on the project

In [81]:
v2 = pd.read_csv('HW5_amt_v2.csv')
v2[:5]
len(v2)
Out[81]:
293

This time, I didn't separate the df into pos and neg before submitting to AMT, so we have to reimport the labels.

In [82]:
labels = pd.read_csv('all_JK_extremes_labeled.csv')
In [83]:
len(labels)
Out[83]:
98

Oops! That's right, we replicated each review * 3 so three separate people could look at each review

In [84]:
labels2 = labels.append([labels] * 2, ignore_index=True)
In [85]:
len(labels2)
Out[85]:
294
In [86]:
labels2.sort_values(by='0')
Out[86]:
0 PoN
76 #LetRottenTomatoesRotSquad\nI am a simple guy... P
174 #LetRottenTomatoesRotSquad\nI am a simple guy... P
272 #LetRottenTomatoesRotSquad\nI am a simple guy... P
116 A 'Triumph of the Will' for Nihilists\n'Joker... N
18 A 'Triumph of the Will' for Nihilists\n'Joker... N
... ... ...
227 lose of both time and money\nThis was one of ... N
31 lose of both time and money\nThis was one of ... N
207 poor plot\nPoor plot. i find no reason for jo... N
11 poor plot\nPoor plot. i find no reason for jo... N
109 poor plot\nPoor plot. i find no reason for jo... N

294 rows × 2 columns

Shoot! I realized I had to delete some emojis for the csv to be accepted by AMT, so the reviews themselves won't actually be matching... solution: Create two 'for-matching' columns made up of the first 5 words of each review

In [87]:
v2['for_matching'] = v2.apply(lambda x: x['Input.text'].split()[:5], axis=1)
In [88]:
labels2['for_matching'] = labels2.apply(lambda x: x['0'].split()[:5], axis=1)

Annnnnd why did I do that when I could just sort the df and apply the PoN

In [89]:
sorted_labels = labels2.sort_values(by='0')
sorted_labels[:6]
Out[89]:
0 PoN for_matching
76 #LetRottenTomatoesRotSquad\nI am a simple guy... P [#LetRottenTomatoesRotSquad, I, am, a, simple]
174 #LetRottenTomatoesRotSquad\nI am a simple guy... P [#LetRottenTomatoesRotSquad, I, am, a, simple]
272 #LetRottenTomatoesRotSquad\nI am a simple guy... P [#LetRottenTomatoesRotSquad, I, am, a, simple]
116 A 'Triumph of the Will' for Nihilists\n'Joker... N [A, 'Triumph, of, the, Will']
18 A 'Triumph of the Will' for Nihilists\n'Joker... N [A, 'Triumph, of, the, Will']
214 A 'Triumph of the Will' for Nihilists\n'Joker... N [A, 'Triumph, of, the, Will']
In [90]:
sorted_v2 = v2.sort_values(by='Input.text')
sorted_v2[sorted_v2.columns[-5:]][:6]
Out[90]:
Input.text Answer.sentiment.label Approve Reject for_matching
229 #LetRottenTomatoesRotSquad\nI am a simple guy... Positive NaN NaN [#LetRottenTomatoesRotSquad, I, am, a, simple]
228 #LetRottenTomatoesRotSquad\nI am a simple guy... Positive NaN NaN [#LetRottenTomatoesRotSquad, I, am, a, simple]
227 #LetRottenTomatoesRotSquad\nI am a simple guy... Positive NaN NaN [#LetRottenTomatoesRotSquad, I, am, a, simple]
53 A 'Triumph of the Will' for Nihilists\n'Joker... Neutral NaN NaN [A, 'Triumph, of, the, Will']
55 A 'Triumph of the Will' for Nihilists\n'Joker... Negative NaN NaN [A, 'Triumph, of, the, Will']
54 A 'Triumph of the Will' for Nihilists\n'Joker... Negative NaN NaN [A, 'Triumph, of, the, Will']
In [91]:
all_df = sorted_v2.copy()
# all_df['PoN'] = sorted_labels['PoN'].tolist()
# THIS DIDN'T WORK BECAUSE I DIDN'T WAIT UNTIL ALL WERE DONE FROM AMT. RESEARCHER ERROR BUT OMG I HATE MYSELF
In [92]:
len(all_df)
Out[92]:
293
In [93]:
293/3
Out[93]:
97.66666666666667

Confirming that YEP. 293 isn't divisible by 3, meaning I didn't wait until the last turker finished. omg.

Reuploading now -- WITH BETTER CODE AND BETTER VARIABLE NAMES!

In [94]:
turker = pd.read_csv('HW5_amt_294.csv')
print(len(turker))
turker[turker.columns[-5:]][:5]
294
Out[94]:
Last7DaysApprovalRate Input.text Answer.sentiment.label Approve Reject
0 0% (0/0) Everyone praised an overrated movie.\nOverrat... Negative NaN NaN
1 0% (0/0) Everyone praised an overrated movie.\nOverrat... Negative NaN NaN
2 0% (0/0) Everyone praised an overrated movie.\nOverrat... Negative NaN NaN
3 0% (0/0) What idiotic FIlm\nI can say that Phoenix is ... Negative NaN NaN
4 0% (0/0) What idiotic FIlm\nI can say that Phoenix is ... Negative NaN NaN
In [95]:
# Getting labels...
labels = pd.read_csv('all_JK_extremes_labeled.csv')
# X3
labels = labels.append([labels] * 2, ignore_index=True)
print(len(labels))
labels[:5]
294
Out[95]:
0 PoN
0 Everyone praised an overrated movie.\nOverrat... N
1 What idiotic FIlm\nI can say that Phoenix is ... N
2 Terrible\nThe only thing good about this movi... N
3 Watch Taxi Driver instead\nThis is a poor att... N
4 I learned one thing.\nIt borrows a lot of ele... N

NOW, TO SORT!

In [96]:
sorted_labels = labels.sort_values(by=['0'])
sorted_turker = turker.sort_values(by=['Input.text'])
In [97]:
sorted_labels[:5]
Out[97]:
0 PoN
76 #LetRottenTomatoesRotSquad\nI am a simple guy... P
174 #LetRottenTomatoesRotSquad\nI am a simple guy... P
272 #LetRottenTomatoesRotSquad\nI am a simple guy... P
116 A 'Triumph of the Will' for Nihilists\n'Joker... N
18 A 'Triumph of the Will' for Nihilists\n'Joker... N
In [98]:
sorted_turker['Input.text'][:5]
Out[98]:
228     #LetRottenTomatoesRotSquad\nI am a simple guy...
229     #LetRottenTomatoesRotSquad\nI am a simple guy...
230     #LetRottenTomatoesRotSquad\nI am a simple guy...
56      A 'Triumph of the Will' for Nihilists\n'Joker...
55      A 'Triumph of the Will' for Nihilists\n'Joker...
Name: Input.text, dtype: object

OMG HOORAY HOORAY HOORAY!!

NOTE: FUN FACT!! I can type here and then hit the esc key to turn this cell into markdown!!

In [99]:
# YUCK THIS IS SO AGGRIVATING!! This line below doens't work because it still uses indexes.
# So the P and N didn't match up 
# sorted_turker['PoN'] = sorted_labels['PoN']
sorted_turker['PoN'] = sorted_labels['PoN'].tolist()
sorted_turker[sorted_turker.columns[-5:]][:5]
Out[99]:
Input.text Answer.sentiment.label Approve Reject PoN
228 #LetRottenTomatoesRotSquad\nI am a simple guy... Positive NaN NaN P
229 #LetRottenTomatoesRotSquad\nI am a simple guy... Positive NaN NaN P
230 #LetRottenTomatoesRotSquad\nI am a simple guy... Positive NaN NaN P
56 A 'Triumph of the Will' for Nihilists\n'Joker... Negative NaN NaN N
55 A 'Triumph of the Will' for Nihilists\n'Joker... Negative NaN NaN N

PART 3: ANALYZE

First, let's clean ALL the things

In [100]:
all_df = sorted_turker[['Input.text', 'WorkerId', 'Answer.sentiment.label', 'PoN']]
In [101]:
all_df[:5]
Out[101]:
Input.text WorkerId Answer.sentiment.label PoN
228 #LetRottenTomatoesRotSquad\nI am a simple guy... A681XM15AN28F Positive P
229 #LetRottenTomatoesRotSquad\nI am a simple guy... A2XFO0X6RCS98M Positive P
230 #LetRottenTomatoesRotSquad\nI am a simple guy... AURYD2FH3FUOQ Positive P
56 A 'Triumph of the Will' for Nihilists\n'Joker... A1T79J0XQXDDGC Negative N
55 A 'Triumph of the Will' for Nihilists\n'Joker... A2XFO0X6RCS98M Negative N
In [102]:
all_df_all = all_df.copy()
all_df_all['APoN'] = all_df_all.apply(lambda x: x['Answer.sentiment.label'][0], axis=1)
In [103]:
all_df_all
Out[103]:
Input.text WorkerId Answer.sentiment.label PoN APoN
228 #LetRottenTomatoesRotSquad\nI am a simple guy... A681XM15AN28F Positive P P
229 #LetRottenTomatoesRotSquad\nI am a simple guy... A2XFO0X6RCS98M Positive P P
230 #LetRottenTomatoesRotSquad\nI am a simple guy... AURYD2FH3FUOQ Positive P P
56 A 'Triumph of the Will' for Nihilists\n'Joker... A1T79J0XQXDDGC Negative N N
55 A 'Triumph of the Will' for Nihilists\n'Joker... A2XFO0X6RCS98M Negative N N
... ... ... ... ... ...
265 Venice 76 review\nI have just watched the Joke... ARLGZWN6W91WD Positive N P
266 Venice 76 review\nI have just watched the Joke... A38DC3BG1ZCVZ2 Positive N P
93 lose of both time and money\nThis was one of t... A2XFO0X6RCS98M Negative N N
94 lose of both time and money\nThis was one of t... A3EZ0H07TSDAPW Negative N N
95 lose of both time and money\nThis was one of t... ASB8T0H7L99RF Negative N N

294 rows × 5 columns

In [104]:
all_df_all['agree'] = all_df_all.apply(lambda x: x['PoN'] == x['APoN'], axis=1)
In [105]:
all_df_all[-10:]
Out[105]:
Input.text WorkerId Answer.sentiment.label PoN APoN agree
38 This is extremely bad...\nThis whole film make... A3EZ0H07TSDAPW Negative N N True
216 Took my 65 year old mother to see it.\nI saw t... A3EZ0H07TSDAPW Positive N P False
217 Took my 65 year old mother to see it.\nI saw t... A2XFO0X6RCS98M Positive N P False
218 Took my 65 year old mother to see it.\nI saw t... AKSJ3C5O3V9RB Positive N P False
264 Venice 76 review\nI have just watched the Joke... A3EZ0H07TSDAPW Positive N P False
265 Venice 76 review\nI have just watched the Joke... ARLGZWN6W91WD Positive N P False
266 Venice 76 review\nI have just watched the Joke... A38DC3BG1ZCVZ2 Positive N P False
93 lose of both time and money\nThis was one of t... A2XFO0X6RCS98M Negative N N True
94 lose of both time and money\nThis was one of t... A3EZ0H07TSDAPW Negative N N True
95 lose of both time and money\nThis was one of t... ASB8T0H7L99RF Negative N N True

Lets see how many agree!

In [106]:
agree_df = pd.DataFrame(all_df_all.groupby(['Input.text','PoN'])['agree'].mean())
agree_df = agree_df.reset_index()
agree_df[:5]
Out[106]:
Input.text PoN agree
0 #LetRottenTomatoesRotSquad\nI am a simple guy... P 1.000000
1 A 'Triumph of the Will' for Nihilists\n'Joker... N 1.000000
2 A Breath of Fresh Cinema\nBursting with emoti... P 1.000000
3 A MASTERPIECE\nJoaquin Phoenix's performance ... N 0.333333
4 A brilliant movie\nThis movie is slow but nev... P 1.000000

OK so this actually gave us something we want... BUT PLEASE TELL ME THE BETTER WAY!!

In [107]:
def return_agreement(num):
    if num == 0:
        return 'agree_wrong'
    if num == 1:
        return 'agree'
    if (num/1) !=0:
        return 'disparity'

agree_df['agree_factor'] = agree_df.apply(lambda x: return_agreement(x['agree']), axis=1)
agree_df
Out[107]:
Input.text PoN agree agree_factor
0 #LetRottenTomatoesRotSquad\nI am a simple guy... P 1.000000 agree
1 A 'Triumph of the Will' for Nihilists\n'Joker... N 1.000000 agree
2 A Breath of Fresh Cinema\nBursting with emoti... P 1.000000 agree
3 A MASTERPIECE\nJoaquin Phoenix's performance ... N 0.333333 disparity
4 A brilliant movie\nThis movie is slow but nev... P 1.000000 agree
... ... ... ... ...
93 The mirror of society\nActing 10/10\nActors 10... N 0.000000 agree_wrong
94 This is extremely bad...\nThis whole film make... N 1.000000 agree
95 Took my 65 year old mother to see it.\nI saw t... N 0.000000 agree_wrong
96 Venice 76 review\nI have just watched the Joke... N 0.000000 agree_wrong
97 lose of both time and money\nThis was one of t... N 1.000000 agree

98 rows × 4 columns

In [122]:
df1 = agree_df.groupby(['agree_factor']).count()
df1.reset_index(inplace=True)
df1
Out[122]:
agree_factor Input.text PoN agree
0 agree 33 33 33
1 agree_wrong 31 31 31
2 disparity 34 34 34
In [123]:
sns.barplot(x=['Agreed', 'Disagreed'],
           y= [64,34],
           data = df1);
plt.title('How many turkers agreed on sentiment?')
Out[123]:
Text(0.5, 1.0, 'How many turkers agreed on sentiment?')
In [129]:
sns.barplot(x="agree_factor", y="agree", data=df1);
plt.title('How many turkers agreed on sentiment, but were wrong?')
Out[129]:
Text(0.5, 1.0, 'How many turkers agreed on sentiment, but were wrong?')
In [130]:
df2 = agree_df.groupby(['agree_factor', 'PoN']).count()
df2.reset_index(inplace=True)
In [131]:
sns.barplot(x="agree_factor",
           y="agree",
           hue="PoN",
           data=df2);
plt.title("What was the pos/neg split for the turkers?")
Out[131]:
Text(0.5, 1.0, 'What was the pos/neg split for the turkers?')

What was the kappa score for the turkers?

In [132]:
# Example code
from sklearn.metrics import cohen_kappa_score
y1 = [0,1,2,3,4,0,1,2,3,4,0,1,2,3,4]
y2 = [0,1,2,2,4,1,2,3,0,0,0,2,2,4,4]
cohen_kappa_score(y1,y2)
Out[132]:
0.33333333333333337
Oh boy! This will be super fun. First, I'm going to brainstorm "out loud" how I'm going to do this when AMT doesn't
In [136]:
pnn = pd.DataFrame()
# pnn['Neutral'] = pos.groupby('WorkerId')['Answer.sentiment.label'].apply(lambda x: (x=='Neutral').sum())
# pnn['Positive'] = pos.groupby('WorkerId')['Answer.sentiment.label'].apply(lambda x: (x=='Positive').sum())
# pnn['Negative'] = pos.groupby('WorkerId')['Answer.sentiment.label'].apply(lambda x: (x=='Negative').sum())
# pnn['Total'] = pos.groupby('WorkerId')['Answer.sentiment.label'].apply(lambda x: x.count())
# pnn[:5]
In [137]:
 
Out[137]:
Input.text WorkerId Answer.sentiment.label PoN
228 #LetRottenTomatoesRotSquad\nI am a simple guy... A681XM15AN28F Positive P
229 #LetRottenTomatoesRotSquad\nI am a simple guy... A2XFO0X6RCS98M Positive P
230 #LetRottenTomatoesRotSquad\nI am a simple guy... AURYD2FH3FUOQ Positive P
56 A 'Triumph of the Will' for Nihilists\n'Joker... A1T79J0XQXDDGC Negative N
55 A 'Triumph of the Will' for Nihilists\n'Joker... A2XFO0X6RCS98M Negative N
... ... ... ... ...
265 Venice 76 review\nI have just watched the Joke... ARLGZWN6W91WD Positive N
266 Venice 76 review\nI have just watched the Joke... A38DC3BG1ZCVZ2 Positive N
93 lose of both time and money\nThis was one of t... A2XFO0X6RCS98M Negative N
94 lose of both time and money\nThis was one of t... A3EZ0H07TSDAPW Negative N
95 lose of both time and money\nThis was one of t... ASB8T0H7L99RF Negative N

294 rows × 4 columns

In [138]:
top[:10]
Out[138]:
Neutral Positive Negative Total Avg_WorkTimeInSeconds Avg_WorkTimeInMin Min_WorkTimeInMin Max_WorkTimeInMin
WorkerId
A681XM15AN28F 13 20 7 40 13.575000 0.226250 0.100000 0.833333
A1Y66T7FKJ8PJA 5 23 7 35 695.857143 11.597619 0.216667 22.000000
A33ENZVC1XB4BA 0 34 0 34 366.647059 6.110784 0.616667 9.916667
A1S2MN0E9BHPVA 2 21 4 27 173.444444 2.890741 0.400000 4.983333
A37L5E8MHHQGZM 6 13 3 22 346.272727 5.771212 2.150000 8.283333
AE03LUY7RH400 4 10 7 21 102.238095 1.703968 0.100000 3.433333
A2G44A4ZPWRPXU 4 12 2 18 221.277778 3.687963 0.383333 7.383333
A1YK1IKACUJMV4 0 15 0 15 593.600000 9.893333 1.716667 11.000000
A3AW887GI0NLKF 3 10 2 15 269.400000 4.490000 1.616667 7.216667
A3HAEQW13YPT6A 0 14 0 14 442.928571 7.382143 0.866667 11.100000
In [141]:
newdf = pd.DataFrame(turker.groupby(['HITId', 'WorkerId']))
In [142]:
newdf
Out[142]:
0 1
0 (302OLP89DZ7MBHSY6QU0WCST11GACJ, A1T79J0XQXDDGC) HITId ...
1 (302OLP89DZ7MBHSY6QU0WCST11GACJ, A2XFO0X6RCS98M) HITId ...
2 (302OLP89DZ7MBHSY6QU0WCST11GACJ, A681XM15AN28F) HITId ...
3 (3087LXLJ6MGXDGEQ5QN8FC1JPSW0FT, A1L8RL58MYU4NC) HITId ...
4 (3087LXLJ6MGXDGEQ5QN8FC1JPSW0FT, A1T79J0XQXDDGC) HITId ...
... ... ...
289 (3ZLW647WALV9TE1B0IQKXR51J0B327, A38DC3BG1ZCVZ2) HITId ...
290 (3ZLW647WALV9TE1B0IQKXR51J0B327, ARLGZWN6W91WD) HITId ...
291 (3ZRKL6Z1E833SPUXPCCA737ELZESG6, A1L8RL58MYU4NC) HITId ...
292 (3ZRKL6Z1E833SPUXPCCA737ELZESG6, A38DC3BG1ZCVZ2) HITId ...
293 (3ZRKL6Z1E833SPUXPCCA737ELZESG6, A681XM15AN28F) HITId ...

294 rows × 2 columns

In [147]:
turker.columns
Out[147]:
Index(['HITId', 'HITTypeId', 'Title', 'Description', 'Keywords', 'Reward',
       'CreationTime', 'MaxAssignments', 'RequesterAnnotation',
       'AssignmentDurationInSeconds', 'AutoApprovalDelayInSeconds',
       'Expiration', 'NumberOfSimilarHITs', 'LifetimeInSeconds',
       'AssignmentId', 'WorkerId', 'AssignmentStatus', 'AcceptTime',
       'SubmitTime', 'AutoApprovalTime', 'ApprovalTime', 'RejectionTime',
       'RequesterFeedback', 'WorkTimeInSeconds', 'LifetimeApprovalRate',
       'Last30DaysApprovalRate', 'Last7DaysApprovalRate', 'Input.text',
       'Answer.sentiment.label', 'Approve', 'Reject'],
      dtype='object')
In [148]:
turker_clean = turker[['HITId', 'WorkerId', 'Answer.sentiment.label', 'Input.text']]
In [149]:
# turker_clean.groupby
Out[149]:
HITId WorkerId Answer.sentiment.label Input.text
0 338GLSUI43BXEPY2ES6SPI72KKESF7 AH5A86OLRZWCS Negative Everyone praised an overrated movie.\nOverrat...
1 338GLSUI43BXEPY2ES6SPI72KKESF7 A2HGRSPR50ENHL Negative Everyone praised an overrated movie.\nOverrat...
2 338GLSUI43BXEPY2ES6SPI72KKESF7 AKSJ3C5O3V9RB Negative Everyone praised an overrated movie.\nOverrat...
3 37MQ8Z1JQEWA9HYZP3JANL1ES162YC ARLGZWN6W91WD Negative What idiotic FIlm\nI can say that Phoenix is ...
4 37MQ8Z1JQEWA9HYZP3JANL1ES162YC AKSJ3C5O3V9RB Negative What idiotic FIlm\nI can say that Phoenix is ...
... ... ... ... ...
289 3PUV2Q8SV441ZJ34C0P7BTUH4JDDBH A3EZ0H07TSDAPW Negative Oscar for Phoenix\nI will stop watching movie...
290 3PUV2Q8SV441ZJ34C0P7BTUH4JDDBH A38DC3BG1ZCVZ2 Positive Oscar for Phoenix\nI will stop watching movie...
291 3FO95NVK5C0UHF3B5N6M67LLN8PSR2 A194R45ACMQEOR Positive Joker > Endgame\nNeed I say more? Everything ...
292 3FO95NVK5C0UHF3B5N6M67LLN8PSR2 A1L8RL58MYU4NC Positive Joker > Endgame\nNeed I say more? Everything ...
293 3FO95NVK5C0UHF3B5N6M67LLN8PSR2 A1T79J0XQXDDGC Positive Joker > Endgame\nNeed I say more? Everything ...

