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Nonlinear regression

Consider the problem of nonlinear regression:

You want to learn a function f with error bars from data D = {X,y}

x

y

A Gaussian process defines a distribution over functions p(f) which can be used for
Bayesian regression:

p(f |D) =
p(f)p(D|f)

p(D)



Gaussian Processes

A Gaussian process defines a distribution over functions, p(f), where f is a function
mapping some input space X to <.

f : X → <.

Notice that f can be an infinite-dimensional quantity (e.g. if X = <)

Let f = (f(x1), . . . , f(xn)) be an n-dimensional vector of function values evaluated
at n points xi ∈ X . Note f is a random variable.

Definition: p(f) is a Gaussian process if for any finite subset {x1, . . . , xn} ⊂ X ,
the marginal distribution over that finite subset p(f) has a multivariate Gaussian
distribution.



Gaussian process covariance functions (kernels)

p(f) is a Gaussian process if for any finite subset {x1, . . . , xn} ⊂ X , the marginal
distribution over that finite subset p(f) has a multivariate Gaussian distribution.

Gaussian processes (GPs) are parameterized by a mean function, µ(x), and a
covariance function, or kernel, K(x, x′).

p(f(x), f(x′)) = N(µ,Σ)

where

µ =
[

µ(x)
µ(x′)

]
Σ =

[
K(x, x) K(x, x′)
K(x′, x) K(x′, x′)

]
and similarly for p(f(x1), . . . , f(xn)) where now µ is an n × 1 vector and Σ is an
n× n matrix.



Gaussian process covariance functions

Gaussian processes (GPs) are parameterized by a mean function, µ(x), and a
covariance function, K(x, x′).

An example covariance function:

K(xi, xj) = v0 exp
{
−
(
|xi − xj|

r

)α}
+ v1 + v2 δij

with parameters (v0, v1, v2, r, α)

These kernel parameters are interpretable and can be learned from data:

v0 signal variance
v1 variance of bias
v2 noise variance
r lengthscale
α roughness

Once the mean and covariance functions are defined, everything else about GPs
follows from the basic rules of probability applied to mutivariate Gaussians.



Samples from GPs with different K(x, x′)
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Using Gaussian processes for nonlinear regression

Imagine observing a data set D = {(xi, yi)n
i=1} = (X,y).

Model: yi = f(xi) + εi

f ∼ GP(·|0,K)

εi ∼ N(·|0, σ2)

Prior on f is a GP, likelihood is Gaussian, therefore posterior on f is also a GP.

We can use this to make predictions

p(y∗|x∗,D) =
∫

p(y∗|x∗, f,D) p(f |D) df

We can also compute the marginal likelihood (evidence) and use this to compare or
tune covariance functions

p(y|X) =
∫

p(y|f,X) p(f) df



Prediction using GPs with different K(x, x′)

A sample from the prior for each covariance function:
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Corresponding predictions, mean with two standard deviations:
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Gaussian process (GP) priors

GP: consistent Gaussian prior on any set of function values f = {fn}N
n=1, given

corresponding inputs X = {xn}N
n=1

one sample function

x

f

prior
p(f |X) = N (0,KN)

KN

Covariance: Knn′ = K(xn,xn′ ;θ), hyperparameters θ

Knn′ = v exp
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Gaussian process (GP) priors

GP: consistent Gaussian prior on any set of function values f = {fn}N
n=1, given

corresponding inputs X = {xn}N
n=1
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GP regression

Gaussian observation noise: yn = fn + εn, where εn ∼ N (0, σ2)

sample data

x

y marginal likelihood
p(y|X) = N (0,KN + σ2I)

predictive

x

y

predictive distribution
p(y∗|x∗,X,y) = N (µ∗, σ2

∗)

µ∗ = K∗N(KN + σ2I)−1y

σ2
∗ = K∗∗ −K∗N(KN + σ2I)−1KN∗ + σ2



GP regression

Gaussian observation noise: yn = fn + εn, where εn ∼ N (0, σ2)

sample data

x

y marginal likelihood
p(y|X) = N (0,KN + σ2I)

x∗

predictive

x

y

predictive distribution
p(y∗|x∗,X,y) = N (µ∗, σ2

∗)

µ∗ = K∗N(KN + σ2I)−1y

σ2
∗ = K∗∗ −K∗N(KN + σ2I)−1KN∗ + σ2



GP learning the kernel

Consider the covariance function K with hyperparameters θ = (v0, v1, r1, . . . , rd, α):

Kθ(xi,xj) = v0 exp

−
D∑

d=1

(
|x(d)

i − x
(d)
j |

rd

)α
+ v1

Given a data set D = (X,y), how do we learn θ?

