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WHAT TO DO WITH DIRTY DATA 
 

 

Introduction 

What is data? A better question would be “what isn’t data?” Data is everything. Quite 

literally anything can be data. However, in order for it to be data we can use in a paper like 

this one, we have to take what is often noisy, non-numeric information and carefully clean 

it (often transforming things like words or photos into tokens and pixels) into something 

that ends up looking very different from the “data” we started with.  

We usually think of “data” as a nice clean spreadsheet. This, however, is a lie. A fantasy. 

Something you must shoo from your mind immediately or else you will enter into a void of 

 

 



 
 

pain and existentialism eventually asking yourself “what even is a number and why do I 

care?” But, before we leave this dream world entirely, let’s consult the Dream Data. This 

dream data is clearly labeled, filled with mostly numeric, normalized data. There are no 

missing fields, no strange characters, no instances of nesting and definitely no emojis. This 

dream data is definitely not missing large swaths of information. It’s not an entire endless 

matrix of 0s with the occasional 1s. And it is most definitely not a hexadecimal 

representation of a photo of handwriting from a serial killer. However, to reiterate, all of 

that is data. So, how can we, as scientists, turn all of this flotsam and jetsam into something 

our computers can begin to “understand?”  

Analysis & Models  

ABOUT THE DATA 

MoviesRAW.csv is a “dirty” data file. If the “ideal data file” is something like a two column 

spreadsheet, this is a non-ideal data file. It has many columns for each review and a 

number of non-alpha characters cluttering each review string. Finally, the label for each 

review is tacked on to the end, wherever that end may be.  

 

FIGURE 1: The original csv file 

CLEANING THE DATA 

There are many different ways up this mountain but for this exercise, we will demonstrate 

two different approaches. The first way, Ami’s way, takes the data and keeps it in text form 

while cleaning, ultimately exporting a new, cleaner text file for a fresh import. The second 

way, Kendra’s way, takes the data and immediately turns it into a pandas dataframe. There 

are pros and cons to each way. 

 
2 



 
 

AMI’S WAY 

Overview: 

1. Read in the dirty file 

2. Prep new clean files 

3. Clean the data 

a. For each row in the data, clean the row 

b. For each word in the row, clean the word 

4. Export clean data to new clean files 

5. Re-import the cleaned data 

6. Turn cleaned data into a pandas df 

Code to clean each row 

def display_rows(file_data): 
    for row in file_data: 
        row = row.lstrip() 

        row = row.rstrip() 

        row = row.strip() 

        raw_row = "\n\nROW:" + row + "\n" 
        outfile.write(raw_row) 

        row_list = row.split(" ") 
        new_list = [] 

        for word in row_list: 
            to_put_in_outfile = "The next word BEFORE is: "+ word +"\n" 
            outfile.write(to_put_in_outfile) 

            word = clean_word(word) 

            if word: 
                new_list.append(word) 

        label = ''.join(char for char in new_list[-1] if char.isalpha()) 
        new_list.pop() 

        just_text = ' '.join(new_list) 
        to_write = label + ',' + just_text + '\n' 
        cleanfile.write(to_write) 

Code to clean each word 

def clean_word(word): 
    word=word.lower() 

    word=word.lstrip() 

    word=word.lstrip("\\n") 
    word=word.strip("\n") 
    word=word.replace(",","") 
    word=word.replace(" ","") 
    word=word.replace("_","") 
    word=re.sub('\+', ' ',word) 
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    word=re.sub('.*\+\n', '',word) 
    word=re.sub('zz+', ' ',word) 
    word=word.replace("\t","") 
    word=word.replace(".","") 
    word=word.strip() 

    word = word.replace("\\'","") 
    if word not in ["", "\\", '"', "'", "*", ":", ";"]: 
        if len(word) >= 3: 
            if not re.search(r'\d', word): ##remove digits 
                return word 

 

 

 

FIGURE 2: An example of the outfile generated by Ami’s way 

KENDRA’S WAY 

Overview: 

1. Read in the dirty file 

2. Turn it into a pandas data frame 

3. Merge all the rows to get the review text 

4. Remove the last characters to get the “labels” 

5. Clean the review text 

Code to merge all the rows together 

import pandas as pd 
dirtyFile = pd.read_csv('moviereviewRAW.csv') 
df = pd.DataFrame() 
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df['all'] = dirtyFile[dirtyFile.columns[0:]].apply( 
    lambda x: ','.join(x.dropna().astype(str)), 
    axis=1) 

Code to get the label 

df['label'] = df.apply(lambda x: x['all'][-3], axis=1) 

In the same way there are many ways up the “how to process files” mountain, there are 

many ways to clean text. As we discovered in HW1, there are some things we want to keep, 

some things we want to discard. We rarely want to keep strange characters and 

unnecessary white spaces.  

Code to clean excess characters 

def clean_rogue_characters(string): 
    exclude = ['\\',"\'"] 
    string = '.'.join(string.split('\\n')) 
    string = ''.join(ch for ch in string if ch not in exclude) 
    return string 
 

df['all'] = df['all'].apply( lambda x: clean_rogue_characters(x) ) 

 

Results 

To get ‘results’ for this quick-and-dirty assignment, the researchers compared the ‘dirty 

data’ to past data sets in their ‘sentiment analysis’ pipeline to answer the question -- does 

this newly cleaned data behave very similarly, slightly similarly or not at all similarly to a 

cleaner dataset from the wild?  

Text Blob 

 

  Kendra’s Data  Ami’s Data  Cornell Data  Dirty Data  Joker Data 

CORRECT NEG  5  1  229  227  64 

CORRECT POS  0  4  971  972  114 
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VADER 

  Kendra’s Data  Ami’s Data  Cornell Data  Dirty Data  Joker Data 

CORRECT NEG  2  3  445  454  64 

CORRECT POS  5  3  828  824  114 

 

NLTK 

  Kendra’s Data  Ami’s Data  Cornell Data  Dirty Data  Joker Data 

CORRECT NEG  --  --  89%  86%  81% 

CORRECT POS  --  --  74%  70%  35% 

ACCURACY  --  --  81%  77%  58% 

 

Looking at the “Dirty Data” compared to the Cornell data, it’s clear to see that once cleaned, 

the dirty data performed almost eerily similarly to the clean data. This is without additional 

NLP cleaning, simply a baseline analysis. For the purposes of this exploration, the dirty data 

was cleaned enough to perform as well as its cleaned counterpart.  

Conclusion 

Dirty data is everywhere. Having a pipeline, (or multiple pipelines!) with which to quickly 

clean, format and export data is essential to being an effective data scientist. The 

researchers suggest having multiple different (and mutable!) pipelines for different tasks -- 

is the dirty data coming from the web? Is it littered with HTML? Is the dirty data coming 

from a poorly formatted csv? There will never be a one-size-fits-all cleaner, however, there 

will be ways to quickly format the data for easier more in-depth “post cleaning.” 
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