294 rows × 4 columns

In [150]:
turker_clean.WorkerId.value_counts()
Out[150]:
ARLGZWN6W91WD     46
A681XM15AN28F     37
A1T79J0XQXDDGC    34
A2XFO0X6RCS98M    33
A3EZ0H07TSDAPW    33
A1L8RL58MYU4NC    28
A38DC3BG1ZCVZ2    22
AKSJ3C5O3V9RB     21
ASB8T0H7L99RF     10
AE03LUY7RH400      6
A37JENVKZQ56U6     5
A194R45ACMQEOR     5
AH5A86OLRZWCS      4
A2HG1N3BVQO6I      4
AURYD2FH3FUOQ      2
AMC42JMQA8A5U      2
ATHS9GUME1XCA      1
A2HGRSPR50ENHL     1
Name: WorkerId, dtype: int64
In [161]:
turker1 = turker_clean[turker_clean['WorkerId'] == 'ARLGZWN6W91WD']
turker2 = turker_clean[turker_clean['WorkerId'] == 'A681XM15AN28F']
turker3 = turker_clean[turker_clean['WorkerId'] == 'A1T79J0XQXDDGC']
turker4 = turker_clean[turker_clean['WorkerId'] == 'A2XFO0X6RCS98M']
turker5 = turker_clean[turker_clean['WorkerId'] == 'A3EZ0H07TSDAPW']
In [162]:
turker1.reset_index(drop=True, inplace=True)
turker2.reset_index(drop=True, inplace=True)
turker3.reset_index(drop=True, inplace=True)
turker4.reset_index(drop=True, inplace=True)
turker5.reset_index(drop=True, inplace=True)
In [165]:
merged_df = pd.concat([turker1, turker2, turker3, turker4, turker5], axis=0, sort=False)
In [168]:
merged_df.reset_index(drop=True, inplace=True)
In [196]:
merged_df.sort_values(by='Input.text')
Out[196]:
HITId WorkerId Answer.sentiment.label Input.text
79 3AQN9REUTFGXCRWFMS3RJ4SIPSUYDG A681XM15AN28F Positive #LetRottenTomatoesRotSquad\nI am a simple guy...
142 3AQN9REUTFGXCRWFMS3RJ4SIPSUYDG A2XFO0X6RCS98M Positive #LetRottenTomatoesRotSquad\nI am a simple guy...
122 3IVKZBIBJ09HSLP89IUSS3JF0ZRSH5 A2XFO0X6RCS98M Negative A 'Triumph of the Will' for Nihilists\n'Joker...
55 3IVKZBIBJ09HSLP89IUSS3JF0ZRSH5 A681XM15AN28F Neutral A 'Triumph of the Will' for Nihilists\n'Joker...
87 3IVKZBIBJ09HSLP89IUSS3JF0ZRSH5 A1T79J0XQXDDGC Negative A 'Triumph of the Will' for Nihilists\n'Joker...
... ... ... ... ...
175 3J9UN9O9J3SDII0MOGETUATBIZD0JW A3EZ0H07TSDAPW Positive Took my 65 year old mother to see it.\nI saw t...
43 31ODACBENUFU5EOBS8HM1HBGRMNSQ1 ARLGZWN6W91WD Positive Venice 76 review\nI have just watched the Joke...
180 31ODACBENUFU5EOBS8HM1HBGRMNSQ1 A3EZ0H07TSDAPW Positive Venice 76 review\nI have just watched the Joke...
162 3M93N4X8HKNDJRKYXIXD4GZUDRVSJA A3EZ0H07TSDAPW Negative lose of both time and money\nThis was one of t...
127 3M93N4X8HKNDJRKYXIXD4GZUDRVSJA A2XFO0X6RCS98M Negative lose of both time and money\nThis was one of t...

183 rows × 4 columns

In [171]:
merged_df2 = pd.concat([turker1, turker2], axis=0, sort=False)
In [195]:
merged_df2.sort_values(by='Input.text')
Out[195]:
HITId WorkerId Answer.sentiment.label Input.text
33 3AQN9REUTFGXCRWFMS3RJ4SIPSUYDG A681XM15AN28F Positive #LetRottenTomatoesRotSquad\nI am a simple guy...
9 3IVKZBIBJ09HSLP89IUSS3JF0ZRSH5 A681XM15AN28F Neutral A 'Triumph of the Will' for Nihilists\n'Joker...
36 39O0SQZVJN78YHJJHK8BBGPP0UD7RV ARLGZWN6W91WD Positive A Breath of Fresh Cinema\nBursting with emoti...
30 334ZEL5JX6FRK2BVDVPICCGGCL5SOT A681XM15AN28F Positive A brilliant movie\nThis movie is slow but nev...
31 3DWGDA5POF4MG2LY1OWCB3NFIEPV1E ARLGZWN6W91WD Positive A clean masterpiece!\nWhat I loved the most a...
... ... ... ... ...
7 3D17ECOUOEV24TJFHEQ6S8VWRUX31Q ARLGZWN6W91WD Negative Overhyped and not everyone joker performance i...
6 3G3AJKPCXLSKCVDMTH2YG0YCCF1Y43 A681XM15AN28F Neutral Ridiculous well acted Trash\nSaw the movie Jok...
17 3JAOYN9IHL2YEWXU4I4PG1ATPEB33I A681XM15AN28F Neutral The king has no clothes\nRead the reviews- the...
38 3J5XXLQDHMBIQ5ZDOSAVZW2CGY3V36 ARLGZWN6W91WD Positive The mirror of society\nActing 10/10\nActors 10...
43 31ODACBENUFU5EOBS8HM1HBGRMNSQ1 ARLGZWN6W91WD Positive Venice 76 review\nI have just watched the Joke...

83 rows × 4 columns

In [191]:
# merged_df2['Input.text'].value_counts()
# df = pd.DataFrame(merged_df2.groupby('HITId'))
# df.set_index([turker1, turker2]).unstack(level=0)
In [203]:
# grouped = turker_clean.groupby(['HITId','WorkerId'])
# grouped.set_index(['HITId', 'WorkerId']).mean().unstack(level=0)
df = merged_df.drop('Input.text', axis=1)
df
Out[203]:
HITId WorkerId Answer.sentiment.label
0 37MQ8Z1JQEWA9HYZP3JANL1ES162YC ARLGZWN6W91WD Negative
1 3I7SHAD35MWH116RCCCUPHVFU7E7M7 ARLGZWN6W91WD Negative
2 3XUSYT70IT10FW0UEKSIRCYYDFG0DI ARLGZWN6W91WD Negative
3 3SD15I2WD2UXBFKCNK2NN4MDZ5D63R ARLGZWN6W91WD Negative
4 3P7QK0GJ3TLAE784LPLT1SAGYVA2Z3 ARLGZWN6W91WD Negative
... ... ... ...
178 39KV3A5D187KZWJWW98G1QULMWW7SJ A3EZ0H07TSDAPW Neutral
179 35F6NGNVM8JLEWWBL9D6BVQ7OFA7T8 A3EZ0H07TSDAPW Positive
180 31ODACBENUFU5EOBS8HM1HBGRMNSQ1 A3EZ0H07TSDAPW Positive
181 3PN6H8C9R4QWG9YC6MPBGIABM1SDAM A3EZ0H07TSDAPW Neutral
182 3PUV2Q8SV441ZJ34C0P7BTUH4JDDBH A3EZ0H07TSDAPW Negative

183 rows × 3 columns

In [213]:
df = pd.DataFrame({'Turker': merged_df['WorkerId'].tolist(),
                   'REVIEW': merged_df['Answer.sentiment.label'].tolist(),
                   'SENTIMENT': merged_df['HITId'].tolist() })

grouped = df.groupby('Turker')
values = grouped['SENTIMENT'].agg('sum')
id_df = grouped['REVIEW'].apply(lambda x: pd.Series(x.values)).unstack()
id_df = id_df.rename(columns={i: 'REVIEW{}'.format(i + 1) for i in range(id_df.shape[1])})
result = pd.concat([id_df, values], axis=1)
result_df = pd.DataFrame(result)
print(result_df)
                 REVIEW1   REVIEW2   REVIEW3   REVIEW4   REVIEW5   REVIEW6  \
Turker                                                                       
A1T79J0XQXDDGC  Positive  Negative  Positive  Positive  Negative  Negative   
A2XFO0X6RCS98M  Negative  Negative  Negative  Negative  Positive  Negative   
A3EZ0H07TSDAPW  Positive   Neutral  Positive  Negative  Negative  Positive   
A681XM15AN28F   Negative  Positive  Positive  Positive  Positive  Negative   
ARLGZWN6W91WD   Negative  Negative  Negative  Negative  Negative  Negative   

                 REVIEW7   REVIEW8   REVIEW9  REVIEW10  ...  REVIEW38  \
Turker                                                  ...             
A1T79J0XQXDDGC  Negative  Positive  Negative  Negative  ...       NaN   
A2XFO0X6RCS98M  Negative  Negative  Negative  Negative  ...       NaN   
A3EZ0H07TSDAPW  Negative  Positive  Positive  Negative  ...       NaN   
A681XM15AN28F    Neutral   Neutral   Neutral   Neutral  ...       NaN   
ARLGZWN6W91WD   Negative  Negative  Negative  Negative  ...  Positive   

                REVIEW39  REVIEW40  REVIEW41  REVIEW42  REVIEW43  REVIEW44  \
Turker                                                                       
A1T79J0XQXDDGC       NaN       NaN       NaN       NaN       NaN       NaN   
A2XFO0X6RCS98M       NaN       NaN       NaN       NaN       NaN       NaN   
A3EZ0H07TSDAPW       NaN       NaN       NaN       NaN       NaN       NaN   
A681XM15AN28F        NaN       NaN       NaN       NaN       NaN       NaN   
ARLGZWN6W91WD   Positive  Positive  Positive  Negative  Positive  Positive   

                REVIEW45  REVIEW46  \
Turker                               
A1T79J0XQXDDGC       NaN       NaN   
A2XFO0X6RCS98M       NaN       NaN   
A3EZ0H07TSDAPW       NaN       NaN   
A681XM15AN28F        NaN       NaN   
ARLGZWN6W91WD   Positive  Positive   

                                                        SENTIMENT  
Turker                                                             
A1T79J0XQXDDGC  302OLP89DZ7MBHSY6QU0WCST11GACJ32LAQ1JNT9PNC787...  
A2XFO0X6RCS98M  3I7SHAD35MWH116RCCCUPHVFU7E7M73XUSYT70IT10FW0U...  
A3EZ0H07TSDAPW  38O9DZ0A62N8QXOTJKOI4UHLTRD62G3I7SHAD35MWH116R...  
A681XM15AN28F   3SD15I2WD2UXBFKCNK2NN4MDZ5D63R302OLP89DZ7MBHSY...  
ARLGZWN6W91WD   37MQ8Z1JQEWA9HYZP3JANL1ES162YC3I7SHAD35MWH116R...  

[5 rows x 47 columns]
In [216]:
df = pd.DataFrame({'Turker': merged_df['WorkerId'].tolist(),
                   'SENTIMENT': merged_df['Answer.sentiment.label'].tolist(),
                   'REVIEW': merged_df['HITId'].tolist() })

grouped = df.groupby('Turker')
values = grouped['REVIEW'].agg('sum')
id_df = grouped['SENTIMENT'].apply(lambda x: pd.Series(x.values)).unstack()
id_df = id_df.rename(columns={i: 'SENTIMENT{}'.format(i + 1) for i in range(id_df.shape[1])})
result = pd.concat([id_df, values], axis=1)
result_df = pd.DataFrame(result)
print(result_df.T)
Turker                                          A1T79J0XQXDDGC  \
SENTIMENT1                                            Positive   
SENTIMENT2                                            Negative   
SENTIMENT3                                            Positive   
SENTIMENT4                                            Positive   
SENTIMENT5                                            Negative   
SENTIMENT6                                            Negative   
SENTIMENT7                                            Negative   
SENTIMENT8                                            Positive   
SENTIMENT9                                            Negative   
SENTIMENT10                                           Negative   
SENTIMENT11                                           Negative   
SENTIMENT12                                           Negative   
SENTIMENT13                                           Negative   
SENTIMENT14                                           Negative   
SENTIMENT15                                           Positive   
SENTIMENT16                                           Positive   
SENTIMENT17                                           Positive   
SENTIMENT18                                           Positive   
SENTIMENT19                                           Positive   
SENTIMENT20                                           Positive   
SENTIMENT21                                           Positive   
SENTIMENT22                                           Positive   
SENTIMENT23                                           Positive   
SENTIMENT24                                           Positive   
SENTIMENT25                                           Positive   
SENTIMENT26                                           Positive   
SENTIMENT27                                           Positive   
SENTIMENT28                                           Positive   
SENTIMENT29                                           Positive   
SENTIMENT30                                           Negative   
SENTIMENT31                                           Positive   
SENTIMENT32                                           Positive   
SENTIMENT33                                           Positive   
SENTIMENT34                                           Positive   
SENTIMENT35                                                NaN   
SENTIMENT36                                                NaN   
SENTIMENT37                                                NaN   
SENTIMENT38                                                NaN   
SENTIMENT39                                                NaN   
SENTIMENT40                                                NaN   
SENTIMENT41                                                NaN   
SENTIMENT42                                                NaN   
SENTIMENT43                                                NaN   
SENTIMENT44                                                NaN   
SENTIMENT45                                                NaN   
SENTIMENT46                                                NaN   
REVIEW       302OLP89DZ7MBHSY6QU0WCST11GACJ32LAQ1JNT9PNC787...   

Turker                                          A2XFO0X6RCS98M  \
SENTIMENT1                                            Negative   
SENTIMENT2                                            Negative   
SENTIMENT3                                            Negative   
SENTIMENT4                                            Negative   
SENTIMENT5                                            Positive   
SENTIMENT6                                            Negative   
SENTIMENT7                                            Negative   
SENTIMENT8                                            Negative   
SENTIMENT9                                            Negative   
SENTIMENT10                                           Negative   
SENTIMENT11                                           Negative   
SENTIMENT12                                           Negative   
SENTIMENT13                                           Negative   
SENTIMENT14                                           Negative   
SENTIMENT15                                           Positive   
SENTIMENT16                                           Negative   
SENTIMENT17                                           Negative   
SENTIMENT18                                           Positive   
SENTIMENT19                                           Positive   
SENTIMENT20                                           Positive   
SENTIMENT21                                           Positive   
SENTIMENT22                                           Positive   
SENTIMENT23                                           Positive   
SENTIMENT24                                           Positive   
SENTIMENT25                                           Positive   
SENTIMENT26                                           Positive   
SENTIMENT27                                           Positive   
SENTIMENT28                                           Positive   
SENTIMENT29                                           Positive   
SENTIMENT30                                           Positive   
SENTIMENT31                                           Positive   
SENTIMENT32                                           Positive   
SENTIMENT33                                           Positive   
SENTIMENT34                                                NaN   
SENTIMENT35                                                NaN   
SENTIMENT36                                                NaN   
SENTIMENT37                                                NaN   
SENTIMENT38                                                NaN   
SENTIMENT39                                                NaN   
SENTIMENT40                                                NaN   
SENTIMENT41                                                NaN   
SENTIMENT42                                                NaN   
SENTIMENT43                                                NaN   
SENTIMENT44                                                NaN   
SENTIMENT45                                                NaN   
SENTIMENT46                                                NaN   
REVIEW       3I7SHAD35MWH116RCCCUPHVFU7E7M73XUSYT70IT10FW0U...   

Turker                                          A3EZ0H07TSDAPW  \
SENTIMENT1                                            Positive   
SENTIMENT2                                             Neutral   
SENTIMENT3                                            Positive   
SENTIMENT4                                            Negative   
SENTIMENT5                                            Negative   
SENTIMENT6                                            Positive   
SENTIMENT7                                            Negative   
SENTIMENT8                                            Positive   
SENTIMENT9                                            Positive   
SENTIMENT10                                           Negative   
SENTIMENT11                                            Neutral   
SENTIMENT12                                           Negative   
SENTIMENT13                                           Negative   
SENTIMENT14                                            Neutral   
SENTIMENT15                                            Neutral   
SENTIMENT16                                           Positive   
SENTIMENT17                                           Negative   
SENTIMENT18                                           Negative   
SENTIMENT19                                            Neutral   
SENTIMENT20                                            Neutral   
SENTIMENT21                                            Neutral   
SENTIMENT22                                           Positive   
SENTIMENT23                                           Positive   
SENTIMENT24                                            Neutral   
SENTIMENT25                                           Positive   
SENTIMENT26                                           Positive   
SENTIMENT27                                           Positive   
SENTIMENT28                                           Positive   
SENTIMENT29                                            Neutral   
SENTIMENT30                                           Positive   
SENTIMENT31                                           Positive   
SENTIMENT32                                            Neutral   
SENTIMENT33                                           Negative   
SENTIMENT34                                                NaN   
SENTIMENT35                                                NaN   
SENTIMENT36                                                NaN   
SENTIMENT37                                                NaN   
SENTIMENT38                                                NaN   
SENTIMENT39                                                NaN   
SENTIMENT40                                                NaN   
SENTIMENT41                                                NaN   
SENTIMENT42                                                NaN   
SENTIMENT43                                                NaN   
SENTIMENT44                                                NaN   
SENTIMENT45                                                NaN   
SENTIMENT46                                                NaN   
REVIEW       38O9DZ0A62N8QXOTJKOI4UHLTRD62G3I7SHAD35MWH116R...   

Turker                                           A681XM15AN28F  \
SENTIMENT1                                            Negative   
SENTIMENT2                                            Positive   
SENTIMENT3                                            Positive   
SENTIMENT4                                            Positive   
SENTIMENT5                                            Positive   
SENTIMENT6                                            Negative   
SENTIMENT7                                             Neutral   
SENTIMENT8                                             Neutral   
SENTIMENT9                                             Neutral   
SENTIMENT10                                            Neutral   
SENTIMENT11                                           Positive   
SENTIMENT12                                           Positive   
SENTIMENT13                                           Negative   
SENTIMENT14                                           Positive   
SENTIMENT15                                            Neutral   
SENTIMENT16                                            Neutral   
SENTIMENT17                                            Neutral   
SENTIMENT18                                            Neutral   
SENTIMENT19                                           Positive   
SENTIMENT20                                           Negative   
SENTIMENT21                                            Neutral   
SENTIMENT22                                           Positive   
SENTIMENT23                                            Neutral   
SENTIMENT24                                            Neutral   
SENTIMENT25                                           Negative   
SENTIMENT26                                            Neutral   
SENTIMENT27                                           Negative   
SENTIMENT28                                           Positive   
SENTIMENT29                                           Negative   
SENTIMENT30                                            Neutral   
SENTIMENT31                                           Positive   
SENTIMENT32                                           Negative   
SENTIMENT33                                           Positive   
SENTIMENT34                                           Positive   
SENTIMENT35                                           Negative   
SENTIMENT36                                            Neutral   
SENTIMENT37                                           Positive   
SENTIMENT38                                                NaN   
SENTIMENT39                                                NaN   
SENTIMENT40                                                NaN   
SENTIMENT41                                                NaN   
SENTIMENT42                                                NaN   
SENTIMENT43                                                NaN   
SENTIMENT44                                                NaN   
SENTIMENT45                                                NaN   
SENTIMENT46                                                NaN   
REVIEW       3SD15I2WD2UXBFKCNK2NN4MDZ5D63R302OLP89DZ7MBHSY...   

