A Tutorial on Gaussian Processes (or why I don't use SVMs)

Zoubin Ghahramani

Department of Engineering University of Cambridge, UK

Machine Learning Department Carnegie Mellon University, USA

zoubin@eng.cam.ac.uk
http://learning.eng.cam.ac.uk/zoubin/

MLSS 2011

Nonlinear regression

Consider the problem of nonlinear regression:

You want to learn a function f with error bars from data $\mathcal{D} = \{\mathbf{X}, \mathbf{y}\}$

A Gaussian process defines a distribution over functions p(f) which can be used for Bayesian regression:

$$p(f|\mathcal{D}) = \frac{p(f)p(\mathcal{D}|f)}{p(\mathcal{D})}$$

Gaussian Processes

A Gaussian process defines a distribution over functions, p(f), where f is a function mapping some input space \mathcal{X} to \Re .

$$f:\mathcal{X}\to\Re.$$

Notice that f can be an infinite-dimensional quantity (e.g. if $\mathcal{X} = \Re$)

Let $\mathbf{f} = (f(x_1), \dots, f(x_n))$ be an *n*-dimensional vector of function values evaluated at *n* points $x_i \in \mathcal{X}$. Note \mathbf{f} is a random variable.

Definition: p(f) is a Gaussian process if for any finite subset $\{x_1, \ldots, x_n\} \subset \mathcal{X}$, the marginal distribution over that finite subset $p(\mathbf{f})$ has a multivariate Gaussian distribution.

Gaussian process covariance functions (kernels)

p(f) is a Gaussian process if for any finite subset $\{x_1, \ldots, x_n\} \subset \mathcal{X}$, the marginal distribution over that finite subset $p(\mathbf{f})$ has a multivariate Gaussian distribution.

Gaussian processes (GPs) are parameterized by a mean function, $\mu(x)$, and a covariance function, or kernel, K(x, x').

$$p(f(x), f(x')) = \mathsf{N}(\mu, \Sigma)$$

where

$$\mu = \begin{bmatrix} \mu(x) \\ \mu(x') \end{bmatrix} \quad \Sigma = \begin{bmatrix} K(x,x) & K(x,x') \\ K(x',x) & K(x',x') \end{bmatrix}$$

and similarly for $p(f(x_1), \ldots, f(x_n))$ where now μ is an $n \times 1$ vector and Σ is an $n \times n$ matrix.

Gaussian process covariance functions

Gaussian processes (GPs) are parameterized by a mean function, $\mu(x)$, and a covariance function, K(x, x').

An example covariance function:

$$K(x_i, x_j) = v_0 \exp\left\{-\left(\frac{|x_i - x_j|}{r}\right)^{\alpha}\right\} + v_1 + v_2 \,\delta_{ij}$$

with parameters $(v_0, v_1, v_2, r, \alpha)$

These kernel parameters are interpretable and can be learned from data:

v_0	signal variance
v_1	variance of bias
v_2	noise variance
r	lengthscale
α	roughness

Once the mean and covariance functions are defined, everything else about GPs follows from the basic rules of probability applied to mutivariate Gaussians.

Using Gaussian processes for nonlinear regression

Imagine observing a data set $\mathcal{D} = \{(\mathbf{x}_i, y_i)_{i=1}^n\} = (\mathbf{X}, \mathbf{y}).$

Model: $y_i = f(\mathbf{x}_i) + \epsilon_i$ $f \sim \mathsf{GP}(\cdot|0, K)$ $\epsilon_i \sim \mathsf{N}(\cdot|0, \sigma^2)$

Prior on f is a GP, likelihood is Gaussian, therefore posterior on f is also a GP.

