
KENDRA OSBURN | 10/20/19 | TEXT MINING | HW3 | DIRTY DATA

WHY SO SERIOUS

Introduction

What is natural language processing? Very simply put, it’s turning words into numbers so

we can “teach” our computers what language is. Computers don’t understand words, but

they understand numbers exceptionally well. When we turn words into numbers, the

computer can do things that would take us meat machines years to do.

To better understand why we need to turn words into numbers, let’s look at a real life

example. Let’s say I want to know how viewers feel about the new Joker movie. I go to the

theater with a recording device and I ask 100 people what they thought about the movie

and record their answers. I then go to the office and hand these recordings to my interns

who laboriously transcribe everything that was said. We now have a text document of 100

reviews.

Unfortunately, we didn’t think to ask the interviewee outright if s/he liked the movie, but we

have all the words they used and my interns are fairly confident they can determine if

someone liked/disliked the movie simply by reading the reviews. The interns get to work

labeling each review as “liked” or “disliked.” Since things like sentiment, or perceived

sentiment, can be somewhat subjective, I have three interns look at each review. They

blindly label the review as “liked” or “disliked” and if each review was agreed upon, it gets

labeled and set aside. If the review wasn’t agreed upon, it goes to three more interns.

Eventually, we end up with an excel sheet for these reviews. The excel sheet is two columns

of 100 rows. The first column is the label (assigned by the intern system) and the second

column is a gigantic column containing the entire transcribed review.

This is great, but what happens when we want 100 more reviews? 1000 more reviews?

What happens when our data is challenged by people living in a different demographic?

What happens when we realized we inadvertently only polled white males ages 12-24? Do

we send interns out to every single movie theater with recorders? We most certainly do not.

We take advantage of the great world wide web!

We scrape IMDB for reviews use Natural Language Processing, of course!

Analysis & Models

ABOUT THE DATA

The review data was scraped from IMDB using `Beautiful Soup`. The code can be found in

Appendix C (C for Code). The reviews were scraped by getting ~25 ‘most helpful’ reviews for

each star rating, 1-10, and exporting that text into a txt document. The total number of

reviews ended up at 246. Reviews 5 stars and below (123 reviews) were transferred into a

2

“NEG” folder to become our “Negative corpus.” Reviews 6 stars and above (also 123

reviews) were transferred into a “POS” folder to become our “Positive corpus.”

Preliminary Analysis

Text Blob

 Kendra’s Data Ami’s Data Cornell Data Dirty Data Joker Data

CORRECT NEG 5 1 229 227 64

CORRECT POS 0 4 971 972 114

VADER

 Kendra’s Data Ami’s Data Cornell Data Dirty Data Joker Data

CORRECT NEG 2 3 445 454 64

CORRECT POS 5 3 828 824 114

NLTK

 Kendra’s Data Ami’s Data Cornell Data Dirty Data Joker Data

CORRECT NEG -- -- 89% 86% 81%

CORRECT POS -- -- 74% 70% 35%

ACCURACY -- -- 81% 77% 58%

K-NLTK

 Kendra’s Data Ami’s Data Cornell Data Dirty Data Joker Data

CORRECT NEG -- -- 89% 86% 81%

CORRECT POS -- -- 74% 70% 35%

ACCURACY -- -- 81% 77% 58%

3

Secondary Analysis

1. Started fresh using column 1

2. Created a “clean_review” column where \n was turned into spaces and titles counted

for double

3. Used casual tokenizer and Counter to get a bow

Results

Conclusion

APPENDIX C:

https://danielcaraway.github.io/html/HW3_JOKER_IMDB_reviews.html

import re

import urllib

from bs4 import BeautifulSoup

def​ ​get_reviews​(rating):
 url = ​"https://www.imdb.com/title/tt7286456/reviews?sort=helpfulnessScore&dir=desc&ratingFilter="​ + str(rating)
 html = urllib.request.urlopen(url).read()

 soup = BeautifulSoup(html, ​'html.parser'​)
 text = soup.findAll(​"div"​, {​"class"​: ​"imdb-user-review"​})
 ​for​ num,t ​in​ enumerate(text):
 scale = t.find(​"span"​, {​"class"​: ​"point-scale"​})
 title = t.find(​"a"​, {​"class"​: ​"title"​})
 text = t.find(​"div"​, {​"class"​: ​"text show-more__control"​})
 review = title.text + ​"=="​ + text.text
 ​try​:
 print_to_file(scale.previous_sibling.text, review, num)

 ​except​:
 print(​'nope'​)

def​ ​print_to_file​(rating, review, num):
 both = rating + ​'**'​ + review
 output_filename = str(rating) + ​'_jk_'​ + str(num) + ​'.txt'
 outfile = open(output_filename, ​'w'​)
 outfile.write(both)

 outfile.close()

for​ rating ​in​ range(​1​,​11​):
 get_reviews(rating)

4