Turker                                           ARLGZWN6W91WD  
SENTIMENT1                                            Negative  
SENTIMENT2                                            Negative  
SENTIMENT3                                            Negative  
SENTIMENT4                                            Negative  
SENTIMENT5                                            Negative  
SENTIMENT6                                            Negative  
SENTIMENT7                                            Negative  
SENTIMENT8                                            Negative  
SENTIMENT9                                            Negative  
SENTIMENT10                                           Negative  
SENTIMENT11                                           Negative  
SENTIMENT12                                           Negative  
SENTIMENT13                                           Negative  
SENTIMENT14                                           Negative  
SENTIMENT15                                           Negative  
SENTIMENT16                                           Negative  
SENTIMENT17                                           Negative  
SENTIMENT18                                           Negative  
SENTIMENT19                                            Neutral  
SENTIMENT20                                           Negative  
SENTIMENT21                                           Negative  
SENTIMENT22                                           Negative  
SENTIMENT23                                           Positive  
SENTIMENT24                                           Positive  
SENTIMENT25                                           Positive  
SENTIMENT26                                           Positive  
SENTIMENT27                                           Positive  
SENTIMENT28                                           Positive  
SENTIMENT29                                           Positive  
SENTIMENT30                                           Positive  
SENTIMENT31                                           Positive  
SENTIMENT32                                           Positive  
SENTIMENT33                                           Positive  
SENTIMENT34                                           Positive  
SENTIMENT35                                           Positive  
SENTIMENT36                                           Positive  
SENTIMENT37                                           Positive  
SENTIMENT38                                           Positive  
SENTIMENT39                                           Positive  
SENTIMENT40                                           Positive  
SENTIMENT41                                           Positive  
SENTIMENT42                                           Negative  
SENTIMENT43                                           Positive  
SENTIMENT44                                           Positive  
SENTIMENT45                                           Positive  
SENTIMENT46                                           Positive  
REVIEW       37MQ8Z1JQEWA9HYZP3JANL1ES162YC3I7SHAD35MWH116R...  
In [225]:
t1 = result_df.T['A3EZ0H07TSDAPW'].tolist()
len(t1)
Out[225]:
47
In [245]:
t2 = result_df.T['A2XFO0X6RCS98M'].tolist()
len(t2)
t3 = result_df.T['A681XM15AN28F'].tolist()
len(t3)
t4 = result_df.T['ARLGZWN6W91WD'].tolist()
In [246]:
t1[:-1]
Out[246]:
['Positive',
 'Neutral',
 'Positive',
 'Negative',
 'Negative',
 'Positive',
 'Negative',
 'Positive',
 'Positive',
 'Negative',
 'Neutral',
 'Negative',
 'Negative',
 'Neutral',
 'Neutral',
 'Positive',
 'Negative',
 'Negative',
 'Neutral',
 'Neutral',
 'Neutral',
 'Positive',
 'Positive',
 'Neutral',
 'Positive',
 'Positive',
 'Positive',
 'Positive',
 'Neutral',
 'Positive',
 'Positive',
 'Neutral',
 'Negative',
 nan,
 nan,
 nan,
 nan,
 nan,
 nan,
 nan,
 nan,
 nan,
 nan,
 nan,
 nan,
 nan]
In [247]:
t2[:-1]
Out[247]:
['Negative',
 'Negative',
 'Negative',
 'Negative',
 'Positive',
 'Negative',
 'Negative',
 'Negative',
 'Negative',
 'Negative',
 'Negative',
 'Negative',
 'Negative',
 'Negative',
 'Positive',
 'Negative',
 'Negative',
 'Positive',
 'Positive',
 'Positive',
 'Positive',
 'Positive',
 'Positive',
 'Positive',
 'Positive',
 'Positive',
 'Positive',
 'Positive',
 'Positive',
 'Positive',
 'Positive',
 'Positive',
 'Positive',
 nan,
 nan,
 nan,
 nan,
 nan,
 nan,
 nan,
 nan,
 nan,
 nan,
 nan,
 nan,
 nan]
In [248]:
t3
Out[248]:
['Negative',
 'Positive',
 'Positive',
 'Positive',
 'Positive',
 'Negative',
 'Neutral',
 'Neutral',
 'Neutral',
 'Neutral',
 'Positive',
 'Positive',
 'Negative',
 'Positive',
 'Neutral',
 'Neutral',
 'Neutral',
 'Neutral',
 'Positive',
 'Negative',
 'Neutral',
 'Positive',
 'Neutral',
 'Neutral',
 'Negative',
 'Neutral',
 'Negative',
 'Positive',
 'Negative',
 'Neutral',
 'Positive',
 'Negative',
 'Positive',
 'Positive',
 'Negative',
 'Neutral',
 'Positive',
 nan,
 nan,
 nan,
 nan,
 nan,
 nan,
 nan,
 nan,
 nan,
 '3SD15I2WD2UXBFKCNK2NN4MDZ5D63R302OLP89DZ7MBHSY6QU0WCST11GACJ3P7QK0GJ3TLAE784LPLT1SAGYVA2Z33ZRKL6Z1E833SPUXPCCA737ELZESG63PN6H8C9R4QWG9YC6MPBGIABM1SADJ3WGCNLZJKF80MLLCA3WI5HH8I7MD1Y3G3AJKPCXLSKCVDMTH2YG0YCCF1Y433D17ECOUOEV24TJFHEQ6S8VWRUX31Q3XWUWJ18TLQ2CKNWYMWRQJQTF4EUUO3IVKZBIBJ09HSLP89IUSS3JF0ZRSH53H5TOKO3D9JITB3GNY76X9EJD5964C3MVY4USGB6NHOG0SF0CDSFKU0C6SIY32PT7WK7DMFWWOZRX7A1TAW5GR0D3Q3SMIWMMK615F4OC1TMBS87BQ0KPUWN3X4Q1O9UBHM514R3PSR7HLKKP7T7OM3J94SKDEKIPZA3MVBQYU87UPUNRD5G3Y40HMYLL1IUTOHR3R7EAQPX9MVUXG3JAOYN9IHL2YEWXU4I4PG1ATPEB33I3BS6ERDL937VT7M9G98Z0D8PQI2D6W3087LXLJ6MGXDGEQ5QN8FC1JPSW0FT30EMX9PEVKJ8UBQGF3XP5VZ7SGVSK93PA41K45VN4NM4344S4M6LPAZCP7P33VO4XFFP15M8MG4J45JB6QFK48B7QU30UZJB2POHC1SBKYI1SIVY8D3A23583SD15I2WD2UXBFKCNK2NN4MDZ5D36O3BO3NEOQM0HDOKEYY0QM7FQOE60AIL3EGKVCRQFWS4XUYV8WCLOE4IM7IYB93O71U79SRBP3KZQJ0FA5K8RBHLQSME3B286OTISEH9JVY4GIBMJG5ORLPAJX3YCT0L9OMM992HBJCGP5XNGBMB0SNE334ZEL5JX6FRK2BVDVPICCGGCL5SOT3M47JKRKCX1JCCQIZ1XJELUOFR568J3ZG552ORAM4T5N3UKSWQGMXKAK3V2V3AQN9REUTFGXCRWFMS3RJ4SIPSUYDG3Z8UJEJOCZDKTYMALR5Z7EDFP6L39Z3XEDXEGFX3O8T26461E5VPTOXOD0KV3P7RGTLO6ED4UF4MY3BYKV516APAKW']
In [251]:
from sklearn.metrics import cohen_kappa_score
y1 = t1[:-1]
y2 = t2[:-1]
cohen_kappa_score(y1,y2)
Out[251]:
0.43974358974358974
In [252]:
from sklearn.metrics import cohen_kappa_score
y3 = t3[:-1]
y4 = t4[:-1]
cohen_kappa_score(y3,y4)
Out[252]:
-0.07585335018963324
In [272]:
# turker_clean
turker_clean_test = turker_clean.copy()
turker_clean_test.reset_index(inplace=True)

id_dict = {}
id_num = 1
def return_new_id(old_id,):
    if old_id in id_dict.keys():
        return id_dict[old_id]
    else:
        id_num = id_num + 1
        id_dict.update({ old_id: id_num })
        return num

# turker_clean_test['ReviewID'] = turker_clean_test.apply(lambda x: return_new_id(x['HITId']), axis=1)
# turker_clean_test
turker_clean_test

# import Counter 
# Counter(K)

new_ids = pd.factorize(turker_clean_test['HITId'].tolist())
new_ids[0]
turker_clean_test['ReviewID'] = new_ids[0]
In [273]:
turker_clean_test
Out[273]:
index HITId WorkerId Answer.sentiment.label Input.text ReviewID
0 0 338GLSUI43BXEPY2ES6SPI72KKESF7 AH5A86OLRZWCS Negative Everyone praised an overrated movie.\nOverrat... 0
1 1 338GLSUI43BXEPY2ES6SPI72KKESF7 A2HGRSPR50ENHL Negative Everyone praised an overrated movie.\nOverrat... 0
2 2 338GLSUI43BXEPY2ES6SPI72KKESF7 AKSJ3C5O3V9RB Negative Everyone praised an overrated movie.\nOverrat... 0
3 3 37MQ8Z1JQEWA9HYZP3JANL1ES162YC ARLGZWN6W91WD Negative What idiotic FIlm\nI can say that Phoenix is ... 1
4 4 37MQ8Z1JQEWA9HYZP3JANL1ES162YC AKSJ3C5O3V9RB Negative What idiotic FIlm\nI can say that Phoenix is ... 1
... ... ... ... ... ... ...
289 289 3PUV2Q8SV441ZJ34C0P7BTUH4JDDBH A3EZ0H07TSDAPW Negative Oscar for Phoenix\nI will stop watching movie... 96
290 290 3PUV2Q8SV441ZJ34C0P7BTUH4JDDBH A38DC3BG1ZCVZ2 Positive Oscar for Phoenix\nI will stop watching movie... 96
291 291 3FO95NVK5C0UHF3B5N6M67LLN8PSR2 A194R45ACMQEOR Positive Joker > Endgame\nNeed I say more? Everything ... 97
292 292 3FO95NVK5C0UHF3B5N6M67LLN8PSR2 A1L8RL58MYU4NC Positive Joker > Endgame\nNeed I say more? Everything ... 97
293 293 3FO95NVK5C0UHF3B5N6M67LLN8PSR2 A1T79J0XQXDDGC Positive Joker > Endgame\nNeed I say more? Everything ... 97

294 rows × 6 columns

In [274]:
new_turker_ids = pd.factorize(turker_clean_test['WorkerId'].tolist())
In [276]:
t_ids = ['T_' + str(id) for id in new_turker_ids[0]]
In [277]:
t_ids
Out[277]:
['T_0',
 'T_1',
 'T_2',
 'T_3',
 'T_2',
 'T_4',
 'T_5',
 'T_6',
 'T_7',
 'T_8',
 'T_5',
 'T_3',
 'T_5',
 'T_3',
 'T_8',
 'T_5',
 'T_3',
 'T_9',
 'T_10',
 'T_9',
 'T_8',
 'T_3',
 'T_9',
 'T_4',
 'T_7',
 'T_10',
 'T_2',
 'T_9',
 'T_7',
 'T_4',
 'T_9',
 'T_3',
 'T_2',
 'T_11',
 'T_0',
 'T_9',
 'T_4',
 'T_8',
 'T_5',
 'T_5',
 'T_9',
 'T_12',
 'T_5',
 'T_3',
 'T_10',
 'T_8',
 'T_10',
 'T_13',
 'T_9',
 'T_3',
 'T_2',
 'T_3',
 'T_9',
 'T_4',
 'T_9',
 'T_8',
 'T_10',
 'T_3',
 'T_13',
 'T_4',
 'T_10',
 'T_5',
 'T_8',
 'T_2',
 'T_9',
 'T_10',
 'T_3',
 'T_5',
 'T_10',
 'T_3',
 'T_9',
 'T_10',
 'T_5',
 'T_8',
 'T_7',
 'T_9',
 'T_12',
 'T_8',
 'T_10',
 'T_5',
 'T_3',
 'T_4',
 'T_8',
 'T_2',
 'T_3',
 'T_14',
 'T_5',
 'T_15',
 'T_12',
 'T_4',
 'T_4',
 'T_3',
 'T_9',
 'T_8',
 'T_5',
 'T_6',
 'T_2',
 'T_8',
 'T_9',
 'T_10',
 'T_4',
 'T_9',
 'T_8',
 'T_3',
 'T_7',
 'T_10',
 'T_3',
 'T_9',
 'T_2',
 'T_5',
 'T_3',
 'T_8',
 'T_9',
 'T_2',
 'T_9',
 'T_8',
 'T_3',
 'T_7',
 'T_5',
 'T_16',
 'T_4',
 'T_3',
 'T_8',
 'T_4',
 'T_10',
 'T_9',
 'T_0',
 'T_4',
 'T_10',
 'T_5',
 'T_7',
 'T_8',
 'T_9',
 'T_3',
 'T_13',
 'T_5',
 'T_4',
 'T_2',
 'T_5',
 'T_3',
 'T_0',
 'T_4',
 'T_11',
 'T_2',
 'T_4',
 'T_3',
 'T_5',
 'T_9',
 'T_3',
 'T_5',
 'T_4',
 'T_2',
 'T_6',
 'T_7',
 'T_10',
 'T_6',
 'T_10',
 'T_9',
 'T_5',
 'T_5',
 'T_9',
 'T_10',
 'T_5',
 'T_3',
 'T_9',
 'T_3',
 'T_4',
 'T_11',
 'T_17',
 'T_5',
 'T_7',
 'T_9',
 'T_3',
 'T_12',
 'T_5',
 'T_16',
 'T_3',
 'T_8',
 'T_10',
 'T_12',
 'T_3',
 'T_10',
 'T_7',
 'T_8',
 'T_3',
 'T_4',
 'T_10',
 'T_6',
 'T_8',
 'T_7',
 'T_3',
 'T_6',
 'T_3',
 'T_7',
 'T_2',
 'T_3',
 'T_4',
 'T_9',
 'T_2',
 'T_9',
 'T_8',
 'T_9',
 'T_10',
 'T_8',
 'T_9',
 'T_8',
 'T_10',
 'T_10',
 'T_4',
 'T_9',
 'T_9',
 'T_3',
 'T_16',
 'T_3',
 'T_12',
 'T_9',
 'T_5',
 'T_8',
 'T_2',
 'T_3',
 'T_8',
 'T_4',
 'T_6',
 'T_3',
 'T_10',
 'T_2',
 'T_3',
 'T_5',
 'T_9',
 'T_8',
 'T_14',
 'T_10',
 'T_3',
 'T_4',
 'T_8',
 'T_4',
 'T_5',
 'T_3',
 'T_8',
 'T_10',
 'T_8',
 'T_10',
 'T_13',
 'T_8',
 'T_10',
 'T_9',
 'T_3',
 'T_7',
 'T_10',
 'T_7',
 'T_9',
 'T_2',
 'T_6',
 'T_9',
 'T_7',
 'T_5',
 'T_3',
 'T_2',
 'T_2',
 'T_3',
 'T_7',
 'T_5',
 'T_4',
 'T_10',
 'T_5',
 'T_3',
 'T_7',
 'T_6',
 'T_8',
 'T_7',
 'T_10',
 'T_3',
 'T_4',
 'T_6',
 'T_10',
 'T_7',
 'T_7',
 'T_15',
 'T_8',
 'T_2',
 'T_8',
 'T_4',
 'T_10',
 'T_5',
 'T_16',
 'T_3',
 'T_11',
 'T_7',
 'T_11',
 'T_5',
 'T_7',
 'T_13',
 'T_4',
 'T_10']
In [278]:
turker_clean_test['T_ID'] = t_ids
turker_clean_test
Out[278]:
index HITId WorkerId Answer.sentiment.label Input.text ReviewID T_ID
0 0 338GLSUI43BXEPY2ES6SPI72KKESF7 AH5A86OLRZWCS Negative Everyone praised an overrated movie.\nOverrat... 0 T_0
1 1 338GLSUI43BXEPY2ES6SPI72KKESF7 A2HGRSPR50ENHL Negative Everyone praised an overrated movie.\nOverrat... 0 T_1
2 2 338GLSUI43BXEPY2ES6SPI72KKESF7 AKSJ3C5O3V9RB Negative Everyone praised an overrated movie.\nOverrat... 0 T_2
3 3 37MQ8Z1JQEWA9HYZP3JANL1ES162YC ARLGZWN6W91WD Negative What idiotic FIlm\nI can say that Phoenix is ... 1 T_3
4 4 37MQ8Z1JQEWA9HYZP3JANL1ES162YC AKSJ3C5O3V9RB Negative What idiotic FIlm\nI can say that Phoenix is ... 1 T_2
... ... ... ... ... ... ... ...
289 289 3PUV2Q8SV441ZJ34C0P7BTUH4JDDBH A3EZ0H07TSDAPW Negative Oscar for Phoenix\nI will stop watching movie... 96 T_5
290 290 3PUV2Q8SV441ZJ34C0P7BTUH4JDDBH A38DC3BG1ZCVZ2 Positive Oscar for Phoenix\nI will stop watching movie... 96 T_7
291 291 3FO95NVK5C0UHF3B5N6M67LLN8PSR2 A194R45ACMQEOR Positive Joker > Endgame\nNeed I say more? Everything ... 97 T_13
292 292 3FO95NVK5C0UHF3B5N6M67LLN8PSR2 A1L8RL58MYU4NC Positive Joker > Endgame\nNeed I say more? Everything ... 97 T_4
293 293 3FO95NVK5C0UHF3B5N6M67LLN8PSR2 A1T79J0XQXDDGC Positive Joker > Endgame\nNeed I say more? Everything ... 97 T_10

294 rows × 7 columns

In [281]:
turker_clean_test['sentiment'] = turker_clean_test.apply(lambda x: x['Answer.sentiment.label'][0], axis=1)
In [282]:
turker_clean_test
Out[282]:
index HITId WorkerId Answer.sentiment.label Input.text ReviewID T_ID sentiment
0 0 338GLSUI43BXEPY2ES6SPI72KKESF7 AH5A86OLRZWCS Negative Everyone praised an overrated movie.\nOverrat... 0 T_0 N
1 1 338GLSUI43BXEPY2ES6SPI72KKESF7 A2HGRSPR50ENHL Negative Everyone praised an overrated movie.\nOverrat... 0 T_1 N
2 2 338GLSUI43BXEPY2ES6SPI72KKESF7 AKSJ3C5O3V9RB Negative Everyone praised an overrated movie.\nOverrat... 0 T_2 N
3 3 37MQ8Z1JQEWA9HYZP3JANL1ES162YC ARLGZWN6W91WD Negative What idiotic FIlm\nI can say that Phoenix is ... 1 T_3 N
4 4 37MQ8Z1JQEWA9HYZP3JANL1ES162YC AKSJ3C5O3V9RB Negative What idiotic FIlm\nI can say that Phoenix is ... 1 T_2 N
... ... ... ... ... ... ... ... ...
289 289 3PUV2Q8SV441ZJ34C0P7BTUH4JDDBH A3EZ0H07TSDAPW Negative Oscar for Phoenix\nI will stop watching movie... 96 T_5 N
290 290 3PUV2Q8SV441ZJ34C0P7BTUH4JDDBH A38DC3BG1ZCVZ2 Positive Oscar for Phoenix\nI will stop watching movie... 96 T_7 P
291 291 3FO95NVK5C0UHF3B5N6M67LLN8PSR2 A194R45ACMQEOR Positive Joker > Endgame\nNeed I say more? Everything ... 97 T_13 P
292 292 3FO95NVK5C0UHF3B5N6M67LLN8PSR2 A1L8RL58MYU4NC Positive Joker > Endgame\nNeed I say more? Everything ... 97 T_4 P
293 293 3FO95NVK5C0UHF3B5N6M67LLN8PSR2 A1T79J0XQXDDGC Positive Joker > Endgame\nNeed I say more? Everything ... 97 T_10 P

294 rows × 8 columns

In [283]:
even_cleaner_df = turker_clean_test[['ReviewID', 'T_ID', 'sentiment']]
In [300]:
 
In [301]:
df
Out[301]:
0 1
0 0 0 N 1 N 2 N Name: sentiment, dtype: o...
1 1 3 N 4 N 5 N Name: sentiment, dtype: o...
2 2 6 P 7 N 8 N Name: sentiment, dtype: o...
3 3 9 N 10 N 11 N Name: sentiment, dtype...
4 4 12 P 13 N 14 N Name: sentiment, dtype...
... ... ...
93 93 279 P 280 P 281 P Name: sentiment, dt...
94 94 282 P 283 N 284 P Name: sentiment, dt...
95 95 285 P 286 P 287 P Name: sentiment, dt...
96 96 288 N 289 N 290 P Name: sentiment, dt...
97 97 291 P 292 P 293 P Name: sentiment, dt...