We can use this to make predictions

$$p(y_*|\mathbf{x}_*, \mathcal{D}) = \int p(y_*|\mathbf{x}_*, f, \mathcal{D}) \, p(f|\mathcal{D}) \, df$$

We can also compute the marginal likelihood (evidence) and use this to compare or tune covariance functions

$$p(\mathbf{y}|\mathbf{X}) = \int p(\mathbf{y}|f, \mathbf{X}) \, p(f) \, df$$

Prediction using GPs with different K(x, x')

A sample from the prior for each covariance function:

Corresponding predictions, mean with two standard deviations:

Gaussian process (GP) priors

GP: consistent Gaussian prior on any set of function values $\mathbf{f} = \{f_n\}_{n=1}^N$, given corresponding inputs $\mathbf{X} = \{\mathbf{x}_n\}_{n=1}^N$

prior

 $p(\mathbf{f}|\mathbf{X}) = \mathcal{N}(\mathbf{0}, \mathbf{K}_N)$

 \mathbf{K}_N

Covariance: $\mathbf{K}_{nn'} = K(\mathbf{x}_n, \mathbf{x}_{n'}; \boldsymbol{\theta})$, hyperparameters $\boldsymbol{\theta}$

$$\mathbf{K}_{nn'} = \mathbf{v} \exp\left[-\frac{1}{2} \sum_{d=1}^{D} \left(\frac{x_n^{(d)} - x_{n'}^{(d)}}{\mathbf{r}_d}\right)^2\right]$$

Gaussian process (GP) priors

GP: consistent Gaussian prior on any set of function values $\mathbf{f} = \{f_n\}_{n=1}^N$, given corresponding inputs $\mathbf{X} = \{\mathbf{x}_n\}_{n=1}^N$

Covariance: $\mathbf{K}_{nn'} = K(\mathbf{x}_n, \mathbf{x}_{n'}; \boldsymbol{\theta})$, hyperparameters $\boldsymbol{\theta}$

$$\mathbf{K}_{nn'} = \mathbf{v} \exp\left[-\frac{1}{2} \sum_{d=1}^{D} \left(\frac{x_n^{(d)} - x_{n'}^{(d)}}{\mathbf{r}_d}\right)^2\right]$$

GP regression

Gaussian observation noise: $y_n = f_n + \epsilon_n$, where $\epsilon_n \sim \mathcal{N}(0, \sigma^2)$

marginal likelihood $p(\mathbf{y}|\mathbf{X}) = \mathcal{N}(\mathbf{0}, \mathbf{K}_N + \sigma^2 \mathbf{I})$

predictive distribution

$$p(y_*|\mathbf{x}_*, \mathbf{X}, \mathbf{y}) = \mathcal{N}(\mu_*, \sigma_*^2)$$

$$\mu_* = \mathbf{K}_{*N}(\mathbf{K}_N + \sigma^2 \mathbf{I})^{-1} \mathbf{y}$$

$$\sigma_*^2 = K_{**} - \mathbf{K}_{*N}(\mathbf{K}_N + \sigma^2 \mathbf{I})^{-1} \mathbf{K}_{N*} + \sigma^2$$

GP regression

Gaussian observation noise: $y_n = f_n + \epsilon_n$, where $\epsilon_n \sim \mathcal{N}(0, \sigma^2)$

marginal likelihood $p(\mathbf{y}|\mathbf{X}) = \mathcal{N}(\mathbf{0}, \mathbf{K}_N + \sigma^2 \mathbf{I})$

predictive distribution

$$p(y_*|\mathbf{x}_*, \mathbf{X}, \mathbf{y}) = \mathcal{N}(\mu_*, \sigma_*^2)$$

$$\mu_* = \mathbf{K}_{*N}(\mathbf{K}_N + \sigma^2 \mathbf{I})^{-1} \mathbf{y}$$

$$\sigma_*^2 = K_{**} - \mathbf{K}_{*N}(\mathbf{K}_N + \sigma^2 \mathbf{I})^{-1} \mathbf{K}_{N*} + \sigma^2$$

GP learning the kernel

Consider the covariance function K with hyperparameters $\theta = (v_0, v_1, r_1, \dots, r_d, \alpha)$:

$$K_{\boldsymbol{\theta}}(\mathbf{x}_i, \mathbf{x}_j) = v_0 \exp\left\{-\sum_{d=1}^{D} \left(\frac{|x_i^{(d)} - x_j^{(d)}|}{r_d}\right)^{\alpha}\right\} + v_1$$

Given a data set $\mathcal{D} = (\mathbf{X}, \mathbf{y})$, how do we learn $\boldsymbol{\theta}$?