The marginal likelihood is a function of θ

p(y|X,θ) = N (0,Kθ + σ2I)

where its log is:

ln p(y|X,θ) = −1
2

ln det(Kθ + σ2I)− 1
2
y>(Kθ + σ2I)−1y + const

which can be optimized as a function of θ and σ.

Alternatively, one can infer θ using Bayesian methods, which is more costly but
immune to overfitting.



From linear regression to GPs:

• Linear regression with inputs xi and outputs yi: yi = β0 + β1xi + εi

• Linear regression with M basis functions: yi =
M∑

m=1

βm φm(xi) + εi

• Bayesian linear regression with basis functions:

βm ∼ N(·|0, λm) (independent of β`, ∀` 6= m), εi ∼ N(·|0, σ2)

• Integrating out the coefficients, βj, we find:

E[yi] = 0, Cov(yi, yj) = Kij
def=

M∑
m=1

λm φm(xi) φm(xj) + δijσ
2

This is a Gaussian process with covariance function K(xi, xj) = Kij.

This GP has a finite number (M) of basis functions. Many useful GP kernels
correspond to infinitely many basis functions (i.e. infinite-dim feature spaces).

A multilayer perceptron (neural network) with infinitely many hidden units and
Gaussian priors on the weights → a GP (Neal, 1996)



Using Gaussian Processes for Classification

Binary classification problem: Given a data set D = {(xi, yi)}n
i=1, with binary class

labels yi ∈ {−1,+1}, infer class label probabilities at new points.
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There are many ways to relate function values fi = f(xi) to class probabilities:

p(yi|fi) =


1

1+exp(−yifi)
sigmoid (logistic)

Φ(yifi) cumulative normal (probit)
H(yifi) threshold

ε + (1− 2ε)H(yifi) robust threshold

Non-Gaussian likelihood, so we need to use approximate inference methods (Laplace, EP, MCMC).



Support Vector Machines

Consider soft-margin Support Vector Machines:

min
w

1
2
‖w‖2 + C

∑
i

(1− yifi)+

where ()+ is the hinge loss and fi = f(xi) = w · xi + w0. Let’s kernelize this:

xi → φ(xi) = k(·,xi), w → f(·)

By reproducing property: 〈k(·,xi), f(·)〉 = f(xi).

By representer theorem, solution: f(x) =
∑

i

αik(x,xi)

Defining f = (f1, . . . fN)T note that f = Kα, so α = K−1f

Therefore the regularizer 1
2‖w‖

2 → 1
2‖f‖

2
H = 1

2〈f(·), f(·)〉H = 1
2α

>Kα = 1
2f
>K−1f

So we can rewrite the kernelized SVM loss as:

min
f

1
2
f>K−1f + C

∑
i

(1− yifi)+



Support Vector Machines and Gaussian Processes

We can write the SVM loss as: min
f

1
2
f>K−1f + C

∑
i

(1− yifi)+

We can write the negative log of a GP likelihood as:
1
2
f>K−1f −

∑
i

ln p(yi|fi)+ c

Equivalent? No.

With Gaussian processes we:

• Handle uncertainty in unknown function f by averaging, not minimization.

• Compute p(y = +1|x) 6= p(y = +1|f̂ ,x).
• Can learn the kernel parameters automatically from data, no matter how

flexible we wish to make the kernel.

• Can learn the regularization parameter C without cross-validation.

• Can incorporate interpretable noise models and priors over functions, and can
sample from prior to get intuitions about the model assumptions.

• We can combine automatic feature selection with learning using ARD.



A picture
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Matlab Demo: Gaussian Process Classification

matlab/gpml-matlab/gpml-demo

demo ep 2d

demo gpr



Sparse Approximations: Speeding up GP learning

(Snelson and Ghahramani, 2006a, 2006b; Naish-Guzman and Holden 2008)

We can approximate GP through M < N inducing points f̄ to obtain this Sparse
Pseudo-input Gaussian process (SPGP) prior: p(f) =

∫
df̄
∏

n p(fn|f̄) p(f̄)
GP prior
N (0,KN) ≈

SPGP prior
p(f) = N (0,KNMK−1

M KMN + Λ)

≈ = +

• SPGP covariance inverted in O(M2N) � O(N3) ⇒ much faster

• SPGP = GP with non-stationary covariance parameterized by X̄

• Given data {X,y} with noise σ2, predictive mean and variance can be computed
in O(M) and O(M2) per test case respectively

Builds on a large lit on sparse GPs (see Quiñonero Candela and Rasmussen, 2006).