98 rows × 2 columns

In [305]:
df = pd.DataFrame({'Turker': even_cleaner_df['T_ID'].tolist(),
                   'SENTIMENT': even_cleaner_df['sentiment'].tolist(),
                   'REVIEW': even_cleaner_df['ReviewID'].tolist() })

grouped = df.groupby('Turker')
values = grouped['REVIEW'].agg('sum')
id_df = grouped['SENTIMENT'].apply(lambda x: pd.Series(x.values)).unstack()
id_df = id_df.rename(columns={i: 'REVIEW{}'.format(i + 1) for i in range(id_df.shape[1])})
result = pd.concat([id_df, values], axis=1)
result_df = pd.DataFrame(result)
print(result_df.T)
Turker    T_0  T_1  T_10 T_11 T_12 T_13 T_14 T_15 T_16 T_17  T_2   T_3   T_4  \
REVIEW1     N    N     P    N    N    N    N    N    N    P    N     N     N   
REVIEW2     N  NaN     N    N    N    N    P    N    P  NaN    N     N     N   
REVIEW3     N  NaN     P    P    N    N  NaN  NaN    P  NaN    N     N     N   
REVIEW4     N  NaN     P    P    N    P  NaN  NaN    P  NaN    N     N     N   
REVIEW5   NaN  NaN     N    N    P    P  NaN  NaN  NaN  NaN    N     N     N   
REVIEW6   NaN  NaN     N  NaN    P  NaN  NaN  NaN  NaN  NaN    N     N     N   
REVIEW7   NaN  NaN     N  NaN  NaN  NaN  NaN  NaN  NaN  NaN    N     N     N   
REVIEW8   NaN  NaN     P  NaN  NaN  NaN  NaN  NaN  NaN  NaN    N     N     P   
REVIEW9   NaN  NaN     N  NaN  NaN  NaN  NaN  NaN  NaN  NaN    N     N     N   
REVIEW10  NaN  NaN     N  NaN  NaN  NaN  NaN  NaN  NaN  NaN    N     N     N   
REVIEW11  NaN  NaN     N  NaN  NaN  NaN  NaN  NaN  NaN  NaN    N     N     N   
REVIEW12  NaN  NaN     N  NaN  NaN  NaN  NaN  NaN  NaN  NaN    N     N     N   
REVIEW13  NaN  NaN     N  NaN  NaN  NaN  NaN  NaN  NaN  NaN    P     N     N   
REVIEW14  NaN  NaN     N  NaN  NaN  NaN  NaN  NaN  NaN  NaN    P     N     N   
REVIEW15  NaN  NaN     P  NaN  NaN  NaN  NaN  NaN  NaN  NaN    P     N     N   
REVIEW16  NaN  NaN     P  NaN  NaN  NaN  NaN  NaN  NaN  NaN    P     N     P   
REVIEW17  NaN  NaN     P  NaN  NaN  NaN  NaN  NaN  NaN  NaN    P     N     P   
REVIEW18  NaN  NaN     P  NaN  NaN  NaN  NaN  NaN  NaN  NaN    P     N     P   
REVIEW19  NaN  NaN     P  NaN  NaN  NaN  NaN  NaN  NaN  NaN    N     N     P   
REVIEW20  NaN  NaN     P  NaN  NaN  NaN  NaN  NaN  NaN  NaN    P     N     P   
REVIEW21  NaN  NaN     P  NaN  NaN  NaN  NaN  NaN  NaN  NaN    P     N     P   
REVIEW22  NaN  NaN     P  NaN  NaN  NaN  NaN  NaN  NaN  NaN  NaN     N     P   
REVIEW23  NaN  NaN     P  NaN  NaN  NaN  NaN  NaN  NaN  NaN  NaN     P     P   
REVIEW24  NaN  NaN     P  NaN  NaN  NaN  NaN  NaN  NaN  NaN  NaN     P     P   
REVIEW25  NaN  NaN     P  NaN  NaN  NaN  NaN  NaN  NaN  NaN  NaN     P     P   
REVIEW26  NaN  NaN     P  NaN  NaN  NaN  NaN  NaN  NaN  NaN  NaN     P     P   
REVIEW27  NaN  NaN     P  NaN  NaN  NaN  NaN  NaN  NaN  NaN  NaN     P     P   
REVIEW28  NaN  NaN     P  NaN  NaN  NaN  NaN  NaN  NaN  NaN  NaN     P     P   
REVIEW29  NaN  NaN     P  NaN  NaN  NaN  NaN  NaN  NaN  NaN  NaN     P   NaN   
REVIEW30  NaN  NaN     N  NaN  NaN  NaN  NaN  NaN  NaN  NaN  NaN     P   NaN   
REVIEW31  NaN  NaN     P  NaN  NaN  NaN  NaN  NaN  NaN  NaN  NaN     P   NaN   
REVIEW32  NaN  NaN     P  NaN  NaN  NaN  NaN  NaN  NaN  NaN  NaN     P   NaN   
REVIEW33  NaN  NaN     P  NaN  NaN  NaN  NaN  NaN  NaN  NaN  NaN     P   NaN   
REVIEW34  NaN  NaN     P  NaN  NaN  NaN  NaN  NaN  NaN  NaN  NaN     P   NaN   
REVIEW35  NaN  NaN   NaN  NaN  NaN  NaN  NaN  NaN  NaN  NaN  NaN     P   NaN   
REVIEW36  NaN  NaN   NaN  NaN  NaN  NaN  NaN  NaN  NaN  NaN  NaN     P   NaN   
REVIEW37  NaN  NaN   NaN  NaN  NaN  NaN  NaN  NaN  NaN  NaN  NaN     P   NaN   
REVIEW38  NaN  NaN   NaN  NaN  NaN  NaN  NaN  NaN  NaN  NaN  NaN     P   NaN   
REVIEW39  NaN  NaN   NaN  NaN  NaN  NaN  NaN  NaN  NaN  NaN  NaN     P   NaN   
REVIEW40  NaN  NaN   NaN  NaN  NaN  NaN  NaN  NaN  NaN  NaN  NaN     P   NaN   
REVIEW41  NaN  NaN   NaN  NaN  NaN  NaN  NaN  NaN  NaN  NaN  NaN     P   NaN   
REVIEW42  NaN  NaN   NaN  NaN  NaN  NaN  NaN  NaN  NaN  NaN  NaN     N   NaN   
REVIEW43  NaN  NaN   NaN  NaN  NaN  NaN  NaN  NaN  NaN  NaN  NaN     P   NaN   
REVIEW44  NaN  NaN   NaN  NaN  NaN  NaN  NaN  NaN  NaN  NaN  NaN     P   NaN   
REVIEW45  NaN  NaN   NaN  NaN  NaN  NaN  NaN  NaN  NaN  NaN  NaN     P   NaN   
REVIEW46  NaN  NaN   NaN  NaN  NaN  NaN  NaN  NaN  NaN  NaN  NaN     P   NaN   
REVIEW     99    0  1797  304  254  255  104  121  261   56  954  2177  1342   

Turker     T_5  T_6   T_7   T_8   T_9  
REVIEW1      P    N     N     N     N  
REVIEW2      N    N     N     N     P  
REVIEW3      P    P     N     N     P  
REVIEW4      N    P     N     N     P  
REVIEW5      N    P     N     P     P  
REVIEW6      P    P     N     N     N  
REVIEW7      N    P     N     N     N  
REVIEW8      P    P     P     N     N  
REVIEW9      P    P     P     N     N  
REVIEW10     N    P     P     N     N  
REVIEW11     N  NaN     P     N     P  
REVIEW12     N  NaN     P     N     P  
REVIEW13     N  NaN     P     N     N  
REVIEW14     N  NaN     P     N     P  
REVIEW15     N  NaN     P     P     N  
REVIEW16     P  NaN     P     N     N  
REVIEW17     N  NaN     P     N     N  
REVIEW18     N  NaN     P     P     N  
REVIEW19     N  NaN     P     P     P  
REVIEW20     N  NaN     P     P     N  
REVIEW21     N  NaN     P     P     N  
REVIEW22     P  NaN     P     P     P  
REVIEW23     P  NaN   NaN     P     N  
REVIEW24     N  NaN   NaN     P     N  
REVIEW25     P  NaN   NaN     P     N  
REVIEW26     P  NaN   NaN     P     N  
REVIEW27     P  NaN   NaN     P     N  
REVIEW28     P  NaN   NaN     P     P  
REVIEW29     N  NaN   NaN     P     N  
REVIEW30     P  NaN   NaN     P     N  
REVIEW31     P  NaN   NaN     P     P  
REVIEW32     N  NaN   NaN     P     N  
REVIEW33     N  NaN   NaN     P     P  
REVIEW34   NaN  NaN   NaN   NaN     P  
REVIEW35   NaN  NaN   NaN   NaN     N  
REVIEW36   NaN  NaN   NaN   NaN     N  
REVIEW37   NaN  NaN   NaN   NaN     P  
REVIEW38   NaN  NaN   NaN   NaN   NaN  
REVIEW39   NaN  NaN   NaN   NaN   NaN  
REVIEW40   NaN  NaN   NaN   NaN   NaN  
REVIEW41   NaN  NaN   NaN   NaN   NaN  
REVIEW42   NaN  NaN   NaN   NaN   NaN  
REVIEW43   NaN  NaN   NaN   NaN   NaN  
REVIEW44   NaN  NaN   NaN   NaN   NaN  
REVIEW45   NaN  NaN   NaN   NaN   NaN  
REVIEW46   NaN  NaN   NaN   NaN   NaN  
REVIEW    1458  597  1339  1605  1536  
In [306]:
df = pd.DataFrame(result_df.T)
In [310]:
df
Out[310]:
Turker T_0 T_1 T_10 T_11 T_12 T_13 T_14 T_15 T_16 T_17 T_2 T_3 T_4 T_5 T_6 T_7 T_8 T_9
REVIEW1 N N P N N N N N N P N N N P N N N N
REVIEW2 N NaN N N N N P N P NaN N N N N N N N P
REVIEW3 N NaN P P N N NaN NaN P NaN N N N P P N N P
REVIEW4 N NaN P P N P NaN NaN P NaN N N N N P N N P
REVIEW5 NaN NaN N N P P NaN NaN NaN NaN N N N N P N P P
REVIEW6 NaN NaN N NaN P NaN NaN NaN NaN NaN N N N P P N N N
REVIEW7 NaN NaN N NaN NaN NaN NaN NaN NaN NaN N N N N P N N N
REVIEW8 NaN NaN P NaN NaN NaN NaN NaN NaN NaN N N P P P P N N
REVIEW9 NaN NaN N NaN NaN NaN NaN NaN NaN NaN N N N P P P N N
REVIEW10 NaN NaN N NaN NaN NaN NaN NaN NaN NaN N N N N P P N N
REVIEW11 NaN NaN N NaN NaN NaN NaN NaN NaN NaN N N N N NaN P N P
REVIEW12 NaN NaN N NaN NaN NaN NaN NaN NaN NaN N N N N NaN P N P
REVIEW13 NaN NaN N NaN NaN NaN NaN NaN NaN NaN P N N N NaN P N N
REVIEW14 NaN NaN N NaN NaN NaN NaN NaN NaN NaN P N N N NaN P N P
REVIEW15 NaN NaN P NaN NaN NaN NaN NaN NaN NaN P N N N NaN P P N
REVIEW16 NaN NaN P NaN NaN NaN NaN NaN NaN NaN P N P P NaN P N N
REVIEW17 NaN NaN P NaN NaN NaN NaN NaN NaN NaN P N P N NaN P N N
REVIEW18 NaN NaN P NaN NaN NaN NaN NaN NaN NaN P N P N NaN P P N
REVIEW19 NaN NaN P NaN NaN NaN NaN NaN NaN NaN N N P N NaN P P P
REVIEW20 NaN NaN P NaN NaN NaN NaN NaN NaN NaN P N P N NaN P P N
REVIEW21 NaN NaN P NaN NaN NaN NaN NaN NaN NaN P N P N NaN P P N
REVIEW22 NaN NaN P NaN NaN NaN NaN NaN NaN NaN NaN N P P NaN P P P
REVIEW23 NaN NaN P NaN NaN NaN NaN NaN NaN NaN NaN P P P NaN NaN P N
REVIEW24 NaN NaN P NaN NaN NaN NaN NaN NaN NaN NaN P P N NaN NaN P N
REVIEW25 NaN NaN P NaN NaN NaN NaN NaN NaN NaN NaN P P P NaN NaN P N
REVIEW26 NaN NaN P NaN NaN NaN NaN NaN NaN NaN NaN P P P NaN NaN P N
REVIEW27 NaN NaN P NaN NaN NaN NaN NaN NaN NaN NaN P P P NaN NaN P N
REVIEW28 NaN NaN P NaN NaN NaN NaN NaN NaN NaN NaN P P P NaN NaN P P
REVIEW29 NaN NaN P NaN NaN NaN NaN NaN NaN NaN NaN P NaN N NaN NaN P N
REVIEW30 NaN NaN N NaN NaN NaN NaN NaN NaN NaN NaN P NaN P NaN NaN P N
REVIEW31 NaN NaN P NaN NaN NaN NaN NaN NaN NaN NaN P NaN P NaN NaN P P
REVIEW32 NaN NaN P NaN NaN NaN NaN NaN NaN NaN NaN P NaN N NaN NaN P N
REVIEW33 NaN NaN P NaN NaN NaN NaN NaN NaN NaN NaN P NaN N NaN NaN P P
REVIEW34 NaN NaN P NaN NaN NaN NaN NaN NaN NaN NaN P NaN NaN NaN NaN NaN P
REVIEW35 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN P NaN NaN NaN NaN NaN N
REVIEW36 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN P NaN NaN NaN NaN NaN N
REVIEW37 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN P NaN NaN NaN NaN NaN P
REVIEW38 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN P NaN NaN NaN NaN NaN NaN
REVIEW39 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN P NaN NaN NaN NaN NaN NaN
REVIEW40 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN P NaN NaN NaN NaN NaN NaN
REVIEW41 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN P NaN NaN NaN NaN NaN NaN
REVIEW42 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN N NaN NaN NaN NaN NaN NaN
REVIEW43 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN P NaN NaN NaN NaN NaN NaN
REVIEW44 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN P NaN NaN NaN NaN NaN NaN
REVIEW45 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN P NaN NaN NaN NaN NaN NaN
REVIEW46 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN P NaN NaN NaN NaN NaN NaN
REVIEW 99 0 1797 304 254 255 104 121 261 56 954 2177 1342 1458 597 1339 1605 1536

That is obviously wrong because only THREE people commented on Review1

In [311]:
df = pd.DataFrame({'Turker': even_cleaner_df['T_ID'].tolist(),
                   'SENTIMENT': even_cleaner_df['ReviewID'].tolist(),
                   'REVIEW': even_cleaner_df['sentiment'].tolist() })

grouped = df.groupby('Turker')
values = grouped['REVIEW'].agg('sum')
id_df = grouped['SENTIMENT'].apply(lambda x: pd.Series(x.values)).unstack()
id_df = id_df.rename(columns={i: 'REVIEW{}'.format(i + 1) for i in range(id_df.shape[1])})
result = pd.concat([id_df, values], axis=1)
result_df = pd.DataFrame(result)
print(result_df.T)
Turker     T_0  T_1                                T_10   T_11    T_12   T_13  \
REVIEW1      0    0                                   6     11      13     15   
REVIEW2     11  NaN                                   8     47      25     19   
REVIEW3     42  NaN                                  14     55      29     44   
REVIEW4     46  NaN                                  15     95      57     80   
REVIEW5    NaN  NaN                                  18     96      59     97   
REVIEW6    NaN  NaN                                  20    NaN      71    NaN   
REVIEW7    NaN  NaN                                  21    NaN     NaN    NaN   
REVIEW8    NaN  NaN                                  22    NaN     NaN    NaN   
REVIEW9    NaN  NaN                                  23    NaN     NaN    NaN   
REVIEW10   NaN  NaN                                  26    NaN     NaN    NaN   
REVIEW11   NaN  NaN                                  33    NaN     NaN    NaN   
REVIEW12   NaN  NaN                                  35    NaN     NaN    NaN   
REVIEW13   NaN  NaN                                  41    NaN     NaN    NaN   
REVIEW14   NaN  NaN                                  42    NaN     NaN    NaN   
REVIEW15   NaN  NaN                                  51    NaN     NaN    NaN   
REVIEW16   NaN  NaN                                  52    NaN     NaN    NaN   
REVIEW17   NaN  NaN                                  53    NaN     NaN    NaN   
REVIEW18   NaN  NaN                                  59    NaN     NaN    NaN   
REVIEW19   NaN  NaN                                  60    NaN     NaN    NaN   
REVIEW20   NaN  NaN                                  62    NaN     NaN    NaN   
REVIEW21   NaN  NaN                                  67    NaN     NaN    NaN   
REVIEW22   NaN  NaN                                  68    NaN     NaN    NaN   
REVIEW23   NaN  NaN                                  69    NaN     NaN    NaN   
REVIEW24   NaN  NaN                                  74    NaN     NaN    NaN   
REVIEW25   NaN  NaN                                  77    NaN     NaN    NaN   
REVIEW26   NaN  NaN                                  79    NaN     NaN    NaN   
REVIEW27   NaN  NaN                                  80    NaN     NaN    NaN   
REVIEW28   NaN  NaN                                  81    NaN     NaN    NaN   
REVIEW29   NaN  NaN                                  82    NaN     NaN    NaN   
REVIEW30   NaN  NaN                                  87    NaN     NaN    NaN   
REVIEW31   NaN  NaN                                  90    NaN     NaN    NaN   
REVIEW32   NaN  NaN                                  91    NaN     NaN    NaN   
REVIEW33   NaN  NaN                                  94    NaN     NaN    NaN   
REVIEW34   NaN  NaN                                  97    NaN     NaN    NaN   
REVIEW35   NaN  NaN                                 NaN    NaN     NaN    NaN   
REVIEW36   NaN  NaN                                 NaN    NaN     NaN    NaN   
REVIEW37   NaN  NaN                                 NaN    NaN     NaN    NaN   
REVIEW38   NaN  NaN                                 NaN    NaN     NaN    NaN   
REVIEW39   NaN  NaN                                 NaN    NaN     NaN    NaN   
REVIEW40   NaN  NaN                                 NaN    NaN     NaN    NaN   
REVIEW41   NaN  NaN                                 NaN    NaN     NaN    NaN   
REVIEW42   NaN  NaN                                 NaN    NaN     NaN    NaN   
REVIEW43   NaN  NaN                                 NaN    NaN     NaN    NaN   
REVIEW44   NaN  NaN                                 NaN    NaN     NaN    NaN   
REVIEW45   NaN  NaN                                 NaN    NaN     NaN    NaN   
REVIEW46   NaN  NaN                                 NaN    NaN     NaN    NaN   
REVIEW    NNNN    N  PNPPNNNPNNNNNNPPPPPPPPPPPPPPPNPPPP  NNPPN  NNNNPP  NNNPP   

Turker   T_14 T_15  T_16 T_17                    T_2  \
REVIEW1    28   29    39   56                      0   
REVIEW2    76   92    58  NaN                      1   
REVIEW3   NaN  NaN    70  NaN                      8   
REVIEW4   NaN  NaN    94  NaN                     10   
REVIEW5   NaN  NaN   NaN  NaN                     16   
REVIEW6   NaN  NaN   NaN  NaN                     21   
REVIEW7   NaN  NaN   NaN  NaN                     27   
REVIEW8   NaN  NaN   NaN  NaN                     32   
REVIEW9   NaN  NaN   NaN  NaN                     36   
REVIEW10  NaN  NaN   NaN  NaN                     37   
REVIEW11  NaN  NaN   NaN  NaN                     45   
REVIEW12  NaN  NaN   NaN  NaN                     47   
REVIEW13  NaN  NaN   NaN  NaN                     50   
REVIEW14  NaN  NaN   NaN  NaN                     64   
REVIEW15  NaN  NaN   NaN  NaN                     66   
REVIEW16  NaN  NaN   NaN  NaN                     72   
REVIEW17  NaN  NaN   NaN  NaN                     75   
REVIEW18  NaN  NaN   NaN  NaN                     83   
REVIEW19  NaN  NaN   NaN  NaN                     85   
REVIEW20  NaN  NaN   NaN  NaN                     86   
REVIEW21  NaN  NaN   NaN  NaN                     93   
REVIEW22  NaN  NaN   NaN  NaN                    NaN   
REVIEW23  NaN  NaN   NaN  NaN                    NaN   
REVIEW24  NaN  NaN   NaN  NaN                    NaN   
REVIEW25  NaN  NaN   NaN  NaN                    NaN   
REVIEW26  NaN  NaN   NaN  NaN                    NaN   
REVIEW27  NaN  NaN   NaN  NaN                    NaN   
REVIEW28  NaN  NaN   NaN  NaN                    NaN   
REVIEW29  NaN  NaN   NaN  NaN                    NaN   
REVIEW30  NaN  NaN   NaN  NaN                    NaN   
REVIEW31  NaN  NaN   NaN  NaN                    NaN   
REVIEW32  NaN  NaN   NaN  NaN                    NaN   
REVIEW33  NaN  NaN   NaN  NaN                    NaN   
REVIEW34  NaN  NaN   NaN  NaN                    NaN   
REVIEW35  NaN  NaN   NaN  NaN                    NaN   
REVIEW36  NaN  NaN   NaN  NaN                    NaN   
REVIEW37  NaN  NaN   NaN  NaN                    NaN   
REVIEW38  NaN  NaN   NaN  NaN                    NaN   
REVIEW39  NaN  NaN   NaN  NaN                    NaN   
REVIEW40  NaN  NaN   NaN  NaN                    NaN   
REVIEW41  NaN  NaN   NaN  NaN                    NaN   
REVIEW42  NaN  NaN   NaN  NaN                    NaN   
REVIEW43  NaN  NaN   NaN  NaN                    NaN   
REVIEW44  NaN  NaN   NaN  NaN                    NaN   
REVIEW45  NaN  NaN   NaN  NaN                    NaN   
REVIEW46  NaN  NaN   NaN  NaN                    NaN   
REVIEW     NP   NN  NPPP    P  NNNNNNNNNNNNPPPPPPNPP   