The marginal likelihood is a function of θ

$$p(\mathbf{y}|\mathbf{X}, \boldsymbol{\theta}) = \mathcal{N}(\mathbf{0}, \mathbf{K}_{\boldsymbol{\theta}} + \sigma^2 \mathbf{I})$$

where its log is:

$$\ln p(\mathbf{y}|\mathbf{X}, \boldsymbol{\theta}) = -\frac{1}{2} \ln \det(\mathbf{K}_{\boldsymbol{\theta}} + \sigma^2 \mathbf{I}) - \frac{1}{2} \mathbf{y}^{\top} (\mathbf{K}_{\boldsymbol{\theta}} + \sigma^2 \mathbf{I})^{-1} \mathbf{y} + \text{const}$$

which can be optimized as a function of θ and σ .

Alternatively, one can infer θ using Bayesian methods, which is more costly but immune to overfitting.

From linear regression to GPs:

- Linear regression with inputs x_i and outputs y_i :
- Linear regression with M basis functions:

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$
$$y_i = \sum_{m=1}^M \beta_m \phi_m(x_i) + \epsilon_i$$

• Bayesian linear regression with basis functions:

 $\beta_m \sim \mathsf{N}(\cdot|0,\lambda_m)$ (independent of β_ℓ , $\forall \ell \neq m$), $\epsilon_i \sim \mathsf{N}(\cdot|0,\sigma^2)$

• Integrating out the coefficients, β_j , we find:

$$E[y_i] = 0, \qquad Cov(y_i, y_j) = K_{ij} \stackrel{\text{def}}{=} \sum_{m=1}^M \lambda_m \phi_m(x_i) \phi_m(x_j) + \delta_{ij} \sigma^2$$

This is a Gaussian process with covariance function $K(x_i, x_j) = K_{ij}$.

This GP has a finite number (M) of basis functions. Many useful GP kernels correspond to infinitely many basis functions (i.e. infinite-dim feature spaces).

A multilayer perceptron (neural network) with infinitely many hidden units and Gaussian priors on the weights \rightarrow a GP (Neal, 1996)

Using Gaussian Processes for Classification

Binary classification problem: Given a data set $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$, with binary class labels $y_i \in \{-1, +1\}$, infer class label probabilities at new points.

There are many ways to relate function values $f_i = f(\mathbf{x}_i)$ to class probabilities:

$$p(y_i|f_i) = \begin{cases} \frac{1}{1 + \exp(-y_i f_i)} & \text{sigmoid (logistic)} \\ \Phi(y_i f_i) & \text{cumulative normal (probit)} \\ H(y_i f_i) & \text{threshold} \\ \epsilon + (1 - 2\epsilon)H(y_i f_i) & \text{robust threshold} \end{cases}$$

Non-Gaussian likelihood, so we need to use approximate inference methods (Laplace, EP, MCMC).

Support Vector Machines

Consider soft-margin Support Vector Machines:

$$\min_{\mathbf{w}} \ \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_i (1 - y_i f_i)_+$$

where $()_+$ is the hinge loss and $f_i = f(\mathbf{x}_i) = \mathbf{w} \cdot \mathbf{x}_i + w_0$. Let's kernelize this: $\mathbf{x}_i \to \boldsymbol{\phi}(\mathbf{x}_i) = k(\cdot, \mathbf{x}_i), \qquad \mathbf{w} \to f(\cdot)$

By reproducing property: By representer theorem, solution: Defining $\mathbf{f} = (f_1, \dots f_N)^T$ note that $\mathbf{f} = \mathbf{K} \boldsymbol{\alpha}$, so $\boldsymbol{\alpha} = \mathbf{K}^{-1} \mathbf{f}$

Therefore the regularizer $\frac{1}{2} \|\mathbf{w}\|^2 \to \frac{1}{2} \|f\|_{\mathcal{H}}^2 = \frac{1}{2} \langle f(\cdot), f(\cdot) \rangle_{\mathcal{H}} = \frac{1}{2} \boldsymbol{\alpha}^\top \mathbf{K} \boldsymbol{\alpha} = \frac{1}{2} \mathbf{f}^\top \mathbf{K}^{-1} \mathbf{f}$