Some Comparisons

Table 1: Test errors and predictive accuracy (smaller is better) for the GP classifier, the support
vector machine, the informative vector machine, and the sparse pseudo-input GP classifier.

Data set GPC SVM IVM SPGPC

name train:test dim err nlp err #sv err nlp M err nlp M

synth 250:1000 2 0.097 0.227 0.098 98 0.096 0.235 150 0.087 0.234 4
crabs 80:120 5 0.039 0.096 0.168 67 0.066 0.134 60 0.043 0.105 10
banana 400:4900 2 0.105 0.237 0.106 151 0.105 0.242 200 0.107 0.261 20
breast-cancer 200:77 9 0.288 0.558 0.277 122 0.307 0.691 120 0.281 0.557 2
diabetes 468:300 8 0.231 0.475 0.226 271 0.230 0.486 400 0.230 0.485 2
flare-solar 666:400 9 0.346 0.570 0.331 556 0.340 0.628 550 0.338 0.569 3
german 700:300 20 0.230 0.482 0.247 461 0.290 0.658 450 0.236 0.491 4
heart 170:100 13 0.178 0.423 0.166 92 0.203 0.455 120 0.172 0.414 2
image 1300:1010 18 0.027 0.078 0.040 462 0.028 0.082 400 0.031 0.087 200
ringnorm 400:7000 20 0.016 0.071 0.016 157 0.016 0.101 100 0.014 0.089 2
splice 1000:2175 60 0.115 0.281 0.102 698 0.225 0.403 700 0.126 0.306 200
thyroid 140:75 5 0.043 0.093 0.056 61 0.041 0.120 40 0.037 0.128 6
titanic 150:2051 3 0.221 0.514 0.223 118 0.242 0.578 100 0.231 0.520 2
twonorm 400:7000 20 0.031 0.085 0.027 220 0.031 0.085 300 0.026 0.086 2
waveform 400:4600 21 0.100 0.229 0.107 148 0.100 0.232 250 0.099 0.228 10

linear models. In all cases, we employed the isotropic squared exponential kernel, avoiding here the
anisotropic version primarily to allow comparison with the SVM: lacking a probabilistic foundation,
its kernel parameters and regularization constant must be set by cross-validation. For the IVM,
hyperparameter optimization is interleaved with active set selection as described in [2], while for the
other GP models, we fit hyperparameters by gradient ascent on the estimated marginal likelihood,
limiting the process to twenty conjugate gradient iterations; we retained for testing that of three
to five randomly initialized models which the evidence most favoured. Results on the Rätsch data
for the semi-parametric radial basis function network are omitted for lack of space, but available at
the site given in footnote 5. In comparison with that model, SPGP tends to give sparser and more
accurate results (with the benefit of a sound Bayesian framework).

Identical tests were run for a range of active set sizes on the IVM and SPGP classifier, and we have
attempted to present the large body of results in its most comprehensible form: we list only the
sparsest competitive solution obtained. This means that using M smaller than shown tends to cause
a deterioriation in performance, but not that there is no advantage in increasing the value. After all,
as M  N we expect error rates to match those of the full model (at least for the IVM, which
uses a subset of the training data).6 However, we believe that in exploring the behaviour of a sparse
model, the essential question is: what is the greatest sparsity we can achieve without compromising
performance? (since if sparsity were not an issue, we would simply revert to the original GP).
Small values of M for the FITC approximation were found to give remarkably low error rates, and
incremented singly would often give an improved approximation. In contrast, the IVM predictions
were no better than random guesses for even moderate M—it usually failed if the active set was
smaller than a threshold around N / 3, where it was simply discarding too much information—and
greater step sizes were required for noticeable improvements in performance. With a few exceptions
then, for FITC we explored small M , while for the IVM we used larger values, more widely spread.

More challenging is the task of discriminating 4s from non-4s in the USPS digit database: the data
are 256-dimensional, and there are 7291 training and 2007 test points. With 200 pseudo-inputs (and
51,200 parameters for optimization), error rates for SPGPC are 1.94%, with an average negative log
probability of 0.051 nats. These figures improve when the allocation is raised to 400 pseudo-inputs,
to 1.79% and 0.048 nats. When provided with only 200 points, the IVM figures are 9.97% and 0.421
nats—this can be regarded as a failure to generalize, since it corresponds to labelling all test inputs
as “not 4”—but given an active set of 400 it reaches error rates of 1.54% and NLP of 0.085 nats.