Turker                                               T_3  \
REVIEW1                                                1   
REVIEW2                                                3   
REVIEW3                                                4   
REVIEW4                                                5   
REVIEW5                                                7   
REVIEW6                                               10   
REVIEW7                                               14   
REVIEW8                                               16   
REVIEW9                                               17   
REVIEW10                                              19   
REVIEW11                                              22   
REVIEW12                                              23   
REVIEW13                                              26   
REVIEW14                                              28   
REVIEW15                                              30   
REVIEW16                                              34   
REVIEW17                                              35   
REVIEW18                                              36   
REVIEW19                                              38   
REVIEW20                                              40   
REVIEW21                                              44   
REVIEW22                                              46   
REVIEW23                                              48   
REVIEW24                                              49   
REVIEW25                                              54   
REVIEW26                                              55   
REVIEW27                                              57   
REVIEW28                                              58   
REVIEW29                                              60   
REVIEW30                                              61   
REVIEW31                                              63   
REVIEW32                                              64   
REVIEW33                                              65   
REVIEW34                                              70   
REVIEW35                                              71   
REVIEW36                                              73   
REVIEW37                                              74   
REVIEW38                                              75   
REVIEW39                                              77   
REVIEW40                                              79   
REVIEW41                                              82   
REVIEW42                                              85   
REVIEW43                                              86   
REVIEW44                                              88   
REVIEW45                                              90   
REVIEW46                                              95   
REVIEW    NNNNNNNNNNNNNNNNNNNNNNPPPPPPPPPPPPPPPPPPPNPPPP   

Turker                             T_4                                T_5  \
REVIEW1                              1                                  2   
REVIEW2                              7                                  3   
REVIEW3                              9                                  4   
REVIEW4                             12                                  5   
REVIEW5                             17                                 12   
REVIEW6                             19                                 13   
REVIEW7                             27                                 14   
REVIEW8                             29                                 20   
REVIEW9                             30                                 22   
REVIEW10                            33                                 24   
REVIEW11                            40                                 26   
REVIEW12                            41                                 28   
REVIEW13                            42                                 31   
REVIEW14                            45                                 36   
REVIEW15                            47                                 39   
REVIEW16                            48                                 43   
REVIEW17                            50                                 45   
REVIEW18                            55                                 46   
REVIEW19                            61                                 48   
REVIEW20                            65                                 49   
REVIEW21                            69                                 52   
REVIEW22                            73                                 53   
REVIEW23                            77                                 54   
REVIEW24                            78                                 56   
REVIEW25                            87                                 58   
REVIEW26                            90                                 72   
REVIEW27                            93                                 75   
REVIEW28                            97                                 78   
REVIEW29                           NaN                                 85   
REVIEW30                           NaN                                 87   
REVIEW31                           NaN                                 88   
REVIEW32                           NaN                                 94   
REVIEW33                           NaN                                 96   
REVIEW34                           NaN                                NaN   
REVIEW35                           NaN                                NaN   
REVIEW36                           NaN                                NaN   
REVIEW37                           NaN                                NaN   
REVIEW38                           NaN                                NaN   
REVIEW39                           NaN                                NaN   
REVIEW40                           NaN                                NaN   
REVIEW41                           NaN                                NaN   
REVIEW42                           NaN                                NaN   
REVIEW43                           NaN                                NaN   
REVIEW44                           NaN                                NaN   
REVIEW45                           NaN                                NaN   
REVIEW46                           NaN                                NaN   
REVIEW    NNNNNNNPNNNNNNNPPPPPPPPPPPPP  PNPNNPNPPNNNNNNPNNNNNPPNPPPPNPPNN   

Turker           T_6                     T_7  \
REVIEW1            2                       2   
REVIEW2           31                       8   
REVIEW3           50                       9   
REVIEW4           51                      24   
REVIEW5           62                      34   
REVIEW6           63                      39   
REVIEW7           74                      43   
REVIEW8           84                      51   
REVIEW9           89                      56   
REVIEW10          91                      60   
REVIEW11         NaN                      63   
REVIEW12         NaN                      64   
REVIEW13         NaN                      82   
REVIEW14         NaN                      83   
REVIEW15         NaN                      84   
REVIEW16         NaN                      86   
REVIEW17         NaN                      88   
REVIEW18         NaN                      89   
REVIEW19         NaN                      91   
REVIEW20         NaN                      92   
REVIEW21         NaN                      95   
REVIEW22         NaN                      96   
REVIEW23         NaN                     NaN   
REVIEW24         NaN                     NaN   
REVIEW25         NaN                     NaN   
REVIEW26         NaN                     NaN   
REVIEW27         NaN                     NaN   
REVIEW28         NaN                     NaN   
REVIEW29         NaN                     NaN   
REVIEW30         NaN                     NaN   
REVIEW31         NaN                     NaN   
REVIEW32         NaN                     NaN   
REVIEW33         NaN                     NaN   
REVIEW34         NaN                     NaN   
REVIEW35         NaN                     NaN   
REVIEW36         NaN                     NaN   
REVIEW37         NaN                     NaN   
REVIEW38         NaN                     NaN   
REVIEW39         NaN                     NaN   
REVIEW40         NaN                     NaN   
REVIEW41         NaN                     NaN   
REVIEW42         NaN                     NaN   
REVIEW43         NaN                     NaN   
REVIEW44         NaN                     NaN   
REVIEW45         NaN                     NaN   
REVIEW46         NaN                     NaN   
REVIEW    NNPPPPPPPP  NNNNNNNPPPPPPPPPPPPPPP   

Turker                                  T_8  \
REVIEW1                                   3   
REVIEW2                                   4   
REVIEW3                                   6   
REVIEW4                                  12   
REVIEW5                                  15   
REVIEW6                                  18   
REVIEW7                                  20   
REVIEW8                                  24   
REVIEW9                                  25   
REVIEW10                                 27   
REVIEW11                                 31   
REVIEW12                                 32   
REVIEW13                                 34   
REVIEW14                                 37   
REVIEW15                                 38   
REVIEW16                                 40   
REVIEW17                                 43   
REVIEW18                                 59   
REVIEW19                                 61   
REVIEW20                                 62   
REVIEW21                                 66   
REVIEW22                                 67   
REVIEW23                                 68   
REVIEW24                                 72   
REVIEW25                                 73   
REVIEW26                                 76   
REVIEW27                                 78   
REVIEW28                                 79   
REVIEW29                                 80   
REVIEW30                                 81   
REVIEW31                                 89   
REVIEW32                                 92   
REVIEW33                                 93   
REVIEW34                                NaN   
REVIEW35                                NaN   
REVIEW36                                NaN   
REVIEW37                                NaN   
REVIEW38                                NaN   
REVIEW39                                NaN   
REVIEW40                                NaN   
REVIEW41                                NaN   
REVIEW42                                NaN   
REVIEW43                                NaN   
REVIEW44                                NaN   
REVIEW45                                NaN   
REVIEW46                                NaN   
REVIEW    NNNNPNNNNNNNNNPNNPPPPPPPPPPPPPPPP   

Turker                                      T_9  
REVIEW1                                       5  
REVIEW2                                       6  
REVIEW3                                       7  
REVIEW4                                       9  
REVIEW5                                      10  
REVIEW6                                      11  
REVIEW7                                      13  
REVIEW8                                      16  
REVIEW9                                      17  
REVIEW10                                     18  
REVIEW11                                     21  
REVIEW12                                     23  
REVIEW13                                     25  
REVIEW14                                     30  
REVIEW15                                     32  
REVIEW16                                     33  
REVIEW17                                     35  
REVIEW18                                     37  
REVIEW19                                     38  
REVIEW20                                     41  
REVIEW21                                     44  
REVIEW22                                     49  
REVIEW23                                     52  
REVIEW24                                     53  
REVIEW25                                     54  
REVIEW26                                     57  
REVIEW27                                     65  
REVIEW28                                     66  
REVIEW29                                     67  
REVIEW30                                     68  
REVIEW31                                     69  
REVIEW32                                     70  
REVIEW33                                     71  
REVIEW34                                     76  
REVIEW35                                     81  
REVIEW36                                     83  
REVIEW37                                     84  
REVIEW38                                    NaN  
REVIEW39                                    NaN  
REVIEW40                                    NaN  
REVIEW41                                    NaN  
REVIEW42                                    NaN  
REVIEW43                                    NaN  
REVIEW44                                    NaN  
REVIEW45                                    NaN  
REVIEW46                                    NaN  
REVIEW    NPPPPNNNNNPPNPNNNNPNNPNNNNNPNNPNPPNNP  
In [312]:
df = pd.DataFrame(result_df.T)
In [313]:
df
Out[313]:
Turker T_0 T_1 T_10 T_11 T_12 T_13 T_14 T_15 T_16 T_17 T_2 T_3 T_4 T_5 T_6 T_7 T_8 T_9
REVIEW1 0 0 6 11 13 15 28 29 39 56 0 1 1 2 2 2 3 5
REVIEW2 11 NaN 8 47 25 19 76 92 58 NaN 1 3 7 3 31 8 4 6
REVIEW3 42 NaN 14 55 29 44 NaN NaN 70 NaN 8 4 9 4 50 9 6 7
REVIEW4 46 NaN 15 95 57 80 NaN NaN 94 NaN 10 5 12 5 51 24 12 9
REVIEW5 NaN NaN 18 96 59 97 NaN NaN NaN NaN 16 7 17 12 62 34 15 10
REVIEW6 NaN NaN 20 NaN 71 NaN NaN NaN NaN NaN 21 10 19 13 63 39 18 11
REVIEW7 NaN NaN 21 NaN NaN NaN NaN NaN NaN NaN 27 14 27 14 74 43 20 13
REVIEW8 NaN NaN 22 NaN NaN NaN NaN NaN NaN NaN 32 16 29 20 84 51 24 16
REVIEW9 NaN NaN 23 NaN NaN NaN NaN NaN NaN NaN 36 17 30 22 89 56 25 17
REVIEW10 NaN NaN 26 NaN NaN NaN NaN NaN NaN NaN 37 19 33 24 91 60 27 18
REVIEW11 NaN NaN 33 NaN NaN NaN NaN NaN NaN NaN 45 22 40 26 NaN 63 31 21
REVIEW12 NaN NaN 35 NaN NaN NaN NaN NaN NaN NaN 47 23 41 28 NaN 64 32 23
REVIEW13 NaN NaN 41 NaN NaN NaN NaN NaN NaN NaN 50 26 42 31 NaN 82 34 25
REVIEW14 NaN NaN 42 NaN NaN NaN NaN NaN NaN NaN 64 28 45 36 NaN 83 37 30
REVIEW15 NaN NaN 51 NaN NaN NaN NaN NaN NaN NaN 66 30 47 39 NaN 84 38 32
REVIEW16 NaN NaN 52 NaN NaN NaN NaN NaN NaN NaN 72 34 48 43 NaN 86 40 33
REVIEW17 NaN NaN 53 NaN NaN NaN NaN NaN NaN NaN 75 35 50 45 NaN 88 43 35
REVIEW18 NaN NaN 59 NaN NaN NaN NaN NaN NaN NaN 83 36 55 46 NaN 89 59 37
REVIEW19 NaN NaN 60 NaN NaN NaN NaN NaN NaN NaN 85 38 61 48 NaN 91 61 38
REVIEW20 NaN NaN 62 NaN NaN NaN NaN NaN NaN NaN 86 40 65 49 NaN 92 62 41
REVIEW21 NaN NaN 67 NaN NaN NaN NaN NaN NaN NaN 93 44 69 52 NaN 95 66 44
REVIEW22 NaN NaN 68 NaN NaN NaN NaN NaN NaN NaN NaN 46 73 53 NaN 96 67 49
REVIEW23 NaN NaN 69 NaN NaN NaN NaN NaN NaN NaN NaN 48 77 54 NaN NaN 68 52
REVIEW24 NaN NaN 74 NaN NaN NaN NaN NaN NaN NaN NaN 49 78 56 NaN NaN 72 53
REVIEW25 NaN NaN 77 NaN NaN NaN NaN NaN NaN NaN NaN 54 87 58 NaN NaN 73 54
REVIEW26 NaN NaN 79 NaN NaN NaN NaN NaN NaN NaN NaN 55 90 72 NaN NaN 76 57
REVIEW27 NaN NaN 80 NaN NaN NaN NaN NaN NaN NaN NaN 57 93 75 NaN NaN 78 65
REVIEW28 NaN NaN 81 NaN NaN NaN NaN NaN NaN NaN NaN 58 97 78 NaN NaN 79 66
REVIEW29 NaN NaN 82 NaN NaN NaN NaN NaN NaN NaN NaN 60 NaN 85 NaN NaN 80 67
REVIEW30 NaN NaN 87 NaN NaN NaN NaN NaN NaN NaN NaN 61 NaN 87 NaN NaN 81 68
REVIEW31 NaN NaN 90 NaN NaN NaN NaN NaN NaN NaN NaN 63 NaN 88 NaN NaN 89 69
REVIEW32 NaN NaN 91 NaN NaN NaN NaN NaN NaN NaN NaN 64 NaN 94 NaN NaN 92 70
REVIEW33 NaN NaN 94 NaN NaN NaN NaN NaN NaN NaN NaN 65 NaN 96 NaN NaN 93 71
REVIEW34 NaN NaN 97 NaN NaN NaN NaN NaN NaN NaN NaN 70 NaN NaN NaN NaN NaN 76
REVIEW35 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 71 NaN NaN NaN NaN NaN 81
REVIEW36 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 73 NaN NaN NaN NaN NaN 83
REVIEW37 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 74 NaN NaN NaN NaN NaN 84
REVIEW38 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 75 NaN NaN NaN NaN NaN NaN
REVIEW39 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 77 NaN NaN NaN NaN NaN NaN
REVIEW40 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 79 NaN NaN NaN NaN NaN NaN
REVIEW41 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 82 NaN NaN NaN NaN NaN NaN
REVIEW42 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 85 NaN NaN NaN NaN NaN NaN
REVIEW43 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 86 NaN NaN NaN NaN NaN NaN
REVIEW44 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 88 NaN NaN NaN NaN NaN NaN
REVIEW45 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 90 NaN NaN NaN NaN NaN NaN
REVIEW46 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 95 NaN NaN NaN NaN NaN NaN
REVIEW NNNN N PNPPNNNPNNNNNNPPPPPPPPPPPPPPPNPPPP NNPPN NNNNPP NNNPP NP NN NPPP P NNNNNNNNNNNNPPPPPPNPP NNNNNNNNNNNNNNNNNNNNNNPPPPPPPPPPPPPPPPPPPNPPPP NNNNNNNPNNNNNNNPPPPPPPPPPPPP PNPNNPNPPNNNNNNPNNNNNPPNPPPPNPPNN NNPPPPPPPP NNNNNNNPPPPPPPPPPPPPPP NNNNPNNNNNNNNNPNNPPPPPPPPPPPPPPPP NPPPPNNNNNPPNPNNNNPNNPNNNNNPNNPNPPNNP
In [317]:
df = pd.DataFrame({'Turker': even_cleaner_df['T_ID'].tolist(),
                   'SENTIMENT': even_cleaner_df['ReviewID'].tolist(),
                   'REVIEW': even_cleaner_df['sentiment'].tolist() })

grouped = df.groupby('Turker')
print(grouped.tolist())
# values = grouped['REVIEW'].agg('sum')
# id_df = grouped['SENTIMENT'].apply(lambda x: pd.Series(x.values)).unstack()
# id_df = id_df.rename(columns={i: 'REVIEW{}'.format(i + 1) for i in range(id_df.shape[1])})
# result = pd.concat([id_df, values], axis=1)
# result_df = pd.DataFrame(result)
# print(result_df.T)
---------------------------------------------------------------------------
AttributeError                            Traceback (most recent call last)
<ipython-input-317-1bc38d4e9879> in <module>
      4 
      5 grouped = df.groupby('Turker')
----> 6 print(grouped.tolist())
      7 # values = grouped['REVIEW'].agg('sum')
      8 # id_df = grouped['SENTIMENT'].apply(lambda x: pd.Series(x.values)).unstack()

/usr/local/lib/python3.7/site-packages/pandas/core/groupby/groupby.py in __getattr__(self, attr)
    564 
    565         raise AttributeError(
--> 566             "%r object has no attribute %r" % (type(self).__name__, attr)
    567         )
    568 

AttributeError: 'DataFrameGroupBy' object has no attribute 'tolist'

I want every review on the left side and I want all 46 turkers on the top

In [319]:
df = pd.DataFrame({ 'review': even_cleaner_df['ReviewID']})
In [342]:
def get_array_of_reviews(turker, df):
    a = [0]*98
    df = even_cleaner_df[even_cleaner_df['T_ID'] == turker] 
    t_reviews = df['ReviewID'].tolist()
    t_sentiment = df['sentiment'].tolist()
    for index,review in enumerate(t_reviews):
        a[review] = t_sentiment[index]
    print(t_reviews)