So we can rewrite the kernelized SVM loss as:

$$\min_{\mathbf{f}} \ \frac{1}{2} \mathbf{f}^{\top} \mathbf{K}^{-1} \mathbf{f} + C \sum_{i} (1 - y_i f_i)_+$$

Support Vector Machines and Gaussian Processes

We can write the SVM loss as: $\min_{\mathbf{f}} \quad \frac{1}{2} \mathbf{f}^{\top} \mathbf{K}^{-1} \mathbf{f} + C \sum_{i} (1 - y_{i} f_{i})_{+}$ We can write the negative log of a GP likelihood as: $\frac{1}{2} \mathbf{f}^{\top} \mathbf{K}^{-1} \mathbf{f} - \sum_{i} \ln p(y_{i} | f_{i}) + c$

Equivalent? No.

With Gaussian processes we:

- Handle **uncertainty** in unknown function f by averaging, not minimization.
- Compute $p(y = +1|\mathbf{x}) \neq p(y = +1|\hat{\mathbf{f}}, \mathbf{x}).$
- Can learn the kernel parameters automatically from data, no matter how flexible we wish to make the kernel.
- Can learn the regularization parameter C without cross-validation.
- Can incorporate **interpretable** noise models and priors over functions, and can sample from prior to get intuitions about the model assumptions.
- We can combine **automatic feature selection** with learning using ARD.

A picture

Matlab Demo: Gaussian Process Classification

matlab/gpml-matlab/gpml-demo

demo_ep_2d

demo_gpr

Sparse Approximations: Speeding up GP learning

(Snelson and Ghahramani, 2006a, 2006b; Naish-Guzman and Holden 2008)

We can approximate GP through M < N inducing points $\overline{\mathbf{f}}$ to obtain this Sparse Pseudo-input Gaussian process (SPGP) prior: $p(\mathbf{f}) = \int d\overline{\mathbf{f}} \prod_n p(f_n | \overline{\mathbf{f}}) p(\overline{\mathbf{f}})$

- SPGP covariance inverted in $\mathcal{O}(M^2N) \ll \mathcal{O}(N^3) \Rightarrow \text{much faster}$
- SPGP = GP with non-stationary covariance parameterized by $\bar{\mathbf{X}}$
- Given data $\{\mathbf{X}, \mathbf{y}\}$ with noise σ^2 , predictive mean and variance can be computed in $\mathcal{O}(M)$ and $\mathcal{O}(M^2)$ per test case respectively

Builds on a large lit on sparse GPs (see Quiñonero Candela and Rasmussen, 2006).

Some Comparisons

Table 1: Test errors and predictive accuracy (smaller is better) for the GP classifier, the support vector machine, the informative vector machine, and the sparse pseudo-input GP classifier.

Data set			GPC		SVM		IVM			SPGPC		
name	train:test d	lim	err	nlp	err	#sv	err	nlp	Μ	err	nlp	Μ
synth	250:1000	2	0.097	0.227	0.098	98	0.096	0.235	150	0.087	0.234	4
crabs	80:120	5	0.039	0.096	0.168	67	0.066	0.134	60	0.043	0.105	10
banana	400:4900	2	0.105	0.237	0.106	151	0.105	0.242	200	0.107	0.261	20
breast-cance	r 200:77	9	0.288	0.558	0.277	122	0.307	0.691	120	0.281	0.557	2
diabetes	468:300	8	0.231	0.475	0.226	271	0.230	0.486	400	0.230	0.485	2
flare-solar	666:400	9	0.346	0.570	0.331	556	0.340	0.628	550	0.338	0.569	3
german	700:300	20	0.230	0.482	0.247	461	0.290	0.658	450	0.236	0.491	4
heart	170:100	13	0.178	0.423	0.166	92	0.203	0.455	120	0.172	0.414	2
image	1300:1010	18	0.027	0.078	0.040	462	0.028	0.082	400	0.031	0.087	200
ringnorm	400:7000	20	0.016	0.071	0.016	157	0.016	0.101	100	0.014	0.089	2
splice	1000:2175	60	0.115	0.281	0.102	698	0.225	0.403	700	0.126	0.306	200
thyroid	140:75	5	0.043	0.093	0.056	61	0.041	0.120	40	0.037	0.128	6
titanic	150:2051	3	0.221	0.514	0.223	118	0.242	0.578	100	0.231	0.520	2
twonorm	400:7000	20	0.031	0.085	0.027	220	0.031	0.085	300	0.026	0.086	2
waveform	400:4600	21	0.100	0.229	0.107	148	0.100	0.232	250	0.099	0.228	10