6Note that the evidence is a poor metric for choosing M since it tends to increase monotonically as the
explicative power of the full GP is restored.

6

From (Naish-Guzman and Holden, 2008), using exactly same kernels.



Feature Selection

Example: classification

input x = (x1, . . . , xD) ∈ RD

output y ∈ {+1,−1}

2D possible subsets of relevant input features.

One approach, consider all models m ∈ {0, 1}D and find

m̂ = argmax
m

p(D|m)

Problems: intractable, overfitting, we should really average



Feature Selection

• Why are we doing feature selection?

• What does it cost us to keep all the features?

• Usual answer (overfitting) does not apply to fully Bayesian methods, since they
don’t involve any fitting.

• We should only do feature selection if there is a cost associated with measuring
features or predicting with many features.

Note: Radford Neal won the NIPS feature selection competition using Bayesian
methods that used 100% of the features.



Feature Selection using ARD in GPs

Problem: Often there are many possible inputs that might be relevant to predicting
a particular output. We need algorithms that automatically decide which inputs are
relevant.

Automatic Relevance Determination:

Consider this covariance function:

Knn′ = v exp

−1
2

D∑
d=1

(
x

(d)
n − x

(d)
n′

rd

)2


The parameter rd is the length scale of the function along input dimension d.

As rd →∞ the function f varies less and less as a function of x(d), that is, the dth
dimension becomes irrelevant.

Given data, by learning the lengthscales (r1, . . . , rD) it is possible to do automatic
feature selection.



Bayesian Discriminative Modeling

Terminology for classification with inputs x and classes y:

• Generative Model: models prior p(y) and class-conditional density p(x|y)
• Discriminative Model: directly models the conditional distribution p(y|x) or

the class boundary e.g. {x : p(y = +1|x) = 0.5}

Myth: Bayesian Methods = Generative Models

For example, it is possible to define Bayesian kernel classifiers (i.e. Gaussian
processes) analogous to support vector machines (SVMs).
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(figure adapted from Minka, 2001)



Conclusions
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• Gaussian processes define distributions on functions which can be used for nonlinear regression,

classification, ranking, preference learning, ordinal regression, etc.

• GPs are closely related to many other models. We can derive them from:

– Bayesian kernel machines

– Linear regression with basis functions

– Infinite multi-layer perceptron neural networks

– Spline models

• Compared to SVMs, GPs offer several advantages: learning the kernel and regularization

parameters, integrated feature selection, fully probabilistic predictions, interpretability.



Appendix



An example of ARD for classification

Data set: 6-dimensional data set with three relevant features and three irrelevant
features. For each data point ~xi, the relevant features depend on its class label:
x1

i , x
2
i , x

3
i ∼ N (yi, 1), while the irrelevant features do not: x4

i , x
5
i , x

6
i ∼ N (0, 1).
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4

x1

x4

Result: r4, r5, r6 → ∞ improving the likelihood and classification error rates,
compared to a single-lengthscale model.

Methods single lengthscale multiple lengthscales

log p(y|X,θ) -55.4480 -35.4119
Error rates 0.0600 0.0400

Example from (Kim and Ghahramani, 2004)

More on ARD and feature selection with thousands of inputs: (Qi et al, 2004).



Feature Selection: Automatic Relevance Determination

Bayesian neural network

Data: D = {(x(n), y(n))}N
n=1 = (X,y)

Parameters (weights): θ = {{wij}, {vk}}

prior p(θ|α)
posterior p(θ|α,D) ∝ p(y|X, θ)p(θ|α)
evidence p(y|X, α) =

∫
p(y|X, θ)p(θ|α) dθ

prediction p(y′|D,x′,α) =
∫

p(y′|x′,θ)p(θ|D,α) dθ

Automatic Relevance Determination (ARD):

Let the weights from feature xd have variance α−1
d : p(wdj|αd) = N (0, α−1

d )

Let’s think about this:
αd →∞ variance → 0 weights → 0 (irrelevant)
αd �∞ finite variance weight can vary (relevant)

ARD: optimize α̂ = argmax
α

p(y|X, α).

During optimization some αd will go to ∞, so the model will discover irrelevant
inputs.



Sparse GP overview

This work contains 2 key ideas:

1. A new sparse Gaussian process approximation based on a small set of M ‘pseudo-
inputs’ (M � N). This reduces computational complexity to O(M2N)

2. A gradient based learning procedure for finding the pseudo-inputs and
hyperparameters of the Gaussian process, in one joint optimization
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