    return a

sparse_df = even_cleaner_df.copy()
sparse_df['big_array'] = sparse_df.apply(lambda x: get_array_of_reviews(x['T_ID'], even_cleaner_df), axis=1)
# t0 = even_cleaner_df[even_cleaner_df['T_ID'] == 'T_0']
[0, 11, 42, 46]
[0]
[0, 1, 8, 10, 16, 21, 27, 32, 36, 37, 45, 47, 50, 64, 66, 72, 75, 83, 85, 86, 93]
[1, 3, 4, 5, 7, 10, 14, 16, 17, 19, 22, 23, 26, 28, 30, 34, 35, 36, 38, 40, 44, 46, 48, 49, 54, 55, 57, 58, 60, 61, 63, 64, 65, 70, 71, 73, 74, 75, 77, 79, 82, 85, 86, 88, 90, 95]
[0, 1, 8, 10, 16, 21, 27, 32, 36, 37, 45, 47, 50, 64, 66, 72, 75, 83, 85, 86, 93]
[1, 7, 9, 12, 17, 19, 27, 29, 30, 33, 40, 41, 42, 45, 47, 48, 50, 55, 61, 65, 69, 73, 77, 78, 87, 90, 93, 97]
[2, 3, 4, 5, 12, 13, 14, 20, 22, 24, 26, 28, 31, 36, 39, 43, 45, 46, 48, 49, 52, 53, 54, 56, 58, 72, 75, 78, 85, 87, 88, 94, 96]
[2, 31, 50, 51, 62, 63, 74, 84, 89, 91]
[2, 8, 9, 24, 34, 39, 43, 51, 56, 60, 63, 64, 82, 83, 84, 86, 88, 89, 91, 92, 95, 96]
[3, 4, 6, 12, 15, 18, 20, 24, 25, 27, 31, 32, 34, 37, 38, 40, 43, 59, 61, 62, 66, 67, 68, 72, 73, 76, 78, 79, 80, 81, 89, 92, 93]
[2, 3, 4, 5, 12, 13, 14, 20, 22, 24, 26, 28, 31, 36, 39, 43, 45, 46, 48, 49, 52, 53, 54, 56, 58, 72, 75, 78, 85, 87, 88, 94, 96]
[1, 3, 4, 5, 7, 10, 14, 16, 17, 19, 22, 23, 26, 28, 30, 34, 35, 36, 38, 40, 44, 46, 48, 49, 54, 55, 57, 58, 60, 61, 63, 64, 65, 70, 71, 73, 74, 75, 77, 79, 82, 85, 86, 88, 90, 95]
[2, 3, 4, 5, 12, 13, 14, 20, 22, 24, 26, 28, 31, 36, 39, 43, 45, 46, 48, 49, 52, 53, 54, 56, 58, 72, 75, 78, 85, 87, 88, 94, 96]
[1, 3, 4, 5, 7, 10, 14, 16, 17, 19, 22, 23, 26, 28, 30, 34, 35, 36, 38, 40, 44, 46, 48, 49, 54, 55, 57, 58, 60, 61, 63, 64, 65, 70, 71, 73, 74, 75, 77, 79, 82, 85, 86, 88, 90, 95]
[3, 4, 6, 12, 15, 18, 20, 24, 25, 27, 31, 32, 34, 37, 38, 40, 43, 59, 61, 62, 66, 67, 68, 72, 73, 76, 78, 79, 80, 81, 89, 92, 93]
[2, 3, 4, 5, 12, 13, 14, 20, 22, 24, 26, 28, 31, 36, 39, 43, 45, 46, 48, 49, 52, 53, 54, 56, 58, 72, 75, 78, 85, 87, 88, 94, 96]
[1, 3, 4, 5, 7, 10, 14, 16, 17, 19, 22, 23, 26, 28, 30, 34, 35, 36, 38, 40, 44, 46, 48, 49, 54, 55, 57, 58, 60, 61, 63, 64, 65, 70, 71, 73, 74, 75, 77, 79, 82, 85, 86, 88, 90, 95]
[5, 6, 7, 9, 10, 11, 13, 16, 17, 18, 21, 23, 25, 30, 32, 33, 35, 37, 38, 41, 44, 49, 52, 53, 54, 57, 65, 66, 67, 68, 69, 70, 71, 76, 81, 83, 84]
[6, 8, 14, 15, 18, 20, 21, 22, 23, 26, 33, 35, 41, 42, 51, 52, 53, 59, 60, 62, 67, 68, 69, 74, 77, 79, 80, 81, 82, 87, 90, 91, 94, 97]
[5, 6, 7, 9, 10, 11, 13, 16, 17, 18, 21, 23, 25, 30, 32, 33, 35, 37, 38, 41, 44, 49, 52, 53, 54, 57, 65, 66, 67, 68, 69, 70, 71, 76, 81, 83, 84]
[3, 4, 6, 12, 15, 18, 20, 24, 25, 27, 31, 32, 34, 37, 38, 40, 43, 59, 61, 62, 66, 67, 68, 72, 73, 76, 78, 79, 80, 81, 89, 92, 93]
[1, 3, 4, 5, 7, 10, 14, 16, 17, 19, 22, 23, 26, 28, 30, 34, 35, 36, 38, 40, 44, 46, 48, 49, 54, 55, 57, 58, 60, 61, 63, 64, 65, 70, 71, 73, 74, 75, 77, 79, 82, 85, 86, 88, 90, 95]
[5, 6, 7, 9, 10, 11, 13, 16, 17, 18, 21, 23, 25, 30, 32, 33, 35, 37, 38, 41, 44, 49, 52, 53, 54, 57, 65, 66, 67, 68, 69, 70, 71, 76, 81, 83, 84]
[1, 7, 9, 12, 17, 19, 27, 29, 30, 33, 40, 41, 42, 45, 47, 48, 50, 55, 61, 65, 69, 73, 77, 78, 87, 90, 93, 97]
[2, 8, 9, 24, 34, 39, 43, 51, 56, 60, 63, 64, 82, 83, 84, 86, 88, 89, 91, 92, 95, 96]
[6, 8, 14, 15, 18, 20, 21, 22, 23, 26, 33, 35, 41, 42, 51, 52, 53, 59, 60, 62, 67, 68, 69, 74, 77, 79, 80, 81, 82, 87, 90, 91, 94, 97]
[0, 1, 8, 10, 16, 21, 27, 32, 36, 37, 45, 47, 50, 64, 66, 72, 75, 83, 85, 86, 93]
[5, 6, 7, 9, 10, 11, 13, 16, 17, 18, 21, 23, 25, 30, 32, 33, 35, 37, 38, 41, 44, 49, 52, 53, 54, 57, 65, 66, 67, 68, 69, 70, 71, 76, 81, 83, 84]
[2, 8, 9, 24, 34, 39, 43, 51, 56, 60, 63, 64, 82, 83, 84, 86, 88, 89, 91, 92, 95, 96]
[1, 7, 9, 12, 17, 19, 27, 29, 30, 33, 40, 41, 42, 45, 47, 48, 50, 55, 61, 65, 69, 73, 77, 78, 87, 90, 93, 97]
[5, 6, 7, 9, 10, 11, 13, 16, 17, 18, 21, 23, 25, 30, 32, 33, 35, 37, 38, 41, 44, 49, 52, 53, 54, 57, 65, 66, 67, 68, 69, 70, 71, 76, 81, 83, 84]
[1, 3, 4, 5, 7, 10, 14, 16, 17, 19, 22, 23, 26, 28, 30, 34, 35, 36, 38, 40, 44, 46, 48, 49, 54, 55, 57, 58, 60, 61, 63, 64, 65, 70, 71, 73, 74, 75, 77, 79, 82, 85, 86, 88, 90, 95]
[0, 1, 8, 10, 16, 21, 27, 32, 36, 37, 45, 47, 50, 64, 66, 72, 75, 83, 85, 86, 93]
[11, 47, 55, 95, 96]
[0, 11, 42, 46]
[5, 6, 7, 9, 10, 11, 13, 16, 17, 18, 21, 23, 25, 30, 32, 33, 35, 37, 38, 41, 44, 49, 52, 53, 54, 57, 65, 66, 67, 68, 69, 70, 71, 76, 81, 83, 84]
[1, 7, 9, 12, 17, 19, 27, 29, 30, 33, 40, 41, 42, 45, 47, 48, 50, 55, 61, 65, 69, 73, 77, 78, 87, 90, 93, 97]
[3, 4, 6, 12, 15, 18, 20, 24, 25, 27, 31, 32, 34, 37, 38, 40, 43, 59, 61, 62, 66, 67, 68, 72, 73, 76, 78, 79, 80, 81, 89, 92, 93]
[2, 3, 4, 5, 12, 13, 14, 20, 22, 24, 26, 28, 31, 36, 39, 43, 45, 46, 48, 49, 52, 53, 54, 56, 58, 72, 75, 78, 85, 87, 88, 94, 96]
[2, 3, 4, 5, 12, 13, 14, 20, 22, 24, 26, 28, 31, 36, 39, 43, 45, 46, 48, 49, 52, 53, 54, 56, 58, 72, 75, 78, 85, 87, 88, 94, 96]
[5, 6, 7, 9, 10, 11, 13, 16, 17, 18, 21, 23, 25, 30, 32, 33, 35, 37, 38, 41, 44, 49, 52, 53, 54, 57, 65, 66, 67, 68, 69, 70, 71, 76, 81, 83, 84]
[13, 25, 29, 57, 59, 71]
[2, 3, 4, 5, 12, 13, 14, 20, 22, 24, 26, 28, 31, 36, 39, 43, 45, 46, 48, 49, 52, 53, 54, 56, 58, 72, 75, 78, 85, 87, 88, 94, 96]
[1, 3, 4, 5, 7, 10, 14, 16, 17, 19, 22, 23, 26, 28, 30, 34, 35, 36, 38, 40, 44, 46, 48, 49, 54, 55, 57, 58, 60, 61, 63, 64, 65, 70, 71, 73, 74, 75, 77, 79, 82, 85, 86, 88, 90, 95]
[6, 8, 14, 15, 18, 20, 21, 22, 23, 26, 33, 35, 41, 42, 51, 52, 53, 59, 60, 62, 67, 68, 69, 74, 77, 79, 80, 81, 82, 87, 90, 91, 94, 97]
[3, 4, 6, 12, 15, 18, 20, 24, 25, 27, 31, 32, 34, 37, 38, 40, 43, 59, 61, 62, 66, 67, 68, 72, 73, 76, 78, 79, 80, 81, 89, 92, 93]
[6, 8, 14, 15, 18, 20, 21, 22, 23, 26, 33, 35, 41, 42, 51, 52, 53, 59, 60, 62, 67, 68, 69, 74, 77, 79, 80, 81, 82, 87, 90, 91, 94, 97]
[15, 19, 44, 80, 97]
[5, 6, 7, 9, 10, 11, 13, 16, 17, 18, 21, 23, 25, 30, 32, 33, 35, 37, 38, 41, 44, 49, 52, 53, 54, 57, 65, 66, 67, 68, 69, 70, 71, 76, 81, 83, 84]
[1, 3, 4, 5, 7, 10, 14, 16, 17, 19, 22, 23, 26, 28, 30, 34, 35, 36, 38, 40, 44, 46, 48, 49, 54, 55, 57, 58, 60, 61, 63, 64, 65, 70, 71, 73, 74, 75, 77, 79, 82, 85, 86, 88, 90, 95]
[0, 1, 8, 10, 16, 21, 27, 32, 36, 37, 45, 47, 50, 64, 66, 72, 75, 83, 85, 86, 93]
[1, 3, 4, 5, 7, 10, 14, 16, 17, 19, 22, 23, 26, 28, 30, 34, 35, 36, 38, 40, 44, 46, 48, 49, 54, 55, 57, 58, 60, 61, 63, 64, 65, 70, 71, 73, 74, 75, 77, 79, 82, 85, 86, 88, 90, 95]
[5, 6, 7, 9, 10, 11, 13, 16, 17, 18, 21, 23, 25, 30, 32, 33, 35, 37, 38, 41, 44, 49, 52, 53, 54, 57, 65, 66, 67, 68, 69, 70, 71, 76, 81, 83, 84]
[1, 7, 9, 12, 17, 19, 27, 29, 30, 33, 40, 41, 42, 45, 47, 48, 50, 55, 61, 65, 69, 73, 77, 78, 87, 90, 93, 97]
[5, 6, 7, 9, 10, 11, 13, 16, 17, 18, 21, 23, 25, 30, 32, 33, 35, 37, 38, 41, 44, 49, 52, 53, 54, 57, 65, 66, 67, 68, 69, 70, 71, 76, 81, 83, 84]
[3, 4, 6, 12, 15, 18, 20, 24, 25, 27, 31, 32, 34, 37, 38, 40, 43, 59, 61, 62, 66, 67, 68, 72, 73, 76, 78, 79, 80, 81, 89, 92, 93]
[6, 8, 14, 15, 18, 20, 21, 22, 23, 26, 33, 35, 41, 42, 51, 52, 53, 59, 60, 62, 67, 68, 69, 74, 77, 79, 80, 81, 82, 87, 90, 91, 94, 97]
[1, 3, 4, 5, 7, 10, 14, 16, 17, 19, 22, 23, 26, 28, 30, 34, 35, 36, 38, 40, 44, 46, 48, 49, 54, 55, 57, 58, 60, 61, 63, 64, 65, 70, 71, 73, 74, 75, 77, 79, 82, 85, 86, 88, 90, 95]
[15, 19, 44, 80, 97]
[1, 7, 9, 12, 17, 19, 27, 29, 30, 33, 40, 41, 42, 45, 47, 48, 50, 55, 61, 65, 69, 73, 77, 78, 87, 90, 93, 97]
[6, 8, 14, 15, 18, 20, 21, 22, 23, 26, 33, 35, 41, 42, 51, 52, 53, 59, 60, 62, 67, 68, 69, 74, 77, 79, 80, 81, 82, 87, 90, 91, 94, 97]
[2, 3, 4, 5, 12, 13, 14, 20, 22, 24, 26, 28, 31, 36, 39, 43, 45, 46, 48, 49, 52, 53, 54, 56, 58, 72, 75, 78, 85, 87, 88, 94, 96]
[3, 4, 6, 12, 15, 18, 20, 24, 25, 27, 31, 32, 34, 37, 38, 40, 43, 59, 61, 62, 66, 67, 68, 72, 73, 76, 78, 79, 80, 81, 89, 92, 93]
[0, 1, 8, 10, 16, 21, 27, 32, 36, 37, 45, 47, 50, 64, 66, 72, 75, 83, 85, 86, 93]
[5, 6, 7, 9, 10, 11, 13, 16, 17, 18, 21, 23, 25, 30, 32, 33, 35, 37, 38, 41, 44, 49, 52, 53, 54, 57, 65, 66, 67, 68, 69, 70, 71, 76, 81, 83, 84]
[6, 8, 14, 15, 18, 20, 21, 22, 23, 26, 33, 35, 41, 42, 51, 52, 53, 59, 60, 62, 67, 68, 69, 74, 77, 79, 80, 81, 82, 87, 90, 91, 94, 97]
[1, 3, 4, 5, 7, 10, 14, 16, 17, 19, 22, 23, 26, 28, 30, 34, 35, 36, 38, 40, 44, 46, 48, 49, 54, 55, 57, 58, 60, 61, 63, 64, 65, 70, 71, 73, 74, 75, 77, 79, 82, 85, 86, 88, 90, 95]
[2, 3, 4, 5, 12, 13, 14, 20, 22, 24, 26, 28, 31, 36, 39, 43, 45, 46, 48, 49, 52, 53, 54, 56, 58, 72, 75, 78, 85, 87, 88, 94, 96]
[6, 8, 14, 15, 18, 20, 21, 22, 23, 26, 33, 35, 41, 42, 51, 52, 53, 59, 60, 62, 67, 68, 69, 74, 77, 79, 80, 81, 82, 87, 90, 91, 94, 97]
[1, 3, 4, 5, 7, 10, 14, 16, 17, 19, 22, 23, 26, 28, 30, 34, 35, 36, 38, 40, 44, 46, 48, 49, 54, 55, 57, 58, 60, 61, 63, 64, 65, 70, 71, 73, 74, 75, 77, 79, 82, 85, 86, 88, 90, 95]
[5, 6, 7, 9, 10, 11, 13, 16, 17, 18, 21, 23, 25, 30, 32, 33, 35, 37, 38, 41, 44, 49, 52, 53, 54, 57, 65, 66, 67, 68, 69, 70, 71, 76, 81, 83, 84]
[6, 8, 14, 15, 18, 20, 21, 22, 23, 26, 33, 35, 41, 42, 51, 52, 53, 59, 60, 62, 67, 68, 69, 74, 77, 79, 80, 81, 82, 87, 90, 91, 94, 97]
[2, 3, 4, 5, 12, 13, 14, 20, 22, 24, 26, 28, 31, 36, 39, 43, 45, 46, 48, 49, 52, 53, 54, 56, 58, 72, 75, 78, 85, 87, 88, 94, 96]
[3, 4, 6, 12, 15, 18, 20, 24, 25, 27, 31, 32, 34, 37, 38, 40, 43, 59, 61, 62, 66, 67, 68, 72, 73, 76, 78, 79, 80, 81, 89, 92, 93]
[2, 8, 9, 24, 34, 39, 43, 51, 56, 60, 63, 64, 82, 83, 84, 86, 88, 89, 91, 92, 95, 96]
[5, 6, 7, 9, 10, 11, 13, 16, 17, 18, 21, 23, 25, 30, 32, 33, 35, 37, 38, 41, 44, 49, 52, 53, 54, 57, 65, 66, 67, 68, 69, 70, 71, 76, 81, 83, 84]
[13, 25, 29, 57, 59, 71]
[3, 4, 6, 12, 15, 18, 20, 24, 25, 27, 31, 32, 34, 37, 38, 40, 43, 59, 61, 62, 66, 67, 68, 72, 73, 76, 78, 79, 80, 81, 89, 92, 93]
[6, 8, 14, 15, 18, 20, 21, 22, 23, 26, 33, 35, 41, 42, 51, 52, 53, 59, 60, 62, 67, 68, 69, 74, 77, 79, 80, 81, 82, 87, 90, 91, 94, 97]
[2, 3, 4, 5, 12, 13, 14, 20, 22, 24, 26, 28, 31, 36, 39, 43, 45, 46, 48, 49, 52, 53, 54, 56, 58, 72, 75, 78, 85, 87, 88, 94, 96]
[1, 3, 4, 5, 7, 10, 14, 16, 17, 19, 22, 23, 26, 28, 30, 34, 35, 36, 38, 40, 44, 46, 48, 49, 54, 55, 57, 58, 60, 61, 63, 64, 65, 70, 71, 73, 74, 75, 77, 79, 82, 85, 86, 88, 90, 95]
[1, 7, 9, 12, 17, 19, 27, 29, 30, 33, 40, 41, 42, 45, 47, 48, 50, 55, 61, 65, 69, 73, 77, 78, 87, 90, 93, 97]
[3, 4, 6, 12, 15, 18, 20, 24, 25, 27, 31, 32, 34, 37, 38, 40, 43, 59, 61, 62, 66, 67, 68, 72, 73, 76, 78, 79, 80, 81, 89, 92, 93]
[0, 1, 8, 10, 16, 21, 27, 32, 36, 37, 45, 47, 50, 64, 66, 72, 75, 83, 85, 86, 93]
[1, 3, 4, 5, 7, 10, 14, 16, 17, 19, 22, 23, 26, 28, 30, 34, 35, 36, 38, 40, 44, 46, 48, 49, 54, 55, 57, 58, 60, 61, 63, 64, 65, 70, 71, 73, 74, 75, 77, 79, 82, 85, 86, 88, 90, 95]
[28, 76]
[2, 3, 4, 5, 12, 13, 14, 20, 22, 24, 26, 28, 31, 36, 39, 43, 45, 46, 48, 49, 52, 53, 54, 56, 58, 72, 75, 78, 85, 87, 88, 94, 96]
[29, 92]
[13, 25, 29, 57, 59, 71]
[1, 7, 9, 12, 17, 19, 27, 29, 30, 33, 40, 41, 42, 45, 47, 48, 50, 55, 61, 65, 69, 73, 77, 78, 87, 90, 93, 97]
[1, 7, 9, 12, 17, 19, 27, 29, 30, 33, 40, 41, 42, 45, 47, 48, 50, 55, 61, 65, 69, 73, 77, 78, 87, 90, 93, 97]
[1, 3, 4, 5, 7, 10, 14, 16, 17, 19, 22, 23, 26, 28, 30, 34, 35, 36, 38, 40, 44, 46, 48, 49, 54, 55, 57, 58, 60, 61, 63, 64, 65, 70, 71, 73, 74, 75, 77, 79, 82, 85, 86, 88, 90, 95]
[5, 6, 7, 9, 10, 11, 13, 16, 17, 18, 21, 23, 25, 30, 32, 33, 35, 37, 38, 41, 44, 49, 52, 53, 54, 57, 65, 66, 67, 68, 69, 70, 71, 76, 81, 83, 84]
[3, 4, 6, 12, 15, 18, 20, 24, 25, 27, 31, 32, 34, 37, 38, 40, 43, 59, 61, 62, 66, 67, 68, 72, 73, 76, 78, 79, 80, 81, 89, 92, 93]
[2, 3, 4, 5, 12, 13, 14, 20, 22, 24, 26, 28, 31, 36, 39, 43, 45, 46, 48, 49, 52, 53, 54, 56, 58, 72, 75, 78, 85, 87, 88, 94, 96]
[2, 31, 50, 51, 62, 63, 74, 84, 89, 91]
[0, 1, 8, 10, 16, 21, 27, 32, 36, 37, 45, 47, 50, 64, 66, 72, 75, 83, 85, 86, 93]
[3, 4, 6, 12, 15, 18, 20, 24, 25, 27, 31, 32, 34, 37, 38, 40, 43, 59, 61, 62, 66, 67, 68, 72, 73, 76, 78, 79, 80, 81, 89, 92, 93]
[5, 6, 7, 9, 10, 11, 13, 16, 17, 18, 21, 23, 25, 30, 32, 33, 35, 37, 38, 41, 44, 49, 52, 53, 54, 57, 65, 66, 67, 68, 69, 70, 71, 76, 81, 83, 84]
[6, 8, 14, 15, 18, 20, 21, 22, 23, 26, 33, 35, 41, 42, 51, 52, 53, 59, 60, 62, 67, 68, 69, 74, 77, 79, 80, 81, 82, 87, 90, 91, 94, 97]
[1, 7, 9, 12, 17, 19, 27, 29, 30, 33, 40, 41, 42, 45, 47, 48, 50, 55, 61, 65, 69, 73, 77, 78, 87, 90, 93, 97]
[5, 6, 7, 9, 10, 11, 13, 16, 17, 18, 21, 23, 25, 30, 32, 33, 35, 37, 38, 41, 44, 49, 52, 53, 54, 57, 65, 66, 67, 68, 69, 70, 71, 76, 81, 83, 84]
[3, 4, 6, 12, 15, 18, 20, 24, 25, 27, 31, 32, 34, 37, 38, 40, 43, 59, 61, 62, 66, 67, 68, 72, 73, 76, 78, 79, 80, 81, 89, 92, 93]
[1, 3, 4, 5, 7, 10, 14, 16, 17, 19, 22, 23, 26, 28, 30, 34, 35, 36, 38, 40, 44, 46, 48, 49, 54, 55, 57, 58, 60, 61, 63, 64, 65, 70, 71, 73, 74, 75, 77, 79, 82, 85, 86, 88, 90, 95]
[2, 8, 9, 24, 34, 39, 43, 51, 56, 60, 63, 64, 82, 83, 84, 86, 88, 89, 91, 92, 95, 96]
[6, 8, 14, 15, 18, 20, 21, 22, 23, 26, 33, 35, 41, 42, 51, 52, 53, 59, 60, 62, 67, 68, 69, 74, 77, 79, 80, 81, 82, 87, 90, 91, 94, 97]
[1, 3, 4, 5, 7, 10, 14, 16, 17, 19, 22, 23, 26, 28, 30, 34, 35, 36, 38, 40, 44, 46, 48, 49, 54, 55, 57, 58, 60, 61, 63, 64, 65, 70, 71, 73, 74, 75, 77, 79, 82, 85, 86, 88, 90, 95]
[5, 6, 7, 9, 10, 11, 13, 16, 17, 18, 21, 23, 25, 30, 32, 33, 35, 37, 38, 41, 44, 49, 52, 53, 54, 57, 65, 66, 67, 68, 69, 70, 71, 76, 81, 83, 84]
[0, 1, 8, 10, 16, 21, 27, 32, 36, 37, 45, 47, 50, 64, 66, 72, 75, 83, 85, 86, 93]
[2, 3, 4, 5, 12, 13, 14, 20, 22, 24, 26, 28, 31, 36, 39, 43, 45, 46, 48, 49, 52, 53, 54, 56, 58, 72, 75, 78, 85, 87, 88, 94, 96]
[1, 3, 4, 5, 7, 10, 14, 16, 17, 19, 22, 23, 26, 28, 30, 34, 35, 36, 38, 40, 44, 46, 48, 49, 54, 55, 57, 58, 60, 61, 63, 64, 65, 70, 71, 73, 74, 75, 77, 79, 82, 85, 86, 88, 90, 95]
[3, 4, 6, 12, 15, 18, 20, 24, 25, 27, 31, 32, 34, 37, 38, 40, 43, 59, 61, 62, 66, 67, 68, 72, 73, 76, 78, 79, 80, 81, 89, 92, 93]
[5, 6, 7, 9, 10, 11, 13, 16, 17, 18, 21, 23, 25, 30, 32, 33, 35, 37, 38, 41, 44, 49, 52, 53, 54, 57, 65, 66, 67, 68, 69, 70, 71, 76, 81, 83, 84]
[0, 1, 8, 10, 16, 21, 27, 32, 36, 37, 45, 47, 50, 64, 66, 72, 75, 83, 85, 86, 93]
[5, 6, 7, 9, 10, 11, 13, 16, 17, 18, 21, 23, 25, 30, 32, 33, 35, 37, 38, 41, 44, 49, 52, 53, 54, 57, 65, 66, 67, 68, 69, 70, 71, 76, 81, 83, 84]
[3, 4, 6, 12, 15, 18, 20, 24, 25, 27, 31, 32, 34, 37, 38, 40, 43, 59, 61, 62, 66, 67, 68, 72, 73, 76, 78, 79, 80, 81, 89, 92, 93]
[1, 3, 4, 5, 7, 10, 14, 16, 17, 19, 22, 23, 26, 28, 30, 34, 35, 36, 38, 40, 44, 46, 48, 49, 54, 55, 57, 58, 60, 61, 63, 64, 65, 70, 71, 73, 74, 75, 77, 79, 82, 85, 86, 88, 90, 95]
[2, 8, 9, 24, 34, 39, 43, 51, 56, 60, 63, 64, 82, 83, 84, 86, 88, 89, 91, 92, 95, 96]
[2, 3, 4, 5, 12, 13, 14, 20, 22, 24, 26, 28, 31, 36, 39, 43, 45, 46, 48, 49, 52, 53, 54, 56, 58, 72, 75, 78, 85, 87, 88, 94, 96]
[39, 58, 70, 94]
[1, 7, 9, 12, 17, 19, 27, 29, 30, 33, 40, 41, 42, 45, 47, 48, 50, 55, 61, 65, 69, 73, 77, 78, 87, 90, 93, 97]
[1, 3, 4, 5, 7, 10, 14, 16, 17, 19, 22, 23, 26, 28, 30, 34, 35, 36, 38, 40, 44, 46, 48, 49, 54, 55, 57, 58, 60, 61, 63, 64, 65, 70, 71, 73, 74, 75, 77, 79, 82, 85, 86, 88, 90, 95]
[3, 4, 6, 12, 15, 18, 20, 24, 25, 27, 31, 32, 34, 37, 38, 40, 43, 59, 61, 62, 66, 67, 68, 72, 73, 76, 78, 79, 80, 81, 89, 92, 93]
[1, 7, 9, 12, 17, 19, 27, 29, 30, 33, 40, 41, 42, 45, 47, 48, 50, 55, 61, 65, 69, 73, 77, 78, 87, 90, 93, 97]
[6, 8, 14, 15, 18, 20, 21, 22, 23, 26, 33, 35, 41, 42, 51, 52, 53, 59, 60, 62, 67, 68, 69, 74, 77, 79, 80, 81, 82, 87, 90, 91, 94, 97]
[5, 6, 7, 9, 10, 11, 13, 16, 17, 18, 21, 23, 25, 30, 32, 33, 35, 37, 38, 41, 44, 49, 52, 53, 54, 57, 65, 66, 67, 68, 69, 70, 71, 76, 81, 83, 84]
[0, 11, 42, 46]
[1, 7, 9, 12, 17, 19, 27, 29, 30, 33, 40, 41, 42, 45, 47, 48, 50, 55, 61, 65, 69, 73, 77, 78, 87, 90, 93, 97]
[6, 8, 14, 15, 18, 20, 21, 22, 23, 26, 33, 35, 41, 42, 51, 52, 53, 59, 60, 62, 67, 68, 69, 74, 77, 79, 80, 81, 82, 87, 90, 91, 94, 97]
[2, 3, 4, 5, 12, 13, 14, 20, 22, 24, 26, 28, 31, 36, 39, 43, 45, 46, 48, 49, 52, 53, 54, 56, 58, 72, 75, 78, 85, 87, 88, 94, 96]
[2, 8, 9, 24, 34, 39, 43, 51, 56, 60, 63, 64, 82, 83, 84, 86, 88, 89, 91, 92, 95, 96]
[3, 4, 6, 12, 15, 18, 20, 24, 25, 27, 31, 32, 34, 37, 38, 40, 43, 59, 61, 62, 66, 67, 68, 72, 73, 76, 78, 79, 80, 81, 89, 92, 93]
[5, 6, 7, 9, 10, 11, 13, 16, 17, 18, 21, 23, 25, 30, 32, 33, 35, 37, 38, 41, 44, 49, 52, 53, 54, 57, 65, 66, 67, 68, 69, 70, 71, 76, 81, 83, 84]
[1, 3, 4, 5, 7, 10, 14, 16, 17, 19, 22, 23, 26, 28, 30, 34, 35, 36, 38, 40, 44, 46, 48, 49, 54, 55, 57, 58, 60, 61, 63, 64, 65, 70, 71, 73, 74, 75, 77, 79, 82, 85, 86, 88, 90, 95]
[15, 19, 44, 80, 97]
[2, 3, 4, 5, 12, 13, 14, 20, 22, 24, 26, 28, 31, 36, 39, 43, 45, 46, 48, 49, 52, 53, 54, 56, 58, 72, 75, 78, 85, 87, 88, 94, 96]
[1, 7, 9, 12, 17, 19, 27, 29, 30, 33, 40, 41, 42, 45, 47, 48, 50, 55, 61, 65, 69, 73, 77, 78, 87, 90, 93, 97]
[0, 1, 8, 10, 16, 21, 27, 32, 36, 37, 45, 47, 50, 64, 66, 72, 75, 83, 85, 86, 93]
[2, 3, 4, 5, 12, 13, 14, 20, 22, 24, 26, 28, 31, 36, 39, 43, 45, 46, 48, 49, 52, 53, 54, 56, 58, 72, 75, 78, 85, 87, 88, 94, 96]
[1, 3, 4, 5, 7, 10, 14, 16, 17, 19, 22, 23, 26, 28, 30, 34, 35, 36, 38, 40, 44, 46, 48, 49, 54, 55, 57, 58, 60, 61, 63, 64, 65, 70, 71, 73, 74, 75, 77, 79, 82, 85, 86, 88, 90, 95]
[0, 11, 42, 46]
[1, 7, 9, 12, 17, 19, 27, 29, 30, 33, 40, 41, 42, 45, 47, 48, 50, 55, 61, 65, 69, 73, 77, 78, 87, 90, 93, 97]
[11, 47, 55, 95, 96]
[0, 1, 8, 10, 16, 21, 27, 32, 36, 37, 45, 47, 50, 64, 66, 72, 75, 83, 85, 86, 93]
[1, 7, 9, 12, 17, 19, 27, 29, 30, 33, 40, 41, 42, 45, 47, 48, 50, 55, 61, 65, 69, 73, 77, 78, 87, 90, 93, 97]
[1, 3, 4, 5, 7, 10, 14, 16, 17, 19, 22, 23, 26, 28, 30, 34, 35, 36, 38, 40, 44, 46, 48, 49, 54, 55, 57, 58, 60, 61, 63, 64, 65, 70, 71, 73, 74, 75, 77, 79, 82, 85, 86, 88, 90, 95]
[2, 3, 4, 5, 12, 13, 14, 20, 22, 24, 26, 28, 31, 36, 39, 43, 45, 46, 48, 49, 52, 53, 54, 56, 58, 72, 75, 78, 85, 87, 88, 94, 96]