From (Naish-Guzman and Holden, 2008), using exactly same kernels.

Feature Selection

Example: classification

input
$$\mathbf{x} = (x_1, \dots, x_D) \in \mathbb{R}^D$$

output $y \in \{+1, -1\}$

 2^D possible subsets of relevant input features.

One approach, consider all models $m \in \{0,1\}^D$ and find

$$\hat{m} = \operatorname*{argmax}_{m} p(\mathcal{D}|m)$$

Problems: intractable, overfitting, we should really average

Feature Selection

- Why are we doing feature selection?
- What does it cost us to keep all the features?
- Usual answer (overfitting) does not apply to fully Bayesian methods, since they don't involve any fitting.
- We should only do feature selection if there is a cost associated with measuring features or predicting with many features.

Note: Radford Neal won the NIPS feature selection competition using Bayesian methods that used 100% of the features.

Feature Selection using ARD in GPs

Problem: Often there are *many* possible inputs that might be relevant to predicting a particular output. We need algorithms that automatically decide which inputs are relevant.

Automatic Relevance Determination:

Consider this covariance function:

$$\mathbf{K}_{nn'} = v \exp\left[-\frac{1}{2} \sum_{d=1}^{D} \left(\frac{x_n^{(d)} - x_{n'}^{(d)}}{r_d}\right)^2\right]$$

The parameter r_d is the length scale of the function along input dimension d.

As $r_d \to \infty$ the function f varies less and less as a function of $x^{(d)}$, that is, the dth dimension becomes *irrelevant*.

Given data, by learning the lengthscales (r_1, \ldots, r_D) it is possible to do automatic feature selection.

Bayesian Discriminative Modeling

Terminology for classification with inputs x and classes y:

- Generative Model: models prior p(y) and class-conditional density $p(\mathbf{x}|y)$
- **Discriminative Model:** directly models the conditional distribution $p(y|\mathbf{x})$ or the class boundary e.g. $\{\mathbf{x} : p(y = +1|\mathbf{x}) = 0.5\}$

Myth: Bayesian Methods = Generative Models

For example, it is possible to define Bayesian kernel classifiers (i.e. Gaussian processes) analogous to support vector machines (SVMs).

(figure adapted from Minka, 2001)

Conclusions

- Gaussian processes define distributions on functions which can be used for nonlinear regression, classification, ranking, preference learning, ordinal regression, etc.
- GPs are closely related to many other models. We can derive them from:
 - Bayesian kernel machines
 - Linear regression with basis functions
 - Infinite multi-layer perceptron neural networks
 - Spline models
- Compared to SVMs, GPs offer several advantages: learning the kernel and regularization parameters, integrated feature selection, fully probabilistic predictions, interpretability.

Appendix

An example of ARD for classification

Data set: 6-dimensional data set with three *relevant* features and three *irrelevant* features. For each data point $\vec{x_i}$, the relevant features depend on its class label: $x_i^1, x_i^2, x_i^3 \sim \mathcal{N}(y_i, 1)$, while the irrelevant features do not: $x_i^4, x_i^5, x_i^6 \sim \mathcal{N}(0, 1)$.

Result: $r_4, r_5, r_6 \rightarrow \infty$ improving the likelihood and classification error rates, compared to a single-lengthscale model.

Methods	single lengthscale	multiple lengthscales
$\boxed{\log p(\mathbf{y} \mathbf{X}, \boldsymbol{\theta})}$	-55.4480	-35.4119
Error rates	0.0600	0.0400

Example from (Kim and Ghahramani, 2004)

More on ARD and feature selection with thousands of inputs: (Qi et al, 2004).

Feature Selection: Automatic Relevance Determination

Bayesian neural network

Data:
$$\mathcal{D} = \{(\mathbf{x}^{(n)}, y^{(n)})\}_{n=1}^{N} = (X, \mathbf{y})$$

Parameters (weights): $\boldsymbol{\theta} = \{\{w_{ij}\}, \{v_k\}\}$

 $\begin{array}{ll} \mbox{prior} & p(\boldsymbol{\theta}|\boldsymbol{\alpha}) \\ \mbox{posterior} & p(\boldsymbol{\theta}|\boldsymbol{\alpha},\mathcal{D}) \propto p(\mathbf{y}|X,\boldsymbol{\theta})p(\boldsymbol{\theta}|\boldsymbol{\alpha}) \\ \mbox{evidence} & p(\mathbf{y}|X,\boldsymbol{\alpha}) = \int p(\mathbf{y}|X,\boldsymbol{\theta})p(\boldsymbol{\theta}|\boldsymbol{\alpha}) \, d\boldsymbol{\theta} \\ \mbox{prediction} & p(y'|\mathcal{D},\mathbf{x}',\boldsymbol{\alpha}) = \int p(y'|\mathbf{x}',\boldsymbol{\theta})p(\boldsymbol{\theta}|\mathcal{D},\boldsymbol{\alpha}) \, d\boldsymbol{\theta} \end{array}$

Automatic Relevance Determination (ARD):

Let the weights from feature x_d have variance α_d^{-1} : $p(w_{dj}|\alpha_d) = \mathcal{N}(0, \alpha_d^{-1})$

 $\begin{array}{ll} \alpha_d \to \infty & \text{variance} \to 0 & \text{weights} \to 0 & (\text{irrelevant}) \\ \text{Let's think about this:} & \alpha_d \ll \infty & \text{finite variance} & \text{weight can vary} & (\text{relevant}) \end{array}$

ARD: optimize $\hat{\boldsymbol{\alpha}} = \operatorname{argmax} p(\mathbf{y}|X, \boldsymbol{\alpha})$.

During optimization some α_d will go to ∞ , so the model will discover irrelevant inputs.

Sparse GP overview

This work contains 2 key ideas:

- 1. A new sparse Gaussian process approximation based on a small set of M 'pseudo-inputs' ($M \ll N$). This reduces computational complexity to $O(M^2N)$
- 2. A gradient based learning procedure for finding the pseudo-inputs and hyperparameters of the Gaussian process, in one joint optimization

References

- Qi, Y., Minka, T.P., Picard, R.W., and Ghahramani, Z. (2004) Predictive Automatic Relevance Determination by Expectation Propagation. In Twenty-first International Conference on Machine Learning (ICML-04). Banff, Alberta, Canada.
- Quiñonero-Candela, J. and Rasmussen, C.E. (2005) A unifying view of sparse approximate Gaussian process regression. *Journal of Machine Learning Research* **6**:1959.
- Naish-Guzman, A. and Holden, S. (2008) The generalized FITC approximation. Advances in Neural Information Processing Systems 20:1057–1064.
- Neal, R. M. (1996) Bayesian learning for neural networks. Springer Verlag.
- Neal, R. M. (1998). Regression and classification using Gaussian process priors (with discussion). In Bernardo, J. M. et al., editors, **Bayesian statistics 6**, pages 475-501. Oxford University Press.
- O'Hagan, A. (1978). Curve Fitting and Optimal Design for Prediction (with discussion). Journal of the Royal Statistical Society B, 40(1):1-42.
- Rasmussen, C.E. and Williams, C.K.I. (2006) Gaussian Processes for Machine Learning. MIT Press.
- Snelson, E. and Ghahramani, Z. (2006a) Sparse Gaussian Processes using Pseudo-Inputs. In Advances in Neural Information Processing Systems 18 (NIPS-2005).
- Snelson, E. and Ghahramani, Z. (2006b) Variable noise and dimensionality reduction for sparse Gaussian processes. In **Uncertainty in Artifical Intelligence 22** (UAI).
- More information and code at: http://www.gaussianprocess.org/