[5, 6, 7, 9, 10, 11, 13, 16, 17, 18, 21, 23, 25, 30, 32, 33, 35, 37, 38, 41, 44, 49, 52, 53, 54, 57, 65, 66, 67, 68, 69, 70, 71, 76, 81, 83, 84]
[1, 3, 4, 5, 7, 10, 14, 16, 17, 19, 22, 23, 26, 28, 30, 34, 35, 36, 38, 40, 44, 46, 48, 49, 54, 55, 57, 58, 60, 61, 63, 64, 65, 70, 71, 73, 74, 75, 77, 79, 82, 85, 86, 88, 90, 95]
[2, 3, 4, 5, 12, 13, 14, 20, 22, 24, 26, 28, 31, 36, 39, 43, 45, 46, 48, 49, 52, 53, 54, 56, 58, 72, 75, 78, 85, 87, 88, 94, 96]
[1, 7, 9, 12, 17, 19, 27, 29, 30, 33, 40, 41, 42, 45, 47, 48, 50, 55, 61, 65, 69, 73, 77, 78, 87, 90, 93, 97]
[0, 1, 8, 10, 16, 21, 27, 32, 36, 37, 45, 47, 50, 64, 66, 72, 75, 83, 85, 86, 93]
[2, 31, 50, 51, 62, 63, 74, 84, 89, 91]
[2, 8, 9, 24, 34, 39, 43, 51, 56, 60, 63, 64, 82, 83, 84, 86, 88, 89, 91, 92, 95, 96]
[6, 8, 14, 15, 18, 20, 21, 22, 23, 26, 33, 35, 41, 42, 51, 52, 53, 59, 60, 62, 67, 68, 69, 74, 77, 79, 80, 81, 82, 87, 90, 91, 94, 97]
[2, 31, 50, 51, 62, 63, 74, 84, 89, 91]
[6, 8, 14, 15, 18, 20, 21, 22, 23, 26, 33, 35, 41, 42, 51, 52, 53, 59, 60, 62, 67, 68, 69, 74, 77, 79, 80, 81, 82, 87, 90, 91, 94, 97]
[5, 6, 7, 9, 10, 11, 13, 16, 17, 18, 21, 23, 25, 30, 32, 33, 35, 37, 38, 41, 44, 49, 52, 53, 54, 57, 65, 66, 67, 68, 69, 70, 71, 76, 81, 83, 84]
[2, 3, 4, 5, 12, 13, 14, 20, 22, 24, 26, 28, 31, 36, 39, 43, 45, 46, 48, 49, 52, 53, 54, 56, 58, 72, 75, 78, 85, 87, 88, 94, 96]
[2, 3, 4, 5, 12, 13, 14, 20, 22, 24, 26, 28, 31, 36, 39, 43, 45, 46, 48, 49, 52, 53, 54, 56, 58, 72, 75, 78, 85, 87, 88, 94, 96]
[5, 6, 7, 9, 10, 11, 13, 16, 17, 18, 21, 23, 25, 30, 32, 33, 35, 37, 38, 41, 44, 49, 52, 53, 54, 57, 65, 66, 67, 68, 69, 70, 71, 76, 81, 83, 84]
[6, 8, 14, 15, 18, 20, 21, 22, 23, 26, 33, 35, 41, 42, 51, 52, 53, 59, 60, 62, 67, 68, 69, 74, 77, 79, 80, 81, 82, 87, 90, 91, 94, 97]
[2, 3, 4, 5, 12, 13, 14, 20, 22, 24, 26, 28, 31, 36, 39, 43, 45, 46, 48, 49, 52, 53, 54, 56, 58, 72, 75, 78, 85, 87, 88, 94, 96]
[1, 3, 4, 5, 7, 10, 14, 16, 17, 19, 22, 23, 26, 28, 30, 34, 35, 36, 38, 40, 44, 46, 48, 49, 54, 55, 57, 58, 60, 61, 63, 64, 65, 70, 71, 73, 74, 75, 77, 79, 82, 85, 86, 88, 90, 95]
[5, 6, 7, 9, 10, 11, 13, 16, 17, 18, 21, 23, 25, 30, 32, 33, 35, 37, 38, 41, 44, 49, 52, 53, 54, 57, 65, 66, 67, 68, 69, 70, 71, 76, 81, 83, 84]
[1, 3, 4, 5, 7, 10, 14, 16, 17, 19, 22, 23, 26, 28, 30, 34, 35, 36, 38, 40, 44, 46, 48, 49, 54, 55, 57, 58, 60, 61, 63, 64, 65, 70, 71, 73, 74, 75, 77, 79, 82, 85, 86, 88, 90, 95]
[1, 7, 9, 12, 17, 19, 27, 29, 30, 33, 40, 41, 42, 45, 47, 48, 50, 55, 61, 65, 69, 73, 77, 78, 87, 90, 93, 97]
[11, 47, 55, 95, 96]
[56]
[2, 3, 4, 5, 12, 13, 14, 20, 22, 24, 26, 28, 31, 36, 39, 43, 45, 46, 48, 49, 52, 53, 54, 56, 58, 72, 75, 78, 85, 87, 88, 94, 96]
[2, 8, 9, 24, 34, 39, 43, 51, 56, 60, 63, 64, 82, 83, 84, 86, 88, 89, 91, 92, 95, 96]
[5, 6, 7, 9, 10, 11, 13, 16, 17, 18, 21, 23, 25, 30, 32, 33, 35, 37, 38, 41, 44, 49, 52, 53, 54, 57, 65, 66, 67, 68, 69, 70, 71, 76, 81, 83, 84]
[1, 3, 4, 5, 7, 10, 14, 16, 17, 19, 22, 23, 26, 28, 30, 34, 35, 36, 38, 40, 44, 46, 48, 49, 54, 55, 57, 58, 60, 61, 63, 64, 65, 70, 71, 73, 74, 75, 77, 79, 82, 85, 86, 88, 90, 95]
[13, 25, 29, 57, 59, 71]
[2, 3, 4, 5, 12, 13, 14, 20, 22, 24, 26, 28, 31, 36, 39, 43, 45, 46, 48, 49, 52, 53, 54, 56, 58, 72, 75, 78, 85, 87, 88, 94, 96]
[39, 58, 70, 94]
[1, 3, 4, 5, 7, 10, 14, 16, 17, 19, 22, 23, 26, 28, 30, 34, 35, 36, 38, 40, 44, 46, 48, 49, 54, 55, 57, 58, 60, 61, 63, 64, 65, 70, 71, 73, 74, 75, 77, 79, 82, 85, 86, 88, 90, 95]
[3, 4, 6, 12, 15, 18, 20, 24, 25, 27, 31, 32, 34, 37, 38, 40, 43, 59, 61, 62, 66, 67, 68, 72, 73, 76, 78, 79, 80, 81, 89, 92, 93]
[6, 8, 14, 15, 18, 20, 21, 22, 23, 26, 33, 35, 41, 42, 51, 52, 53, 59, 60, 62, 67, 68, 69, 74, 77, 79, 80, 81, 82, 87, 90, 91, 94, 97]
[13, 25, 29, 57, 59, 71]
[1, 3, 4, 5, 7, 10, 14, 16, 17, 19, 22, 23, 26, 28, 30, 34, 35, 36, 38, 40, 44, 46, 48, 49, 54, 55, 57, 58, 60, 61, 63, 64, 65, 70, 71, 73, 74, 75, 77, 79, 82, 85, 86, 88, 90, 95]
[6, 8, 14, 15, 18, 20, 21, 22, 23, 26, 33, 35, 41, 42, 51, 52, 53, 59, 60, 62, 67, 68, 69, 74, 77, 79, 80, 81, 82, 87, 90, 91, 94, 97]
[2, 8, 9, 24, 34, 39, 43, 51, 56, 60, 63, 64, 82, 83, 84, 86, 88, 89, 91, 92, 95, 96]
[3, 4, 6, 12, 15, 18, 20, 24, 25, 27, 31, 32, 34, 37, 38, 40, 43, 59, 61, 62, 66, 67, 68, 72, 73, 76, 78, 79, 80, 81, 89, 92, 93]
[1, 3, 4, 5, 7, 10, 14, 16, 17, 19, 22, 23, 26, 28, 30, 34, 35, 36, 38, 40, 44, 46, 48, 49, 54, 55, 57, 58, 60, 61, 63, 64, 65, 70, 71, 73, 74, 75, 77, 79, 82, 85, 86, 88, 90, 95]
[1, 7, 9, 12, 17, 19, 27, 29, 30, 33, 40, 41, 42, 45, 47, 48, 50, 55, 61, 65, 69, 73, 77, 78, 87, 90, 93, 97]
[6, 8, 14, 15, 18, 20, 21, 22, 23, 26, 33, 35, 41, 42, 51, 52, 53, 59, 60, 62, 67, 68, 69, 74, 77, 79, 80, 81, 82, 87, 90, 91, 94, 97]
[2, 31, 50, 51, 62, 63, 74, 84, 89, 91]
[3, 4, 6, 12, 15, 18, 20, 24, 25, 27, 31, 32, 34, 37, 38, 40, 43, 59, 61, 62, 66, 67, 68, 72, 73, 76, 78, 79, 80, 81, 89, 92, 93]
[2, 8, 9, 24, 34, 39, 43, 51, 56, 60, 63, 64, 82, 83, 84, 86, 88, 89, 91, 92, 95, 96]
[1, 3, 4, 5, 7, 10, 14, 16, 17, 19, 22, 23, 26, 28, 30, 34, 35, 36, 38, 40, 44, 46, 48, 49, 54, 55, 57, 58, 60, 61, 63, 64, 65, 70, 71, 73, 74, 75, 77, 79, 82, 85, 86, 88, 90, 95]
[2, 31, 50, 51, 62, 63, 74, 84, 89, 91]
[1, 3, 4, 5, 7, 10, 14, 16, 17, 19, 22, 23, 26, 28, 30, 34, 35, 36, 38, 40, 44, 46, 48, 49, 54, 55, 57, 58, 60, 61, 63, 64, 65, 70, 71, 73, 74, 75, 77, 79, 82, 85, 86, 88, 90, 95]
[2, 8, 9, 24, 34, 39, 43, 51, 56, 60, 63, 64, 82, 83, 84, 86, 88, 89, 91, 92, 95, 96]
[0, 1, 8, 10, 16, 21, 27, 32, 36, 37, 45, 47, 50, 64, 66, 72, 75, 83, 85, 86, 93]
[1, 3, 4, 5, 7, 10, 14, 16, 17, 19, 22, 23, 26, 28, 30, 34, 35, 36, 38, 40, 44, 46, 48, 49, 54, 55, 57, 58, 60, 61, 63, 64, 65, 70, 71, 73, 74, 75, 77, 79, 82, 85, 86, 88, 90, 95]
[1, 7, 9, 12, 17, 19, 27, 29, 30, 33, 40, 41, 42, 45, 47, 48, 50, 55, 61, 65, 69, 73, 77, 78, 87, 90, 93, 97]
[5, 6, 7, 9, 10, 11, 13, 16, 17, 18, 21, 23, 25, 30, 32, 33, 35, 37, 38, 41, 44, 49, 52, 53, 54, 57, 65, 66, 67, 68, 69, 70, 71, 76, 81, 83, 84]
[0, 1, 8, 10, 16, 21, 27, 32, 36, 37, 45, 47, 50, 64, 66, 72, 75, 83, 85, 86, 93]
[5, 6, 7, 9, 10, 11, 13, 16, 17, 18, 21, 23, 25, 30, 32, 33, 35, 37, 38, 41, 44, 49, 52, 53, 54, 57, 65, 66, 67, 68, 69, 70, 71, 76, 81, 83, 84]
[3, 4, 6, 12, 15, 18, 20, 24, 25, 27, 31, 32, 34, 37, 38, 40, 43, 59, 61, 62, 66, 67, 68, 72, 73, 76, 78, 79, 80, 81, 89, 92, 93]
[5, 6, 7, 9, 10, 11, 13, 16, 17, 18, 21, 23, 25, 30, 32, 33, 35, 37, 38, 41, 44, 49, 52, 53, 54, 57, 65, 66, 67, 68, 69, 70, 71, 76, 81, 83, 84]
[6, 8, 14, 15, 18, 20, 21, 22, 23, 26, 33, 35, 41, 42, 51, 52, 53, 59, 60, 62, 67, 68, 69, 74, 77, 79, 80, 81, 82, 87, 90, 91, 94, 97]
[3, 4, 6, 12, 15, 18, 20, 24, 25, 27, 31, 32, 34, 37, 38, 40, 43, 59, 61, 62, 66, 67, 68, 72, 73, 76, 78, 79, 80, 81, 89, 92, 93]
[5, 6, 7, 9, 10, 11, 13, 16, 17, 18, 21, 23, 25, 30, 32, 33, 35, 37, 38, 41, 44, 49, 52, 53, 54, 57, 65, 66, 67, 68, 69, 70, 71, 76, 81, 83, 84]
[3, 4, 6, 12, 15, 18, 20, 24, 25, 27, 31, 32, 34, 37, 38, 40, 43, 59, 61, 62, 66, 67, 68, 72, 73, 76, 78, 79, 80, 81, 89, 92, 93]
[6, 8, 14, 15, 18, 20, 21, 22, 23, 26, 33, 35, 41, 42, 51, 52, 53, 59, 60, 62, 67, 68, 69, 74, 77, 79, 80, 81, 82, 87, 90, 91, 94, 97]
[6, 8, 14, 15, 18, 20, 21, 22, 23, 26, 33, 35, 41, 42, 51, 52, 53, 59, 60, 62, 67, 68, 69, 74, 77, 79, 80, 81, 82, 87, 90, 91, 94, 97]
[1, 7, 9, 12, 17, 19, 27, 29, 30, 33, 40, 41, 42, 45, 47, 48, 50, 55, 61, 65, 69, 73, 77, 78, 87, 90, 93, 97]
[5, 6, 7, 9, 10, 11, 13, 16, 17, 18, 21, 23, 25, 30, 32, 33, 35, 37, 38, 41, 44, 49, 52, 53, 54, 57, 65, 66, 67, 68, 69, 70, 71, 76, 81, 83, 84]
[5, 6, 7, 9, 10, 11, 13, 16, 17, 18, 21, 23, 25, 30, 32, 33, 35, 37, 38, 41, 44, 49, 52, 53, 54, 57, 65, 66, 67, 68, 69, 70, 71, 76, 81, 83, 84]
[1, 3, 4, 5, 7, 10, 14, 16, 17, 19, 22, 23, 26, 28, 30, 34, 35, 36, 38, 40, 44, 46, 48, 49, 54, 55, 57, 58, 60, 61, 63, 64, 65, 70, 71, 73, 74, 75, 77, 79, 82, 85, 86, 88, 90, 95]
[39, 58, 70, 94]
[1, 3, 4, 5, 7, 10, 14, 16, 17, 19, 22, 23, 26, 28, 30, 34, 35, 36, 38, 40, 44, 46, 48, 49, 54, 55, 57, 58, 60, 61, 63, 64, 65, 70, 71, 73, 74, 75, 77, 79, 82, 85, 86, 88, 90, 95]
[13, 25, 29, 57, 59, 71]
[5, 6, 7, 9, 10, 11, 13, 16, 17, 18, 21, 23, 25, 30, 32, 33, 35, 37, 38, 41, 44, 49, 52, 53, 54, 57, 65, 66, 67, 68, 69, 70, 71, 76, 81, 83, 84]
[2, 3, 4, 5, 12, 13, 14, 20, 22, 24, 26, 28, 31, 36, 39, 43, 45, 46, 48, 49, 52, 53, 54, 56, 58, 72, 75, 78, 85, 87, 88, 94, 96]
[3, 4, 6, 12, 15, 18, 20, 24, 25, 27, 31, 32, 34, 37, 38, 40, 43, 59, 61, 62, 66, 67, 68, 72, 73, 76, 78, 79, 80, 81, 89, 92, 93]
[0, 1, 8, 10, 16, 21, 27, 32, 36, 37, 45, 47, 50, 64, 66, 72, 75, 83, 85, 86, 93]
[1, 3, 4, 5, 7, 10, 14, 16, 17, 19, 22, 23, 26, 28, 30, 34, 35, 36, 38, 40, 44, 46, 48, 49, 54, 55, 57, 58, 60, 61, 63, 64, 65, 70, 71, 73, 74, 75, 77, 79, 82, 85, 86, 88, 90, 95]
[3, 4, 6, 12, 15, 18, 20, 24, 25, 27, 31, 32, 34, 37, 38, 40, 43, 59, 61, 62, 66, 67, 68, 72, 73, 76, 78, 79, 80, 81, 89, 92, 93]
[1, 7, 9, 12, 17, 19, 27, 29, 30, 33, 40, 41, 42, 45, 47, 48, 50, 55, 61, 65, 69, 73, 77, 78, 87, 90, 93, 97]
[2, 31, 50, 51, 62, 63, 74, 84, 89, 91]
[1, 3, 4, 5, 7, 10, 14, 16, 17, 19, 22, 23, 26, 28, 30, 34, 35, 36, 38, 40, 44, 46, 48, 49, 54, 55, 57, 58, 60, 61, 63, 64, 65, 70, 71, 73, 74, 75, 77, 79, 82, 85, 86, 88, 90, 95]
[6, 8, 14, 15, 18, 20, 21, 22, 23, 26, 33, 35, 41, 42, 51, 52, 53, 59, 60, 62, 67, 68, 69, 74, 77, 79, 80, 81, 82, 87, 90, 91, 94, 97]
[0, 1, 8, 10, 16, 21, 27, 32, 36, 37, 45, 47, 50, 64, 66, 72, 75, 83, 85, 86, 93]
[1, 3, 4, 5, 7, 10, 14, 16, 17, 19, 22, 23, 26, 28, 30, 34, 35, 36, 38, 40, 44, 46, 48, 49, 54, 55, 57, 58, 60, 61, 63, 64, 65, 70, 71, 73, 74, 75, 77, 79, 82, 85, 86, 88, 90, 95]
[2, 3, 4, 5, 12, 13, 14, 20, 22, 24, 26, 28, 31, 36, 39, 43, 45, 46, 48, 49, 52, 53, 54, 56, 58, 72, 75, 78, 85, 87, 88, 94, 96]
[5, 6, 7, 9, 10, 11, 13, 16, 17, 18, 21, 23, 25, 30, 32, 33, 35, 37, 38, 41, 44, 49, 52, 53, 54, 57, 65, 66, 67, 68, 69, 70, 71, 76, 81, 83, 84]
[3, 4, 6, 12, 15, 18, 20, 24, 25, 27, 31, 32, 34, 37, 38, 40, 43, 59, 61, 62, 66, 67, 68, 72, 73, 76, 78, 79, 80, 81, 89, 92, 93]
[28, 76]
[6, 8, 14, 15, 18, 20, 21, 22, 23, 26, 33, 35, 41, 42, 51, 52, 53, 59, 60, 62, 67, 68, 69, 74, 77, 79, 80, 81, 82, 87, 90, 91, 94, 97]
[1, 3, 4, 5, 7, 10, 14, 16, 17, 19, 22, 23, 26, 28, 30, 34, 35, 36, 38, 40, 44, 46, 48, 49, 54, 55, 57, 58, 60, 61, 63, 64, 65, 70, 71, 73, 74, 75, 77, 79, 82, 85, 86, 88, 90, 95]
[1, 7, 9, 12, 17, 19, 27, 29, 30, 33, 40, 41, 42, 45, 47, 48, 50, 55, 61, 65, 69, 73, 77, 78, 87, 90, 93, 97]
[3, 4, 6, 12, 15, 18, 20, 24, 25, 27, 31, 32, 34, 37, 38, 40, 43, 59, 61, 62, 66, 67, 68, 72, 73, 76, 78, 79, 80, 81, 89, 92, 93]
[1, 7, 9, 12, 17, 19, 27, 29, 30, 33, 40, 41, 42, 45, 47, 48, 50, 55, 61, 65, 69, 73, 77, 78, 87, 90, 93, 97]
[2, 3, 4, 5, 12, 13, 14, 20, 22, 24, 26, 28, 31, 36, 39, 43, 45, 46, 48, 49, 52, 53, 54, 56, 58, 72, 75, 78, 85, 87, 88, 94, 96]
[1, 3, 4, 5, 7, 10, 14, 16, 17, 19, 22, 23, 26, 28, 30, 34, 35, 36, 38, 40, 44, 46, 48, 49, 54, 55, 57, 58, 60, 61, 63, 64, 65, 70, 71, 73, 74, 75, 77, 79, 82, 85, 86, 88, 90, 95]
[3, 4, 6, 12, 15, 18, 20, 24, 25, 27, 31, 32, 34, 37, 38, 40, 43, 59, 61, 62, 66, 67, 68, 72, 73, 76, 78, 79, 80, 81, 89, 92, 93]
[6, 8, 14, 15, 18, 20, 21, 22, 23, 26, 33, 35, 41, 42, 51, 52, 53, 59, 60, 62, 67, 68, 69, 74, 77, 79, 80, 81, 82, 87, 90, 91, 94, 97]
[3, 4, 6, 12, 15, 18, 20, 24, 25, 27, 31, 32, 34, 37, 38, 40, 43, 59, 61, 62, 66, 67, 68, 72, 73, 76, 78, 79, 80, 81, 89, 92, 93]
[6, 8, 14, 15, 18, 20, 21, 22, 23, 26, 33, 35, 41, 42, 51, 52, 53, 59, 60, 62, 67, 68, 69, 74, 77, 79, 80, 81, 82, 87, 90, 91, 94, 97]
[15, 19, 44, 80, 97]
[3, 4, 6, 12, 15, 18, 20, 24, 25, 27, 31, 32, 34, 37, 38, 40, 43, 59, 61, 62, 66, 67, 68, 72, 73, 76, 78, 79, 80, 81, 89, 92, 93]
[6, 8, 14, 15, 18, 20, 21, 22, 23, 26, 33, 35, 41, 42, 51, 52, 53, 59, 60, 62, 67, 68, 69, 74, 77, 79, 80, 81, 82, 87, 90, 91, 94, 97]
[5, 6, 7, 9, 10, 11, 13, 16, 17, 18, 21, 23, 25, 30, 32, 33, 35, 37, 38, 41, 44, 49, 52, 53, 54, 57, 65, 66, 67, 68, 69, 70, 71, 76, 81, 83, 84]
[1, 3, 4, 5, 7, 10, 14, 16, 17, 19, 22, 23, 26, 28, 30, 34, 35, 36, 38, 40, 44, 46, 48, 49, 54, 55, 57, 58, 60, 61, 63, 64, 65, 70, 71, 73, 74, 75, 77, 79, 82, 85, 86, 88, 90, 95]
[2, 8, 9, 24, 34, 39, 43, 51, 56, 60, 63, 64, 82, 83, 84, 86, 88, 89, 91, 92, 95, 96]
[6, 8, 14, 15, 18, 20, 21, 22, 23, 26, 33, 35, 41, 42, 51, 52, 53, 59, 60, 62, 67, 68, 69, 74, 77, 79, 80, 81, 82, 87, 90, 91, 94, 97]
[2, 8, 9, 24, 34, 39, 43, 51, 56, 60, 63, 64, 82, 83, 84, 86, 88, 89, 91, 92, 95, 96]
[5, 6, 7, 9, 10, 11, 13, 16, 17, 18, 21, 23, 25, 30, 32, 33, 35, 37, 38, 41, 44, 49, 52, 53, 54, 57, 65, 66, 67, 68, 69, 70, 71, 76, 81, 83, 84]
[0, 1, 8, 10, 16, 21, 27, 32, 36, 37, 45, 47, 50, 64, 66, 72, 75, 83, 85, 86, 93]
[2, 31, 50, 51, 62, 63, 74, 84, 89, 91]
[5, 6, 7, 9, 10, 11, 13, 16, 17, 18, 21, 23, 25, 30, 32, 33, 35, 37, 38, 41, 44, 49, 52, 53, 54, 57, 65, 66, 67, 68, 69, 70, 71, 76, 81, 83, 84]
[2, 8, 9, 24, 34, 39, 43, 51, 56, 60, 63, 64, 82, 83, 84, 86, 88, 89, 91, 92, 95, 96]
[2, 3, 4, 5, 12, 13, 14, 20, 22, 24, 26, 28, 31, 36, 39, 43, 45, 46, 48, 49, 52, 53, 54, 56, 58, 72, 75, 78, 85, 87, 88, 94, 96]
[1, 3, 4, 5, 7, 10, 14, 16, 17, 19, 22, 23, 26, 28, 30, 34, 35, 36, 38, 40, 44, 46, 48, 49, 54, 55, 57, 58, 60, 61, 63, 64, 65, 70, 71, 73, 74, 75, 77, 79, 82, 85, 86, 88, 90, 95]
[0, 1, 8, 10, 16, 21, 27, 32, 36, 37, 45, 47, 50, 64, 66, 72, 75, 83, 85, 86, 93]
[0, 1, 8, 10, 16, 21, 27, 32, 36, 37, 45, 47, 50, 64, 66, 72, 75, 83, 85, 86, 93]
[1, 3, 4, 5, 7, 10, 14, 16, 17, 19, 22, 23, 26, 28, 30, 34, 35, 36, 38, 40, 44, 46, 48, 49, 54, 55, 57, 58, 60, 61, 63, 64, 65, 70, 71, 73, 74, 75, 77, 79, 82, 85, 86, 88, 90, 95]
[2, 8, 9, 24, 34, 39, 43, 51, 56, 60, 63, 64, 82, 83, 84, 86, 88, 89, 91, 92, 95, 96]
[2, 3, 4, 5, 12, 13, 14, 20, 22, 24, 26, 28, 31, 36, 39, 43, 45, 46, 48, 49, 52, 53, 54, 56, 58, 72, 75, 78, 85, 87, 88, 94, 96]
[1, 7, 9, 12, 17, 19, 27, 29, 30, 33, 40, 41, 42, 45, 47, 48, 50, 55, 61, 65, 69, 73, 77, 78, 87, 90, 93, 97]
[6, 8, 14, 15, 18, 20, 21, 22, 23, 26, 33, 35, 41, 42, 51, 52, 53, 59, 60, 62, 67, 68, 69, 74, 77, 79, 80, 81, 82, 87, 90, 91, 94, 97]
[2, 3, 4, 5, 12, 13, 14, 20, 22, 24, 26, 28, 31, 36, 39, 43, 45, 46, 48, 49, 52, 53, 54, 56, 58, 72, 75, 78, 85, 87, 88, 94, 96]
[1, 3, 4, 5, 7, 10, 14, 16, 17, 19, 22, 23, 26, 28, 30, 34, 35, 36, 38, 40, 44, 46, 48, 49, 54, 55, 57, 58, 60, 61, 63, 64, 65, 70, 71, 73, 74, 75, 77, 79, 82, 85, 86, 88, 90, 95]
[2, 8, 9, 24, 34, 39, 43, 51, 56, 60, 63, 64, 82, 83, 84, 86, 88, 89, 91, 92, 95, 96]
[2, 31, 50, 51, 62, 63, 74, 84, 89, 91]
[3, 4, 6, 12, 15, 18, 20, 24, 25, 27, 31, 32, 34, 37, 38, 40, 43, 59, 61, 62, 66, 67, 68, 72, 73, 76, 78, 79, 80, 81, 89, 92, 93]
[2, 8, 9, 24, 34, 39, 43, 51, 56, 60, 63, 64, 82, 83, 84, 86, 88, 89, 91, 92, 95, 96]
[6, 8, 14, 15, 18, 20, 21, 22, 23, 26, 33, 35, 41, 42, 51, 52, 53, 59, 60, 62, 67, 68, 69, 74, 77, 79, 80, 81, 82, 87, 90, 91, 94, 97]
[1, 3, 4, 5, 7, 10, 14, 16, 17, 19, 22, 23, 26, 28, 30, 34, 35, 36, 38, 40, 44, 46, 48, 49, 54, 55, 57, 58, 60, 61, 63, 64, 65, 70, 71, 73, 74, 75, 77, 79, 82, 85, 86, 88, 90, 95]
[1, 7, 9, 12, 17, 19, 27, 29, 30, 33, 40, 41, 42, 45, 47, 48, 50, 55, 61, 65, 69, 73, 77, 78, 87, 90, 93, 97]
[2, 31, 50, 51, 62, 63, 74, 84, 89, 91]
[6, 8, 14, 15, 18, 20, 21, 22, 23, 26, 33, 35, 41, 42, 51, 52, 53, 59, 60, 62, 67, 68, 69, 74, 77, 79, 80, 81, 82, 87, 90, 91, 94, 97]
[2, 8, 9, 24, 34, 39, 43, 51, 56, 60, 63, 64, 82, 83, 84, 86, 88, 89, 91, 92, 95, 96]
[2, 8, 9, 24, 34, 39, 43, 51, 56, 60, 63, 64, 82, 83, 84, 86, 88, 89, 91, 92, 95, 96]
[29, 92]
[3, 4, 6, 12, 15, 18, 20, 24, 25, 27, 31, 32, 34, 37, 38, 40, 43, 59, 61, 62, 66, 67, 68, 72, 73, 76, 78, 79, 80, 81, 89, 92, 93]
[0, 1, 8, 10, 16, 21, 27, 32, 36, 37, 45, 47, 50, 64, 66, 72, 75, 83, 85, 86, 93]
[3, 4, 6, 12, 15, 18, 20, 24, 25, 27, 31, 32, 34, 37, 38, 40, 43, 59, 61, 62, 66, 67, 68, 72, 73, 76, 78, 79, 80, 81, 89, 92, 93]
[1, 7, 9, 12, 17, 19, 27, 29, 30, 33, 40, 41, 42, 45, 47, 48, 50, 55, 61, 65, 69, 73, 77, 78, 87, 90, 93, 97]
[6, 8, 14, 15, 18, 20, 21, 22, 23, 26, 33, 35, 41, 42, 51, 52, 53, 59, 60, 62, 67, 68, 69, 74, 77, 79, 80, 81, 82, 87, 90, 91, 94, 97]
[2, 3, 4, 5, 12, 13, 14, 20, 22, 24, 26, 28, 31, 36, 39, 43, 45, 46, 48, 49, 52, 53, 54, 56, 58, 72, 75, 78, 85, 87, 88, 94, 96]
[39, 58, 70, 94]
[1, 3, 4, 5, 7, 10, 14, 16, 17, 19, 22, 23, 26, 28, 30, 34, 35, 36, 38, 40, 44, 46, 48, 49, 54, 55, 57, 58, 60, 61, 63, 64, 65, 70, 71, 73, 74, 75, 77, 79, 82, 85, 86, 88, 90, 95]
[11, 47, 55, 95, 96]
[2, 8, 9, 24, 34, 39, 43, 51, 56, 60, 63, 64, 82, 83, 84, 86, 88, 89, 91, 92, 95, 96]
[11, 47, 55, 95, 96]
[2, 3, 4, 5, 12, 13, 14, 20, 22, 24, 26, 28, 31, 36, 39, 43, 45, 46, 48, 49, 52, 53, 54, 56, 58, 72, 75, 78, 85, 87, 88, 94, 96]
[2, 8, 9, 24, 34, 39, 43, 51, 56, 60, 63, 64, 82, 83, 84, 86, 88, 89, 91, 92, 95, 96]
[15, 19, 44, 80, 97]
[1, 7, 9, 12, 17, 19, 27, 29, 30, 33, 40, 41, 42, 45, 47, 48, 50, 55, 61, 65, 69, 73, 77, 78, 87, 90, 93, 97]
[6, 8, 14, 15, 18, 20, 21, 22, 23, 26, 33, 35, 41, 42, 51, 52, 53, 59, 60, 62, 67, 68, 69, 74, 77, 79, 80, 81, 82, 87, 90, 91, 94, 97]
In [334]:
t0
Out[334]:
ReviewID T_ID sentiment
0 0 T_0 N
34 11 T_0 N
126 42 T_0 N
140 46 T_0 N
In [343]:
sparse_df
Out[343]:
ReviewID T_ID sentiment big_array
0 0 T_0 N [N, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, N, 0, 0, 0, ...
1 0 T_1 N [N, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
2 0 T_2 N [N, N, 0, 0, 0, 0, 0, 0, N, 0, N, 0, 0, 0, 0, ...
3 1 T_3 N [0, N, 0, N, N, N, 0, N, 0, 0, N, 0, 0, 0, N, ...
4 1 T_2 N [N, N, 0, 0, 0, 0, 0, 0, N, 0, N, 0, 0, 0, 0, ...
... ... ... ... ...
289 96 T_5 N [0, 0, P, N, P, N, 0, 0, 0, 0, 0, 0, N, P, N, ...
290 96 T_7 P [0, 0, N, 0, 0, 0, 0, 0, N, N, 0, 0, 0, 0, 0, ...
291 97 T_13 P [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
292 97 T_4 P [0, N, 0, 0, 0, 0, 0, N, 0, N, 0, 0, N, 0, 0, ...
293 97 T_10 P [0, 0, 0, 0, 0, 0, P, 0, N, 0, 0, 0, 0, 0, P, ...

294 rows × 4 columns

In [344]:
t0 = sparse_df[sparse_df['T_ID'] == 'T_0']
In [346]:
t0
Out[346]:
ReviewID T_ID sentiment big_array
0 0 T_0 N [N, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, N, 0, 0, 0, ...
34 11 T_0 N [N, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, N, 0, 0, 0, ...
126 42 T_0 N [N, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, N, 0, 0, 0, ...
140 46 T_0 N [N, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, N, 0, 0, 0, ...
In [352]:
sparse_df['big_array'].unique()
---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
<ipython-input-352-49ad7af36cba> in <module>
----> 1 sparse_df['big_array'].unique()

/usr/local/lib/python3.7/site-packages/pandas/core/series.py in unique(self)
   1986         Categories (3, object): [a < b < c]
   1987         """
-> 1988         result = super().unique()
   1989         return result
   1990 

/usr/local/lib/python3.7/site-packages/pandas/core/base.py in unique(self)
   1403             from pandas.core.algorithms import unique1d
   1404 
-> 1405             result = unique1d(values)
   1406 
   1407         return result

/usr/local/lib/python3.7/site-packages/pandas/core/algorithms.py in unique(values)
    403 
    404     table = htable(len(values))
--> 405     uniques = table.unique(values)
    406     uniques = _reconstruct_data(uniques, dtype, original)
    407     return uniques

pandas/_libs/hashtable_class_helper.pxi in pandas._libs.hashtable.PyObjectHashTable.unique()

pandas/_libs/hashtable_class_helper.pxi in pandas._libs.hashtable.PyObjectHashTable._unique()

TypeError: unhashable type: 'list'
In [354]:
even_cleaner_df['T_ID'].unique()
Out[354]:
array(['T_0', 'T_1', 'T_2', 'T_3', 'T_4', 'T_5', 'T_6', 'T_7', 'T_8',
       'T_9', 'T_10', 'T_11', 'T_12', 'T_13', 'T_14', 'T_15', 'T_16',
       'T_17'], dtype=object)
In [ ]: