Hw5_clean

75 minute read

HW5 – Artificial Artificial Intelligence

import pandas as pd
import numpy as np

neg = pd.read_csv('AMT_neg.csv')
pos = pd.read_csv('AMT_pos.csv')

Initial EDA

neg[:3]
HITId HITTypeId Title Description Keywords Reward CreationTime MaxAssignments RequesterAnnotation AssignmentDurationInSeconds ... RejectionTime RequesterFeedback WorkTimeInSeconds LifetimeApprovalRate Last30DaysApprovalRate Last7DaysApprovalRate Input.text Answer.sentiment.label Approve Reject
0 3IQ9O0AYW6ZI3GD740H32KGG2SWITJ 3N0K7CX2I27L2NR2L8D93MF8LIRA5J Sentiment analysis Sentiment analysis sentiment, text $0.02 Fri Nov 01 12:08:17 PDT 2019 3 BatchId:3821423;OriginalHitTemplateId:928390909; 10800 ... NaN NaN 44 0% (0/0) 0% (0/0) 0% (0/0) Missed Opportunity\nI had been very excited to... Neutral NaN NaN
1 3IQ9O0AYW6ZI3GD740H32KGG2SWITJ 3N0K7CX2I27L2NR2L8D93MF8LIRA5J Sentiment analysis Sentiment analysis sentiment, text $0.02 Fri Nov 01 12:08:17 PDT 2019 3 BatchId:3821423;OriginalHitTemplateId:928390909; 10800 ... NaN NaN 7 0% (0/0) 0% (0/0) 0% (0/0) Missed Opportunity\nI had been very excited to... Negative NaN NaN
2 3IQ9O0AYW6ZI3GD740H32KGG2SWITJ 3N0K7CX2I27L2NR2L8D93MF8LIRA5J Sentiment analysis Sentiment analysis sentiment, text $0.02 Fri Nov 01 12:08:17 PDT 2019 3 BatchId:3821423;OriginalHitTemplateId:928390909; 10800 ... NaN NaN 449 0% (0/0) 0% (0/0) 0% (0/0) Missed Opportunity\nI had been very excited to... Positive NaN NaN

3 rows × 31 columns

pos[:3]
HITId HITTypeId Title Description Keywords Reward CreationTime MaxAssignments RequesterAnnotation AssignmentDurationInSeconds ... RejectionTime RequesterFeedback WorkTimeInSeconds LifetimeApprovalRate Last30DaysApprovalRate Last7DaysApprovalRate Input.text Answer.sentiment.label Approve Reject
0 3VMV5CHJZ8F47P7CECH0H830NF4GTP 3N0K7CX2I27L2NR2L8D93MF8LIRA5J Sentiment analysis Sentiment analysis sentiment, text $0.02 Fri Nov 01 12:11:19 PDT 2019 3 BatchId:3821427;OriginalHitTemplateId:928390909; 10800 ... NaN NaN 355 0% (0/0) 0% (0/0) 0% (0/0) funny like a clown\nGreetings again from the d... Positive NaN NaN
1 3VMV5CHJZ8F47P7CECH0H830NF4GTP 3N0K7CX2I27L2NR2L8D93MF8LIRA5J Sentiment analysis Sentiment analysis sentiment, text $0.02 Fri Nov 01 12:11:19 PDT 2019 3 BatchId:3821427;OriginalHitTemplateId:928390909; 10800 ... NaN NaN 487 0% (0/0) 0% (0/0) 0% (0/0) funny like a clown\nGreetings again from the d... Neutral NaN NaN
2 3VMV5CHJZ8F47P7CECH0H830NF4GTP 3N0K7CX2I27L2NR2L8D93MF8LIRA5J Sentiment analysis Sentiment analysis sentiment, text $0.02 Fri Nov 01 12:11:19 PDT 2019 3 BatchId:3821427;OriginalHitTemplateId:928390909; 10800 ... NaN NaN 1052 0% (0/0) 0% (0/0) 0% (0/0) funny like a clown\nGreetings again from the d... Positive NaN NaN

3 rows × 31 columns

neg.columns.tolist()
['HITId',
 'HITTypeId',
 'Title',
 'Description',
 'Keywords',
 'Reward',
 'CreationTime',
 'MaxAssignments',
 'RequesterAnnotation',
 'AssignmentDurationInSeconds',
 'AutoApprovalDelayInSeconds',
 'Expiration',
 'NumberOfSimilarHITs',
 'LifetimeInSeconds',
 'AssignmentId',
 'WorkerId',
 'AssignmentStatus',
 'AcceptTime',
 'SubmitTime',
 'AutoApprovalTime',
 'ApprovalTime',
 'RejectionTime',
 'RequesterFeedback',
 'WorkTimeInSeconds',
 'LifetimeApprovalRate',
 'Last30DaysApprovalRate',
 'Last7DaysApprovalRate',
 'Input.text',
 'Answer.sentiment.label',
 'Approve',
 'Reject']

How many unique turkers worked on each dataframe?

def get_unique(df, column):
    unique = np.unique(df[column], return_counts=True)
    df = pd.DataFrame(zip(unique[0], unique[1]))
    return len(unique[0]), unique, df

num_neg, unique_neg, u_neg_df = get_unique(neg, 'WorkerId')    
num_pos, unique_pos, u_pos_df = get_unique(pos, 'WorkerId')

print(num_neg, 'Turkers worked on NEG batch')
print(num_pos, 'Turkers worked on POS batch')
53 Turkers worked on NEG batch
38 Turkers worked on POS batch

How many HITS did each unique turker do?

u_neg_df.plot(kind='bar',x=0,y=1)
<matplotlib.axes._subplots.AxesSubplot at 0x11aa920b8>

png

u_pos_df.plot(kind='bar',x=0,y=1)
<matplotlib.axes._subplots.AxesSubplot at 0x11c0be898>

png

What’s the max and min HIT for unique turkers

print('For {}, the min was: {} and the max was: {}'.format('neg', unique_neg[1].min(), unique_neg[1].max())) 
print('For {}, the min was: {} and the max was: {}'.format('pos', unique_pos[1].min(), unique_pos[1].max())) 
For neg, the min was: 1 and the max was: 37
For pos, the min was: 1 and the max was: 40

Did a specitic Sentiment take longer for turkers to assess?

import seaborn as sns
import matplotlib.pyplot as plt
sns.catplot(x="Answer.sentiment.label", 
            y="WorkTimeInSeconds", 
            kind="bar", 
            order=['Negative', 'Neutral', 'Positive'], 
            data=neg);
plt.title('Negative')
Text(0.5, 1, 'Negative')

png

sns.catplot(x="Answer.sentiment.label", 
            y="WorkTimeInSeconds", 
            kind="bar", 
            order=['Negative', 'Neutral', 'Positive'], 
            data=pos)
plt.title('Positive')
Text(0.5, 1, 'Positive')

png

How many turkers had less than 10 second response time?

response_time = neg[neg['WorkTimeInSeconds'] < 10]
response_time_check = neg[neg['WorkTimeInSeconds'] > 10]
len(response_time)
48
len(response_time_check)
312

Checking for potential bots

Did anyone have a consistent average low response time?

count = pos.groupby(['WorkerId'])['HITId'].count()
work_time = pos.groupby(['WorkerId'])['WorkTimeInSeconds'].mean()
new_df = pd.DataFrame([work_time, count]).T
new_df[:5]
WorkTimeInSeconds HITId
WorkerId
A13CLN8L5HFT46 7.230769 13.0
A18WFPSLFV4FKY 47.000000 2.0
A1IQV3QUWRA8G1 22.000000 1.0
A1N1ULK71RHVMM 10.000000 3.0
A1S2MN0E9BHPVA 173.444444 27.0

Did anyone have a consistent average high response time?

new_df['WorkTimeInMin'] = new_df['WorkTimeInSeconds']/60
new_df[:5]
WorkTimeInSeconds HITId WorkTimeInMin
WorkerId
A13CLN8L5HFT46 7.230769 13.0 0.120513
A18WFPSLFV4FKY 47.000000 2.0 0.783333
A1IQV3QUWRA8G1 22.000000 1.0 0.366667
A1N1ULK71RHVMM 10.000000 3.0 0.166667
A1S2MN0E9BHPVA 173.444444 27.0 2.890741
count = pos.groupby(['WorkerId', 'Answer.sentiment.label'])['Answer.sentiment.label'].count()
# count = pos.groupby(['WorkerId'])['Answer.sentiment.label'].count()
count
WorkerId        Answer.sentiment.label
A13CLN8L5HFT46  Neutral                    2
                Positive                  11
A18WFPSLFV4FKY  Positive                   2
A1IQV3QUWRA8G1  Positive                   1
A1N1ULK71RHVMM  Negative                   1
                                          ..
AMC42JMQA8A5U   Positive                   1
AO2WNSGOXAX52   Neutral                    3
                Positive                   1
AOMFEAWQHU3D8   Neutral                    1
                Positive                   6
Name: Answer.sentiment.label, Length: 74, dtype: int64

Did anyone answer ONLY pos/neg/neutral?

pnn = pd.DataFrame()
pnn['Neutral'] = pos.groupby('WorkerId')['Answer.sentiment.label'].apply(lambda x: (x=='Neutral').sum())
pnn['Positive'] = pos.groupby('WorkerId')['Answer.sentiment.label'].apply(lambda x: (x=='Positive').sum())
pnn['Negative'] = pos.groupby('WorkerId')['Answer.sentiment.label'].apply(lambda x: (x=='Negative').sum())
pnn['Total'] = pos.groupby('WorkerId')['Answer.sentiment.label'].apply(lambda x: x.count())
pnn[:5]
Neutral Positive Negative Total
WorkerId
A13CLN8L5HFT46 2 11 0 13
A18WFPSLFV4FKY 0 2 0 2
A1IQV3QUWRA8G1 0 1 0 1
A1N1ULK71RHVMM 0 2 1 3
A1S2MN0E9BHPVA 2 21 4 27

This is getting a little confusing, let’s just look at our top performers

top = pnn.sort_values(by=['Total'], ascending=False)
top[:10]
Neutral Positive Negative Total
WorkerId
A681XM15AN28F 13 20 7 40
A1Y66T7FKJ8PJA 5 23 7 35
A33ENZVC1XB4BA 0 34 0 34
A1S2MN0E9BHPVA 2 21 4 27
A37L5E8MHHQGZM 6 13 3 22
AE03LUY7RH400 4 10 7 21
A2G44A4ZPWRPXU 4 12 2 18
A1YK1IKACUJMV4 0 15 0 15
A3AW887GI0NLKF 3 10 2 15
A3HAEQW13YPT6A 0 14 0 14

Interesting!! Looking from here, we have three workers who ONLY chose positive.

Let’s look at their response time to see if we can determine if they are a bot!!

top['Avg_WorkTimeInSeconds'] = pos.groupby('WorkerId')['WorkTimeInSeconds'].apply(lambda x: x.mean())
top['Avg_WorkTimeInMin'] = pos.groupby('WorkerId')['WorkTimeInSeconds'].apply(lambda x: x.mean()/60)
top['Min_WorkTimeInMin'] = pos.groupby('WorkerId')['WorkTimeInSeconds'].apply(lambda x: x.min()/60)
top['Max_WorkTimeInMin'] = pos.groupby('WorkerId')['WorkTimeInSeconds'].apply(lambda x: x.max()/60)
top[:10]
Neutral Positive Negative Total Avg_WorkTimeInSeconds Avg_WorkTimeInMin Min_WorkTimeInMin Max_WorkTimeInMin
WorkerId
A681XM15AN28F 13 20 7 40 13.575000 0.226250 0.100000 0.833333
A1Y66T7FKJ8PJA 5 23 7 35 695.857143 11.597619 0.216667 22.000000
A33ENZVC1XB4BA 0 34 0 34 366.647059 6.110784 0.616667 9.916667
A1S2MN0E9BHPVA 2 21 4 27 173.444444 2.890741 0.400000 4.983333
A37L5E8MHHQGZM 6 13 3 22 346.272727 5.771212 2.150000 8.283333
AE03LUY7RH400 4 10 7 21 102.238095 1.703968 0.100000 3.433333
A2G44A4ZPWRPXU 4 12 2 18 221.277778 3.687963 0.383333 7.383333
A1YK1IKACUJMV4 0 15 0 15 593.600000 9.893333 1.716667 11.000000
A3AW887GI0NLKF 3 10 2 15 269.400000 4.490000 1.616667 7.216667
A3HAEQW13YPT6A 0 14 0 14 442.928571 7.382143 0.866667 11.100000

Even more interesting! These two don’t appear to be bots, based on our current metric which is time variability.

HOWEVER, worker A681XM15AN28F appears to only work for an average of 13 seconds per review which doesn’t seem like enough time to read and judge a review…

PART 2: Second submission to AMT

TOO MANY REVIEWERS!

Here is when we realized that doing a kappa score with over 30 individual reviewers would be tricky, so we rusubmitted to AMT and required the turkers to be ‘Master’ in the hopes that this additional barrier-to-entry would help reduce the amount of turkers working on the project

v2 = pd.read_csv('HW5_amt_v2.csv')
v2[:5]
len(v2)
293

This time, I didn’t separate the df into pos and neg before submitting to AMT, so we have to reimport the labels.

labels = pd.read_csv('all_JK_extremes_labeled.csv')
len(labels)
98

Oops! That’s right, we replicated each review * 3 so three separate people could look at each review

labels2 = labels.append([labels] * 2, ignore_index=True)
len(labels2)
294
labels2.sort_values(by='0')
0 PoN
76 #LetRottenTomatoesRotSquad\nI am a simple guy... P
174 #LetRottenTomatoesRotSquad\nI am a simple guy... P
272 #LetRottenTomatoesRotSquad\nI am a simple guy... P
116 A 'Triumph of the Will' for Nihilists\n'Joker... N
18 A 'Triumph of the Will' for Nihilists\n'Joker... N
... ... ...
227 lose of both time and money\nThis was one of ... N
31 lose of both time and money\nThis was one of ... N
207 poor plot\nPoor plot. i find no reason for jo... N
11 poor plot\nPoor plot. i find no reason for jo... N
109 poor plot\nPoor plot. i find no reason for jo... N

294 rows × 2 columns

Shoot! I realized I had to delete some emojis for the csv to be accepted by AMT, so the reviews themselves won’t actually be matching… solution: Create two ‘for-matching’ columns made up of the first 5 words of each review

v2['for_matching'] = v2.apply(lambda x: x['Input.text'].split()[:5], axis=1)
labels2['for_matching'] = labels2.apply(lambda x: x['0'].split()[:5], axis=1)

Annnnnd why did I do that when I could just sort the df and apply the PoN

sorted_labels = labels2.sort_values(by='0')
sorted_labels[:6]
0 PoN for_matching
76 #LetRottenTomatoesRotSquad\nI am a simple guy... P [#LetRottenTomatoesRotSquad, I, am, a, simple]
174 #LetRottenTomatoesRotSquad\nI am a simple guy... P [#LetRottenTomatoesRotSquad, I, am, a, simple]
272 #LetRottenTomatoesRotSquad\nI am a simple guy... P [#LetRottenTomatoesRotSquad, I, am, a, simple]
116 A 'Triumph of the Will' for Nihilists\n'Joker... N [A, 'Triumph, of, the, Will']
18 A 'Triumph of the Will' for Nihilists\n'Joker... N [A, 'Triumph, of, the, Will']
214 A 'Triumph of the Will' for Nihilists\n'Joker... N [A, 'Triumph, of, the, Will']
sorted_v2 = v2.sort_values(by='Input.text')
sorted_v2[sorted_v2.columns[-5:]][:6]
Input.text Answer.sentiment.label Approve Reject for_matching
229 #LetRottenTomatoesRotSquad\nI am a simple guy... Positive NaN NaN [#LetRottenTomatoesRotSquad, I, am, a, simple]
228 #LetRottenTomatoesRotSquad\nI am a simple guy... Positive NaN NaN [#LetRottenTomatoesRotSquad, I, am, a, simple]
227 #LetRottenTomatoesRotSquad\nI am a simple guy... Positive NaN NaN [#LetRottenTomatoesRotSquad, I, am, a, simple]
53 A 'Triumph of the Will' for Nihilists\n'Joker... Neutral NaN NaN [A, 'Triumph, of, the, Will']
55 A 'Triumph of the Will' for Nihilists\n'Joker... Negative NaN NaN [A, 'Triumph, of, the, Will']
54 A 'Triumph of the Will' for Nihilists\n'Joker... Negative NaN NaN [A, 'Triumph, of, the, Will']
all_df = sorted_v2.copy()
# all_df['PoN'] = sorted_labels['PoN'].tolist()
# THIS DIDN'T WORK BECAUSE I DIDN'T WAIT UNTIL ALL WERE DONE FROM AMT. RESEARCHER ERROR BUT OMG I HATE MYSELF
len(all_df)
293
293/3
97.66666666666667

Confirming that YEP. 293 isn’t divisible by 3, meaning I didn’t wait until the last turker finished. omg.

Reuploading now – WITH BETTER CODE AND BETTER VARIABLE NAMES!

turker = pd.read_csv('HW5_amt_294.csv')
print(len(turker))
turker[turker.columns[-5:]][:5]
294
Last7DaysApprovalRate Input.text Answer.sentiment.label Approve Reject
0 0% (0/0) Everyone praised an overrated movie.\nOverrat... Negative NaN NaN
1 0% (0/0) Everyone praised an overrated movie.\nOverrat... Negative NaN NaN
2 0% (0/0) Everyone praised an overrated movie.\nOverrat... Negative NaN NaN
3 0% (0/0) What idiotic FIlm\nI can say that Phoenix is ... Negative NaN NaN
4 0% (0/0) What idiotic FIlm\nI can say that Phoenix is ... Negative NaN NaN
# Getting labels...
labels = pd.read_csv('all_JK_extremes_labeled.csv')
# X3
labels = labels.append([labels] * 2, ignore_index=True)
print(len(labels))
labels[:5]
294
0 PoN
0 Everyone praised an overrated movie.\nOverrat... N
1 What idiotic FIlm\nI can say that Phoenix is ... N
2 Terrible\nThe only thing good about this movi... N
3 Watch Taxi Driver instead\nThis is a poor att... N
4 I learned one thing.\nIt borrows a lot of ele... N

NOW, TO SORT!

sorted_labels = labels.sort_values(by=['0'])
sorted_turker = turker.sort_values(by=['Input.text'])
sorted_labels[:5]
0 PoN
76 #LetRottenTomatoesRotSquad\nI am a simple guy... P
174 #LetRottenTomatoesRotSquad\nI am a simple guy... P
272 #LetRottenTomatoesRotSquad\nI am a simple guy... P
116 A 'Triumph of the Will' for Nihilists\n'Joker... N
18 A 'Triumph of the Will' for Nihilists\n'Joker... N
sorted_turker['Input.text'][:5]
228     #LetRottenTomatoesRotSquad\nI am a simple guy...
229     #LetRottenTomatoesRotSquad\nI am a simple guy...
230     #LetRottenTomatoesRotSquad\nI am a simple guy...
56      A 'Triumph of the Will' for Nihilists\n'Joker...
55      A 'Triumph of the Will' for Nihilists\n'Joker...
Name: Input.text, dtype: object

OMG HOORAY HOORAY HOORAY!!

NOTE: FUN FACT!! I can type here and then hit the esc key to turn this cell into markdown!!

# YUCK THIS IS SO AGGRIVATING!! This line below doens't work because it still uses indexes.
# So the P and N didn't match up 
# sorted_turker['PoN'] = sorted_labels['PoN']
sorted_turker['PoN'] = sorted_labels['PoN'].tolist()
sorted_turker[sorted_turker.columns[-5:]][:5]
Input.text Answer.sentiment.label Approve Reject PoN
228 #LetRottenTomatoesRotSquad\nI am a simple guy... Positive NaN NaN P
229 #LetRottenTomatoesRotSquad\nI am a simple guy... Positive NaN NaN P
230 #LetRottenTomatoesRotSquad\nI am a simple guy... Positive NaN NaN P
56 A 'Triumph of the Will' for Nihilists\n'Joker... Negative NaN NaN N
55 A 'Triumph of the Will' for Nihilists\n'Joker... Negative NaN NaN N

PART 3: ANALYZE

First, let’s clean ALL the things

all_df = sorted_turker[['Input.text', 'WorkerId', 'Answer.sentiment.label', 'PoN']]
all_df[:5]
Input.text WorkerId Answer.sentiment.label PoN
228 #LetRottenTomatoesRotSquad\nI am a simple guy... A681XM15AN28F Positive P
229 #LetRottenTomatoesRotSquad\nI am a simple guy... A2XFO0X6RCS98M Positive P
230 #LetRottenTomatoesRotSquad\nI am a simple guy... AURYD2FH3FUOQ Positive P
56 A 'Triumph of the Will' for Nihilists\n'Joker... A1T79J0XQXDDGC Negative N
55 A 'Triumph of the Will' for Nihilists\n'Joker... A2XFO0X6RCS98M Negative N
all_df_all = all_df.copy()
all_df_all['APoN'] = all_df_all.apply(lambda x: x['Answer.sentiment.label'][0], axis=1)
all_df_all
Input.text WorkerId Answer.sentiment.label PoN APoN
228 #LetRottenTomatoesRotSquad\nI am a simple guy... A681XM15AN28F Positive P P
229 #LetRottenTomatoesRotSquad\nI am a simple guy... A2XFO0X6RCS98M Positive P P
230 #LetRottenTomatoesRotSquad\nI am a simple guy... AURYD2FH3FUOQ Positive P P
56 A 'Triumph of the Will' for Nihilists\n'Joker... A1T79J0XQXDDGC Negative N N
55 A 'Triumph of the Will' for Nihilists\n'Joker... A2XFO0X6RCS98M Negative N N
... ... ... ... ... ...
265 Venice 76 review\nI have just watched the Joke... ARLGZWN6W91WD Positive N P
266 Venice 76 review\nI have just watched the Joke... A38DC3BG1ZCVZ2 Positive N P
93 lose of both time and money\nThis was one of t... A2XFO0X6RCS98M Negative N N
94 lose of both time and money\nThis was one of t... A3EZ0H07TSDAPW Negative N N
95 lose of both time and money\nThis was one of t... ASB8T0H7L99RF Negative N N

294 rows × 5 columns

all_df_all['agree'] = all_df_all.apply(lambda x: x['PoN'] == x['APoN'], axis=1)
all_df_all[-10:]
Input.text WorkerId Answer.sentiment.label PoN APoN agree
38 This is extremely bad...\nThis whole film make... A3EZ0H07TSDAPW Negative N N True
216 Took my 65 year old mother to see it.\nI saw t... A3EZ0H07TSDAPW Positive N P False
217 Took my 65 year old mother to see it.\nI saw t... A2XFO0X6RCS98M Positive N P False
218 Took my 65 year old mother to see it.\nI saw t... AKSJ3C5O3V9RB Positive N P False
264 Venice 76 review\nI have just watched the Joke... A3EZ0H07TSDAPW Positive N P False
265 Venice 76 review\nI have just watched the Joke... ARLGZWN6W91WD Positive N P False
266 Venice 76 review\nI have just watched the Joke... A38DC3BG1ZCVZ2 Positive N P False
93 lose of both time and money\nThis was one of t... A2XFO0X6RCS98M Negative N N True
94 lose of both time and money\nThis was one of t... A3EZ0H07TSDAPW Negative N N True
95 lose of both time and money\nThis was one of t... ASB8T0H7L99RF Negative N N True

Lets see how many agree!

agree_df = pd.DataFrame(all_df_all.groupby(['Input.text','PoN'])['agree'].mean())
agree_df = agree_df.reset_index()
agree_df[:5]
Input.text PoN agree
0 #LetRottenTomatoesRotSquad\nI am a simple guy... P 1.000000
1 A 'Triumph of the Will' for Nihilists\n'Joker... N 1.000000
2 A Breath of Fresh Cinema\nBursting with emoti... P 1.000000
3 A MASTERPIECE\nJoaquin Phoenix's performance ... N 0.333333
4 A brilliant movie\nThis movie is slow but nev... P 1.000000

OK so this actually gave us something we want… BUT PLEASE TELL ME THE BETTER WAY!!

def return_agreement(num):
    if num == 0:
        return 'agree_wrong'
    if num == 1:
        return 'agree'
    if (num/1) !=0:
        return 'disparity'

agree_df['agree_factor'] = agree_df.apply(lambda x: return_agreement(x['agree']), axis=1)
agree_df
Input.text PoN agree agree_factor
0 #LetRottenTomatoesRotSquad\nI am a simple guy... P 1.000000 agree
1 A 'Triumph of the Will' for Nihilists\n'Joker... N 1.000000 agree
2 A Breath of Fresh Cinema\nBursting with emoti... P 1.000000 agree
3 A MASTERPIECE\nJoaquin Phoenix's performance ... N 0.333333 disparity
4 A brilliant movie\nThis movie is slow but nev... P 1.000000 agree
... ... ... ... ...
93 The mirror of society\nActing 10/10\nActors 10... N 0.000000 agree_wrong
94 This is extremely bad...\nThis whole film make... N 1.000000 agree
95 Took my 65 year old mother to see it.\nI saw t... N 0.000000 agree_wrong
96 Venice 76 review\nI have just watched the Joke... N 0.000000 agree_wrong
97 lose of both time and money\nThis was one of t... N 1.000000 agree

98 rows × 4 columns

df1 = agree_df.groupby(['agree_factor']).count()
df1.reset_index(inplace=True)
df1
agree_factor Input.text PoN agree
0 agree 33 33 33
1 agree_wrong 31 31 31
2 disparity 34 34 34
sns.barplot(x=['Agreed', 'Disagreed'],
           y= [64,34],
           data = df1);
plt.title('How many turkers agreed on sentiment?')
Text(0.5, 1.0, 'How many turkers agreed on sentiment?')

png

sns.barplot(x="agree_factor", y="agree", data=df1);
plt.title('How many turkers agreed on sentiment, but were wrong?')
Text(0.5, 1.0, 'How many turkers agreed on sentiment, but were wrong?')

png

df2 = agree_df.groupby(['agree_factor', 'PoN']).count()
df2.reset_index(inplace=True)
sns.barplot(x="agree_factor",
           y="agree",
           hue="PoN",
           data=df2);
plt.title("What was the pos/neg split for the turkers?")
Text(0.5, 1.0, 'What was the pos/neg split for the turkers?')

png

What was the kappa score for the turkers?

# Example code
from sklearn.metrics import cohen_kappa_score
y1 = [0,1,2,3,4,0,1,2,3,4,0,1,2,3,4]
y2 = [0,1,2,2,4,1,2,3,0,0,0,2,2,4,4]
cohen_kappa_score(y1,y2)
0.33333333333333337

This was absolutely miserable and had me questioning both my intellect and the meaning of life

FIRST PASS: Oh boy! This will be super fun. First, I’m going to brainstorm “out loud” how I’m going to do this when AMT doesn’t require that the same N turkers complete the task, making inter-rater reliability extremely hard to track when one turker has done 46/98 reviews and another has done 2/98

Let’s look at our top turkers

top[:10]
Neutral Positive Negative Total Avg_WorkTimeInSeconds Avg_WorkTimeInMin Min_WorkTimeInMin Max_WorkTimeInMin
WorkerId
A681XM15AN28F 13 20 7 40 13.575000 0.226250 0.100000 0.833333
A1Y66T7FKJ8PJA 5 23 7 35 695.857143 11.597619 0.216667 22.000000
A33ENZVC1XB4BA 0 34 0 34 366.647059 6.110784 0.616667 9.916667
A1S2MN0E9BHPVA 2 21 4 27 173.444444 2.890741 0.400000 4.983333
A37L5E8MHHQGZM 6 13 3 22 346.272727 5.771212 2.150000 8.283333
AE03LUY7RH400 4 10 7 21 102.238095 1.703968 0.100000 3.433333
A2G44A4ZPWRPXU 4 12 2 18 221.277778 3.687963 0.383333 7.383333
A1YK1IKACUJMV4 0 15 0 15 593.600000 9.893333 1.716667 11.000000
A3AW887GI0NLKF 3 10 2 15 269.400000 4.490000 1.616667 7.216667
A3HAEQW13YPT6A 0 14 0 14 442.928571 7.382143 0.866667 11.100000

Oh wait, this was from the original dataset… Let’s look at the new dataset

newdf = pd.DataFrame(turker.groupby(['HITId', 'WorkerId']))
newdf[:5]
0 1
0 (302OLP89DZ7MBHSY6QU0WCST11GACJ, A1T79J0XQXDDGC) HITId ...
1 (302OLP89DZ7MBHSY6QU0WCST11GACJ, A2XFO0X6RCS98M) HITId ...
2 (302OLP89DZ7MBHSY6QU0WCST11GACJ, A681XM15AN28F) HITId ...
3 (3087LXLJ6MGXDGEQ5QN8FC1JPSW0FT, A1L8RL58MYU4NC) HITId ...
4 (3087LXLJ6MGXDGEQ5QN8FC1JPSW0FT, A1T79J0XQXDDGC) HITId ...

Annnnd that is definitely not what we wanted…

Clearly, it’s time to clean things up.

What are our columns again?

turker.columns
Index(['HITId', 'HITTypeId', 'Title', 'Description', 'Keywords', 'Reward',
       'CreationTime', 'MaxAssignments', 'RequesterAnnotation',
       'AssignmentDurationInSeconds', 'AutoApprovalDelayInSeconds',
       'Expiration', 'NumberOfSimilarHITs', 'LifetimeInSeconds',
       'AssignmentId', 'WorkerId', 'AssignmentStatus', 'AcceptTime',
       'SubmitTime', 'AutoApprovalTime', 'ApprovalTime', 'RejectionTime',
       'RequesterFeedback', 'WorkTimeInSeconds', 'LifetimeApprovalRate',
       'Last30DaysApprovalRate', 'Last7DaysApprovalRate', 'Input.text',
       'Answer.sentiment.label', 'Approve', 'Reject'],
      dtype='object')

Great. Let’s make a fresh and clean (so fresh and so clean clean) df

turker_clean = turker[['HITId', 'WorkerId', 'Answer.sentiment.label', 'Input.text']]
turker_clean
HITId WorkerId Answer.sentiment.label Input.text
0 338GLSUI43BXEPY2ES6SPI72KKESF7 AH5A86OLRZWCS Negative Everyone praised an overrated movie.\nOverrat...
1 338GLSUI43BXEPY2ES6SPI72KKESF7 A2HGRSPR50ENHL Negative Everyone praised an overrated movie.\nOverrat...
2 338GLSUI43BXEPY2ES6SPI72KKESF7 AKSJ3C5O3V9RB Negative Everyone praised an overrated movie.\nOverrat...
3 37MQ8Z1JQEWA9HYZP3JANL1ES162YC ARLGZWN6W91WD Negative What idiotic FIlm\nI can say that Phoenix is ...
4 37MQ8Z1JQEWA9HYZP3JANL1ES162YC AKSJ3C5O3V9RB Negative What idiotic FIlm\nI can say that Phoenix is ...
... ... ... ... ...
289 3PUV2Q8SV441ZJ34C0P7BTUH4JDDBH A3EZ0H07TSDAPW Negative Oscar for Phoenix\nI will stop watching movie...
290 3PUV2Q8SV441ZJ34C0P7BTUH4JDDBH A38DC3BG1ZCVZ2 Positive Oscar for Phoenix\nI will stop watching movie...
291 3FO95NVK5C0UHF3B5N6M67LLN8PSR2 A194R45ACMQEOR Positive Joker > Endgame\nNeed I say more? Everything ...
292 3FO95NVK5C0UHF3B5N6M67LLN8PSR2 A1L8RL58MYU4NC Positive Joker > Endgame\nNeed I say more? Everything ...
293 3FO95NVK5C0UHF3B5N6M67LLN8PSR2 A1T79J0XQXDDGC Positive Joker > Endgame\nNeed I say more? Everything ...

294 rows × 4 columns

And let’s see how many turkers turked

turker_clean.WorkerId.value_counts()
ARLGZWN6W91WD     46
A681XM15AN28F     37
A1T79J0XQXDDGC    34
A2XFO0X6RCS98M    33
A3EZ0H07TSDAPW    33
A1L8RL58MYU4NC    28
A38DC3BG1ZCVZ2    22
AKSJ3C5O3V9RB     21
ASB8T0H7L99RF     10
AE03LUY7RH400      6
A37JENVKZQ56U6     5
A194R45ACMQEOR     5
AH5A86OLRZWCS      4
A2HG1N3BVQO6I      4
AURYD2FH3FUOQ      2
AMC42JMQA8A5U      2
ATHS9GUME1XCA      1
A2HGRSPR50ENHL     1
Name: WorkerId, dtype: int64

OK let’s make this easy on ourselves and just use the top 5 turkers for our first test

turker1 = turker_clean[turker_clean['WorkerId'] == 'ARLGZWN6W91WD']
turker2 = turker_clean[turker_clean['WorkerId'] == 'A681XM15AN28F']
turker3 = turker_clean[turker_clean['WorkerId'] == 'A1T79J0XQXDDGC']
turker4 = turker_clean[turker_clean['WorkerId'] == 'A2XFO0X6RCS98M']
turker5 = turker_clean[turker_clean['WorkerId'] == 'A3EZ0H07TSDAPW']
turker1.reset_index(drop=True, inplace=True)
turker2.reset_index(drop=True, inplace=True)
turker3.reset_index(drop=True, inplace=True)
turker4.reset_index(drop=True, inplace=True)
turker5.reset_index(drop=True, inplace=True)
merged_df = pd.concat([turker1, turker2, turker3, turker4, turker5], axis=0, sort=False)
merged_df.reset_index(drop=True, inplace=True)
merged_df.sort_values(by='Input.text')
HITId WorkerId Answer.sentiment.label Input.text
79 3AQN9REUTFGXCRWFMS3RJ4SIPSUYDG A681XM15AN28F Positive #LetRottenTomatoesRotSquad\nI am a simple guy...
142 3AQN9REUTFGXCRWFMS3RJ4SIPSUYDG A2XFO0X6RCS98M Positive #LetRottenTomatoesRotSquad\nI am a simple guy...
122 3IVKZBIBJ09HSLP89IUSS3JF0ZRSH5 A2XFO0X6RCS98M Negative A 'Triumph of the Will' for Nihilists\n'Joker...
55 3IVKZBIBJ09HSLP89IUSS3JF0ZRSH5 A681XM15AN28F Neutral A 'Triumph of the Will' for Nihilists\n'Joker...
87 3IVKZBIBJ09HSLP89IUSS3JF0ZRSH5 A1T79J0XQXDDGC Negative A 'Triumph of the Will' for Nihilists\n'Joker...
... ... ... ... ...
175 3J9UN9O9J3SDII0MOGETUATBIZD0JW A3EZ0H07TSDAPW Positive Took my 65 year old mother to see it.\nI saw t...
43 31ODACBENUFU5EOBS8HM1HBGRMNSQ1 ARLGZWN6W91WD Positive Venice 76 review\nI have just watched the Joke...
180 31ODACBENUFU5EOBS8HM1HBGRMNSQ1 A3EZ0H07TSDAPW Positive Venice 76 review\nI have just watched the Joke...
162 3M93N4X8HKNDJRKYXIXD4GZUDRVSJA A3EZ0H07TSDAPW Negative lose of both time and money\nThis was one of t...
127 3M93N4X8HKNDJRKYXIXD4GZUDRVSJA A2XFO0X6RCS98M Negative lose of both time and money\nThis was one of t...

183 rows × 4 columns

merged_df2 = pd.concat([turker1, turker2], axis=0, sort=False)
merged_df2.sort_values(by='Input.text')
HITId WorkerId Answer.sentiment.label Input.text
33 3AQN9REUTFGXCRWFMS3RJ4SIPSUYDG A681XM15AN28F Positive #LetRottenTomatoesRotSquad\nI am a simple guy...
9 3IVKZBIBJ09HSLP89IUSS3JF0ZRSH5 A681XM15AN28F Neutral A 'Triumph of the Will' for Nihilists\n'Joker...
36 39O0SQZVJN78YHJJHK8BBGPP0UD7RV ARLGZWN6W91WD Positive A Breath of Fresh Cinema\nBursting with emoti...
30 334ZEL5JX6FRK2BVDVPICCGGCL5SOT A681XM15AN28F Positive A brilliant movie\nThis movie is slow but nev...
31 3DWGDA5POF4MG2LY1OWCB3NFIEPV1E ARLGZWN6W91WD Positive A clean masterpiece!\nWhat I loved the most a...
... ... ... ... ...
7 3D17ECOUOEV24TJFHEQ6S8VWRUX31Q ARLGZWN6W91WD Negative Overhyped and not everyone joker performance i...
6 3G3AJKPCXLSKCVDMTH2YG0YCCF1Y43 A681XM15AN28F Neutral Ridiculous well acted Trash\nSaw the movie Jok...
17 3JAOYN9IHL2YEWXU4I4PG1ATPEB33I A681XM15AN28F Neutral The king has no clothes\nRead the reviews- the...
38 3J5XXLQDHMBIQ5ZDOSAVZW2CGY3V36 ARLGZWN6W91WD Positive The mirror of society\nActing 10/10\nActors 10...
43 31ODACBENUFU5EOBS8HM1HBGRMNSQ1 ARLGZWN6W91WD Positive Venice 76 review\nI have just watched the Joke...

83 rows × 4 columns

And HERE is where everything went to hell in a handbasket. I’m leaving these failed attempts as monuments to my sweat and near-tears

# merged_df2['Input.text'].value_counts()
# df = pd.DataFrame(merged_df2.groupby('HITId'))
# df.set_index([turker1, turker2]).unstack(level=0)
# grouped = turker_clean.groupby(['HITId','WorkerId'])
# grouped.set_index(['HITId', 'WorkerId']).mean().unstack(level=0)
df = merged_df.drop('Input.text', axis=1)
df
HITId WorkerId Answer.sentiment.label
0 37MQ8Z1JQEWA9HYZP3JANL1ES162YC ARLGZWN6W91WD Negative
1 3I7SHAD35MWH116RCCCUPHVFU7E7M7 ARLGZWN6W91WD Negative
2 3XUSYT70IT10FW0UEKSIRCYYDFG0DI ARLGZWN6W91WD Negative
3 3SD15I2WD2UXBFKCNK2NN4MDZ5D63R ARLGZWN6W91WD Negative
4 3P7QK0GJ3TLAE784LPLT1SAGYVA2Z3 ARLGZWN6W91WD Negative
... ... ... ...
178 39KV3A5D187KZWJWW98G1QULMWW7SJ A3EZ0H07TSDAPW Neutral
179 35F6NGNVM8JLEWWBL9D6BVQ7OFA7T8 A3EZ0H07TSDAPW Positive
180 31ODACBENUFU5EOBS8HM1HBGRMNSQ1 A3EZ0H07TSDAPW Positive
181 3PN6H8C9R4QWG9YC6MPBGIABM1SDAM A3EZ0H07TSDAPW Neutral
182 3PUV2Q8SV441ZJ34C0P7BTUH4JDDBH A3EZ0H07TSDAPW Negative

183 rows × 3 columns

df = pd.DataFrame({'Turker': merged_df['WorkerId'].tolist(),
                   'REVIEW': merged_df['Answer.sentiment.label'].tolist(),
                   'SENTIMENT': merged_df['HITId'].tolist() })

grouped = df.groupby('Turker')
values = grouped['SENTIMENT'].agg('sum')
id_df = grouped['REVIEW'].apply(lambda x: pd.Series(x.values)).unstack()
id_df = id_df.rename(columns={i: 'REVIEW{}'.format(i + 1) for i in range(id_df.shape[1])})
result = pd.concat([id_df, values], axis=1)
result_df = pd.DataFrame(result)
print(result_df[:5])
                 REVIEW1   REVIEW2   REVIEW3   REVIEW4   REVIEW5   REVIEW6  \
Turker                                                                       
A1T79J0XQXDDGC  Positive  Negative  Positive  Positive  Negative  Negative   
A2XFO0X6RCS98M  Negative  Negative  Negative  Negative  Positive  Negative   
A3EZ0H07TSDAPW  Positive   Neutral  Positive  Negative  Negative  Positive   
A681XM15AN28F   Negative  Positive  Positive  Positive  Positive  Negative   
ARLGZWN6W91WD   Negative  Negative  Negative  Negative  Negative  Negative   

                 REVIEW7   REVIEW8   REVIEW9  REVIEW10  ...  REVIEW38  \
Turker                                                  ...             
A1T79J0XQXDDGC  Negative  Positive  Negative  Negative  ...       NaN   
A2XFO0X6RCS98M  Negative  Negative  Negative  Negative  ...       NaN   
A3EZ0H07TSDAPW  Negative  Positive  Positive  Negative  ...       NaN   
A681XM15AN28F    Neutral   Neutral   Neutral   Neutral  ...       NaN   
ARLGZWN6W91WD   Negative  Negative  Negative  Negative  ...  Positive   

                REVIEW39  REVIEW40  REVIEW41  REVIEW42  REVIEW43  REVIEW44  \
Turker                                                                       
A1T79J0XQXDDGC       NaN       NaN       NaN       NaN       NaN       NaN   
A2XFO0X6RCS98M       NaN       NaN       NaN       NaN       NaN       NaN   
A3EZ0H07TSDAPW       NaN       NaN       NaN       NaN       NaN       NaN   
A681XM15AN28F        NaN       NaN       NaN       NaN       NaN       NaN   
ARLGZWN6W91WD   Positive  Positive  Positive  Negative  Positive  Positive   

                REVIEW45  REVIEW46  \
Turker                               
A1T79J0XQXDDGC       NaN       NaN   
A2XFO0X6RCS98M       NaN       NaN   
A3EZ0H07TSDAPW       NaN       NaN   
A681XM15AN28F        NaN       NaN   
ARLGZWN6W91WD   Positive  Positive   

                                                        SENTIMENT  
Turker                                                             
A1T79J0XQXDDGC  302OLP89DZ7MBHSY6QU0WCST11GACJ32LAQ1JNT9PNC787...  
A2XFO0X6RCS98M  3I7SHAD35MWH116RCCCUPHVFU7E7M73XUSYT70IT10FW0U...  
A3EZ0H07TSDAPW  38O9DZ0A62N8QXOTJKOI4UHLTRD62G3I7SHAD35MWH116R...  
A681XM15AN28F   3SD15I2WD2UXBFKCNK2NN4MDZ5D63R302OLP89DZ7MBHSY...  
ARLGZWN6W91WD   37MQ8Z1JQEWA9HYZP3JANL1ES162YC3I7SHAD35MWH116R...  

[5 rows x 47 columns]
df = pd.DataFrame({'Turker': merged_df['WorkerId'].tolist(),
                   'SENTIMENT': merged_df['Answer.sentiment.label'].tolist(),
                   'REVIEW': merged_df['HITId'].tolist() })

grouped = df.groupby('Turker')
values = grouped['REVIEW'].agg('sum')
id_df = grouped['SENTIMENT'].apply(lambda x: pd.Series(x.values)).unstack()
id_df = id_df.rename(columns={i: 'SENTIMENT{}'.format(i + 1) for i in range(id_df.shape[1])})
result = pd.concat([id_df, values], axis=1)
result_df = pd.DataFrame(result)
print(result_df.T[:5])
Turker     A1T79J0XQXDDGC A2XFO0X6RCS98M A3EZ0H07TSDAPW A681XM15AN28F  \
SENTIMENT1       Positive       Negative       Positive      Negative   
SENTIMENT2       Negative       Negative        Neutral      Positive   
SENTIMENT3       Positive       Negative       Positive      Positive   
SENTIMENT4       Positive       Negative       Negative      Positive   
SENTIMENT5       Negative       Positive       Negative      Positive   

Turker     ARLGZWN6W91WD  
SENTIMENT1      Negative  
SENTIMENT2      Negative  
SENTIMENT3      Negative  
SENTIMENT4      Negative  
SENTIMENT5      Negative  
t1 = result_df.T['A3EZ0H07TSDAPW'].tolist()
len(t1)
47
t2 = result_df.T['A2XFO0X6RCS98M'].tolist()
len(t2)
t3 = result_df.T['A681XM15AN28F'].tolist()
len(t3)
t4 = result_df.T['ARLGZWN6W91WD'].tolist()
t1[:-1][:5]
['Positive', 'Neutral', 'Positive', 'Negative', 'Negative']
t2[:-1][:5]
['Negative', 'Negative', 'Negative', 'Negative', 'Positive']
t3[:5]
['Negative', 'Positive', 'Positive', 'Positive', 'Positive']

OK after all that work, we can finally calculate the kappa score between our first and second “most prolific” turkers

from sklearn.metrics import cohen_kappa_score
y1 = t1[:-1]
y2 = t2[:-1]
cohen_kappa_score(y1,y2)
0.43974358974358974

annnnnd just to make sure, let’s calculate the same score between third and fourth “most prolific” turkers

y3 = t3[:-1]
y4 = t4[:-1]
cohen_kappa_score(y3,y4)
-0.07585335018963324

Pretty sure a negative number isn’t what we want… oh well. Can’t worry about that because that’s when the existential dread sinks in… like, why am I doing this right now? Why do I care so much? Why am I trying to calculate inter-rater reliability THIS way when this won’t even be a measure I will use if/when I use turkers in the future? In the future, I will use the sample size itself to determine “reliability” – e.g. If all N turkers agree on X, then it goes into the “good” pile, if not, then it goes back into the AMT pile until we have N turkers agreeing…Because the way AMT is set up right now, we won’t be able to reliable calculate kappa when the number of HITS per turker is so varried. In order to get something truely accurate, I’d have to remove all the data that was only completed by M or fewer turkers and hope that the prolific turkers worked on the same ones and then compare those (which is exactly what I did below but seriously WHY WHY WHY.)

Another failed test

turker_clean_test = turker_clean.copy()
turker_clean_test.reset_index(inplace=True)

id_dict = {}
id_num = 1
def return_new_id(old_id,):
    if old_id in id_dict.keys():
        return id_dict[old_id]
    else:
        id_num = id_num + 1
        id_dict.update({ old_id: id_num })
        return num

# turker_clean_test['ReviewID'] = turker_clean_test.apply(lambda x: return_new_id(x['HITId']), axis=1)
# turker_clean_test
turker_clean_test

new_ids = pd.factorize(turker_clean_test['HITId'].tolist())
new_ids[0]
turker_clean_test['ReviewID'] = new_ids[0]
turker_clean_test
index HITId WorkerId Answer.sentiment.label Input.text ReviewID
0 0 338GLSUI43BXEPY2ES6SPI72KKESF7 AH5A86OLRZWCS Negative Everyone praised an overrated movie.\nOverrat... 0
1 1 338GLSUI43BXEPY2ES6SPI72KKESF7 A2HGRSPR50ENHL Negative Everyone praised an overrated movie.\nOverrat... 0
2 2 338GLSUI43BXEPY2ES6SPI72KKESF7 AKSJ3C5O3V9RB Negative Everyone praised an overrated movie.\nOverrat... 0
3 3 37MQ8Z1JQEWA9HYZP3JANL1ES162YC ARLGZWN6W91WD Negative What idiotic FIlm\nI can say that Phoenix is ... 1
4 4 37MQ8Z1JQEWA9HYZP3JANL1ES162YC AKSJ3C5O3V9RB Negative What idiotic FIlm\nI can say that Phoenix is ... 1
... ... ... ... ... ... ...
289 289 3PUV2Q8SV441ZJ34C0P7BTUH4JDDBH A3EZ0H07TSDAPW Negative Oscar for Phoenix\nI will stop watching movie... 96
290 290 3PUV2Q8SV441ZJ34C0P7BTUH4JDDBH A38DC3BG1ZCVZ2 Positive Oscar for Phoenix\nI will stop watching movie... 96
291 291 3FO95NVK5C0UHF3B5N6M67LLN8PSR2 A194R45ACMQEOR Positive Joker > Endgame\nNeed I say more? Everything ... 97
292 292 3FO95NVK5C0UHF3B5N6M67LLN8PSR2 A1L8RL58MYU4NC Positive Joker > Endgame\nNeed I say more? Everything ... 97
293 293 3FO95NVK5C0UHF3B5N6M67LLN8PSR2 A1T79J0XQXDDGC Positive Joker > Endgame\nNeed I say more? Everything ... 97

294 rows × 6 columns

Attempt 4:

Maybe if I convert these huge opressive strings into smaller numbers, this won’t feel as awful?
new_turker_ids = pd.factorize(turker_clean_test['WorkerId'].tolist())
t_ids = ['T_' + str(id) for id in new_turker_ids[0]]
t_ids[:5]
['T_0', 'T_1', 'T_2', 'T_3', 'T_2']
turker_clean_test['T_ID'] = t_ids
turker_clean_test[:5]
index HITId WorkerId Answer.sentiment.label Input.text ReviewID T_ID sentiment
0 0 338GLSUI43BXEPY2ES6SPI72KKESF7 AH5A86OLRZWCS Negative Everyone praised an overrated movie.\nOverrat... 0 T_0 N
1 1 338GLSUI43BXEPY2ES6SPI72KKESF7 A2HGRSPR50ENHL Negative Everyone praised an overrated movie.\nOverrat... 0 T_1 N
2 2 338GLSUI43BXEPY2ES6SPI72KKESF7 AKSJ3C5O3V9RB Negative Everyone praised an overrated movie.\nOverrat... 0 T_2 N
3 3 37MQ8Z1JQEWA9HYZP3JANL1ES162YC ARLGZWN6W91WD Negative What idiotic FIlm\nI can say that Phoenix is ... 1 T_3 N
4 4 37MQ8Z1JQEWA9HYZP3JANL1ES162YC AKSJ3C5O3V9RB Negative What idiotic FIlm\nI can say that Phoenix is ... 1 T_2 N
turker_clean_test['sentiment'] = turker_clean_test.apply(lambda x: x['Answer.sentiment.label'][0], axis=1)
turker_clean_test[:5]
index HITId WorkerId Answer.sentiment.label Input.text ReviewID T_ID sentiment
0 0 338GLSUI43BXEPY2ES6SPI72KKESF7 AH5A86OLRZWCS Negative Everyone praised an overrated movie.\nOverrat... 0 T_0 N
1 1 338GLSUI43BXEPY2ES6SPI72KKESF7 A2HGRSPR50ENHL Negative Everyone praised an overrated movie.\nOverrat... 0 T_1 N
2 2 338GLSUI43BXEPY2ES6SPI72KKESF7 AKSJ3C5O3V9RB Negative Everyone praised an overrated movie.\nOverrat... 0 T_2 N
3 3 37MQ8Z1JQEWA9HYZP3JANL1ES162YC ARLGZWN6W91WD Negative What idiotic FIlm\nI can say that Phoenix is ... 1 T_3 N
4 4 37MQ8Z1JQEWA9HYZP3JANL1ES162YC AKSJ3C5O3V9RB Negative What idiotic FIlm\nI can say that Phoenix is ... 1 T_2 N

Annnnd here we are… small and clean. This DID actually help my brain a bit… Noted for next time.

even_cleaner_df = turker_clean_test[['ReviewID', 'T_ID', 'sentiment']]
even_cleaner_df[:5]
ReviewID T_ID sentiment
0 0 T_0 N
1 0 T_1 N
2 0 T_2 N
3 1 T_3 N
4 1 T_2 N

Attempt 5:

Let’s make our very own DIY sparse matrix!!

df = pd.DataFrame({'Turker': even_cleaner_df['T_ID'].tolist(),
                   'SENTIMENT': even_cleaner_df['sentiment'].tolist(),
                   'REVIEW': even_cleaner_df['ReviewID'].tolist() })

grouped = df.groupby('Turker')
values = grouped['REVIEW'].agg('sum')
id_df = grouped['SENTIMENT'].apply(lambda x: pd.Series(x.values)).unstack()
id_df = id_df.rename(columns={i: 'REVIEW{}'.format(i + 1) for i in range(id_df.shape[1])})
result = pd.concat([id_df, values], axis=1)
result_df = pd.DataFrame(result)
print(result_df.T[:5])
Turker   T_0  T_1 T_10 T_11 T_12 T_13 T_14 T_15 T_16 T_17 T_2 T_3 T_4 T_5 T_6  \
REVIEW1    N    N    P    N    N    N    N    N    N    P   N   N   N   P   N   
REVIEW2    N  NaN    N    N    N    N    P    N    P  NaN   N   N   N   N   N   
REVIEW3    N  NaN    P    P    N    N  NaN  NaN    P  NaN   N   N   N   P   P   
REVIEW4    N  NaN    P    P    N    P  NaN  NaN    P  NaN   N   N   N   N   P   
REVIEW5  NaN  NaN    N    N    P    P  NaN  NaN  NaN  NaN   N   N   N   N   P   

Turker  T_7 T_8 T_9  
REVIEW1   N   N   N  
REVIEW2   N   N   P  
REVIEW3   N   N   P  
REVIEW4   N   N   P  
REVIEW5   N   P   P  

And turn it into a data frame cuz why not?!

df = pd.DataFrame(result_df.T)
df
Turker T_0 T_1 T_10 T_11 T_12 T_13 T_14 T_15 T_16 T_17 T_2 T_3 T_4 T_5 T_6 T_7 T_8 T_9
REVIEW1 N N P N N N N N N P N N N P N N N N
REVIEW2 N NaN N N N N P N P NaN N N N N N N N P
REVIEW3 N NaN P P N N NaN NaN P NaN N N N P P N N P
REVIEW4 N NaN P P N P NaN NaN P NaN N N N N P N N P
REVIEW5 NaN NaN N N P P NaN NaN NaN NaN N N N N P N P P
REVIEW6 NaN NaN N NaN P NaN NaN NaN NaN NaN N N N P P N N N
REVIEW7 NaN NaN N NaN NaN NaN NaN NaN NaN NaN N N N N P N N N
REVIEW8 NaN NaN P NaN NaN NaN NaN NaN NaN NaN N N P P P P N N
REVIEW9 NaN NaN N NaN NaN NaN NaN NaN NaN NaN N N N P P P N N
REVIEW10 NaN NaN N NaN NaN NaN NaN NaN NaN NaN N N N N P P N N
REVIEW11 NaN NaN N NaN NaN NaN NaN NaN NaN NaN N N N N NaN P N P
REVIEW12 NaN NaN N NaN NaN NaN NaN NaN NaN NaN N N N N NaN P N P
REVIEW13 NaN NaN N NaN NaN NaN NaN NaN NaN NaN P N N N NaN P N N
REVIEW14 NaN NaN N NaN NaN NaN NaN NaN NaN NaN P N N N NaN P N P
REVIEW15 NaN NaN P NaN NaN NaN NaN NaN NaN NaN P N N N NaN P P N
REVIEW16 NaN NaN P NaN NaN NaN NaN NaN NaN NaN P N P P NaN P N N
REVIEW17 NaN NaN P NaN NaN NaN NaN NaN NaN NaN P N P N NaN P N N
REVIEW18 NaN NaN P NaN NaN NaN NaN NaN NaN NaN P N P N NaN P P N
REVIEW19 NaN NaN P NaN NaN NaN NaN NaN NaN NaN N N P N NaN P P P
REVIEW20 NaN NaN P NaN NaN NaN NaN NaN NaN NaN P N P N NaN P P N
REVIEW21 NaN NaN P NaN NaN NaN NaN NaN NaN NaN P N P N NaN P P N
REVIEW22 NaN NaN P NaN NaN NaN NaN NaN NaN NaN NaN N P P NaN P P P
REVIEW23 NaN NaN P NaN NaN NaN NaN NaN NaN NaN NaN P P P NaN NaN P N
REVIEW24 NaN NaN P NaN NaN NaN NaN NaN NaN NaN NaN P P N NaN NaN P N
REVIEW25 NaN NaN P NaN NaN NaN NaN NaN NaN NaN NaN P P P NaN NaN P N
REVIEW26 NaN NaN P NaN NaN NaN NaN NaN NaN NaN NaN P P P NaN NaN P N
REVIEW27 NaN NaN P NaN NaN NaN NaN NaN NaN NaN NaN P P P NaN NaN P N
REVIEW28 NaN NaN P NaN NaN NaN NaN NaN NaN NaN NaN P P P NaN NaN P P
REVIEW29 NaN NaN P NaN NaN NaN NaN NaN NaN NaN NaN P NaN N NaN NaN P N
REVIEW30 NaN NaN N NaN NaN NaN NaN NaN NaN NaN NaN P NaN P NaN NaN P N
REVIEW31 NaN NaN P NaN NaN NaN NaN NaN NaN NaN NaN P NaN P NaN NaN P P
REVIEW32 NaN NaN P NaN NaN NaN NaN NaN NaN NaN NaN P NaN N NaN NaN P N
REVIEW33 NaN NaN P NaN NaN NaN NaN NaN NaN NaN NaN P NaN N NaN NaN P P
REVIEW34 NaN NaN P NaN NaN NaN NaN NaN NaN NaN NaN P NaN NaN NaN NaN NaN P
REVIEW35 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN P NaN NaN NaN NaN NaN N
REVIEW36 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN P NaN NaN NaN NaN NaN N
REVIEW37 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN P NaN NaN NaN NaN NaN P
REVIEW38 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN P NaN NaN NaN NaN NaN NaN
REVIEW39 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN P NaN NaN NaN NaN NaN NaN
REVIEW40 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN P NaN NaN NaN NaN NaN NaN
REVIEW41 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN P NaN NaN NaN NaN NaN NaN
REVIEW42 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN N NaN NaN NaN NaN NaN NaN
REVIEW43 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN P NaN NaN NaN NaN NaN NaN
REVIEW44 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN P NaN NaN NaN NaN NaN NaN
REVIEW45 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN P NaN NaN NaN NaN NaN NaN
REVIEW46 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN P NaN NaN NaN NaN NaN NaN
REVIEW 99 0 1797 304 254 255 104 121 261 56 954 2177 1342 1458 597 1339 1605 1536

That is obviously wrong because only THREE people commented on Review1

ATTEMPT FUCKING 6:

I clap emoji hate clap emoji everything clap emoji
df = pd.DataFrame({'Turker': even_cleaner_df['T_ID'].tolist(),
                   'SENTIMENT': even_cleaner_df['ReviewID'].tolist(),
                   'REVIEW': even_cleaner_df['sentiment'].tolist() })

grouped = df.groupby('Turker')
values = grouped['REVIEW'].agg('sum')
id_df = grouped['SENTIMENT'].apply(lambda x: pd.Series(x.values)).unstack()
id_df = id_df.rename(columns={i: 'REVIEW{}'.format(i + 1) for i in range(id_df.shape[1])})
result = pd.concat([id_df, values], axis=1)
result_df = pd.DataFrame(result)
print(result_df.T[:5])
Turker   T_0  T_1 T_10 T_11 T_12 T_13 T_14 T_15 T_16 T_17 T_2 T_3 T_4 T_5 T_6  \
REVIEW1    0    0    6   11   13   15   28   29   39   56   0   1   1   2   2   
REVIEW2   11  NaN    8   47   25   19   76   92   58  NaN   1   3   7   3  31   
REVIEW3   42  NaN   14   55   29   44  NaN  NaN   70  NaN   8   4   9   4  50   
REVIEW4   46  NaN   15   95   57   80  NaN  NaN   94  NaN  10   5  12   5  51   
REVIEW5  NaN  NaN   18   96   59   97  NaN  NaN  NaN  NaN  16   7  17  12  62   

Turker  T_7 T_8 T_9  
REVIEW1   2   3   5  
REVIEW2   8   4   6  
REVIEW3   9   6   7  
REVIEW4  24  12   9  
REVIEW5  34  15  10  
df = pd.DataFrame(result_df.T)
df[:5]
Turker SENTIMENT REVIEW
0 T_0 0 N
1 T_1 0 N
2 T_2 0 N
3 T_3 1 N
4 T_2 1 N

I want every review on the left side and I want all 46 turkers on the top

df = pd.DataFrame({ 'review': even_cleaner_df['ReviewID']})

Attempt 7: After eating some food and having a calm down

def get_array_of_reviews(turker, df):
    a = ['nan']*98
    df = even_cleaner_df[even_cleaner_df['T_ID'] == turker] 
    t_reviews = df['ReviewID'].tolist()
    t_sentiment = df['sentiment'].tolist()
    for index,review in enumerate(t_reviews):
        a[review] = t_sentiment[index]
    print(t_reviews)

    return a

sparse_df = even_cleaner_df.copy()
sparse_df['big_array'] = sparse_df.apply(lambda x: get_array_of_reviews(x['T_ID'], even_cleaner_df), axis=1)
# t0 = even_cleaner_df[even_cleaner_df['T_ID'] == 'T_0']
[0, 11, 42, 46]
[0]
[0, 1, 8, 10, 16, 21, 27, 32, 36, 37, 45, 47, 50, 64, 66, 72, 75, 83, 85, 86, 93]
[1, 3, 4, 5, 7, 10, 14, 16, 17, 19, 22, 23, 26, 28, 30, 34, 35, 36, 38, 40, 44, 46, 48, 49, 54, 55, 57, 58, 60, 61, 63, 64, 65, 70, 71, 73, 74, 75, 77, 79, 82, 85, 86, 88, 90, 95]
[0, 1, 8, 10, 16, 21, 27, 32, 36, 37, 45, 47, 50, 64, 66, 72, 75, 83, 85, 86, 93]
[1, 7, 9, 12, 17, 19, 27, 29, 30, 33, 40, 41, 42, 45, 47, 48, 50, 55, 61, 65, 69, 73, 77, 78, 87, 90, 93, 97]
[2, 3, 4, 5, 12, 13, 14, 20, 22, 24, 26, 28, 31, 36, 39, 43, 45, 46, 48, 49, 52, 53, 54, 56, 58, 72, 75, 78, 85, 87, 88, 94, 96]
[2, 31, 50, 51, 62, 63, 74, 84, 89, 91]
[2, 8, 9, 24, 34, 39, 43, 51, 56, 60, 63, 64, 82, 83, 84, 86, 88, 89, 91, 92, 95, 96]
[3, 4, 6, 12, 15, 18, 20, 24, 25, 27, 31, 32, 34, 37, 38, 40, 43, 59, 61, 62, 66, 67, 68, 72, 73, 76, 78, 79, 80, 81, 89, 92, 93]
[2, 3, 4, 5, 12, 13, 14, 20, 22, 24, 26, 28, 31, 36, 39, 43, 45, 46, 48, 49, 52, 53, 54, 56, 58, 72, 75, 78, 85, 87, 88, 94, 96]
[1, 3, 4, 5, 7, 10, 14, 16, 17, 19, 22, 23, 26, 28, 30, 34, 35, 36, 38, 40, 44, 46, 48, 49, 54, 55, 57, 58, 60, 61, 63, 64, 65, 70, 71, 73, 74, 75, 77, 79, 82, 85, 86, 88, 90, 95]
[2, 3, 4, 5, 12, 13, 14, 20, 22, 24, 26, 28, 31, 36, 39, 43, 45, 46, 48, 49, 52, 53, 54, 56, 58, 72, 75, 78, 85, 87, 88, 94, 96]
[1, 3, 4, 5, 7, 10, 14, 16, 17, 19, 22, 23, 26, 28, 30, 34, 35, 36, 38, 40, 44, 46, 48, 49, 54, 55, 57, 58, 60, 61, 63, 64, 65, 70, 71, 73, 74, 75, 77, 79, 82, 85, 86, 88, 90, 95]
[3, 4, 6, 12, 15, 18, 20, 24, 25, 27, 31, 32, 34, 37, 38, 40, 43, 59, 61, 62, 66, 67, 68, 72, 73, 76, 78, 79, 80, 81, 89, 92, 93]
[2, 3, 4, 5, 12, 13, 14, 20, 22, 24, 26, 28, 31, 36, 39, 43, 45, 46, 48, 49, 52, 53, 54, 56, 58, 72, 75, 78, 85, 87, 88, 94, 96]
[1, 3, 4, 5, 7, 10, 14, 16, 17, 19, 22, 23, 26, 28, 30, 34, 35, 36, 38, 40, 44, 46, 48, 49, 54, 55, 57, 58, 60, 61, 63, 64, 65, 70, 71, 73, 74, 75, 77, 79, 82, 85, 86, 88, 90, 95]
[5, 6, 7, 9, 10, 11, 13, 16, 17, 18, 21, 23, 25, 30, 32, 33, 35, 37, 38, 41, 44, 49, 52, 53, 54, 57, 65, 66, 67, 68, 69, 70, 71, 76, 81, 83, 84]
[6, 8, 14, 15, 18, 20, 21, 22, 23, 26, 33, 35, 41, 42, 51, 52, 53, 59, 60, 62, 67, 68, 69, 74, 77, 79, 80, 81, 82, 87, 90, 91, 94, 97]
[5, 6, 7, 9, 10, 11, 13, 16, 17, 18, 21, 23, 25, 30, 32, 33, 35, 37, 38, 41, 44, 49, 52, 53, 54, 57, 65, 66, 67, 68, 69, 70, 71, 76, 81, 83, 84]
[3, 4, 6, 12, 15, 18, 20, 24, 25, 27, 31, 32, 34, 37, 38, 40, 43, 59, 61, 62, 66, 67, 68, 72, 73, 76, 78, 79, 80, 81, 89, 92, 93]
[1, 3, 4, 5, 7, 10, 14, 16, 17, 19, 22, 23, 26, 28, 30, 34, 35, 36, 38, 40, 44, 46, 48, 49, 54, 55, 57, 58, 60, 61, 63, 64, 65, 70, 71, 73, 74, 75, 77, 79, 82, 85, 86, 88, 90, 95]
[5, 6, 7, 9, 10, 11, 13, 16, 17, 18, 21, 23, 25, 30, 32, 33, 35, 37, 38, 41, 44, 49, 52, 53, 54, 57, 65, 66, 67, 68, 69, 70, 71, 76, 81, 83, 84]
[1, 7, 9, 12, 17, 19, 27, 29, 30, 33, 40, 41, 42, 45, 47, 48, 50, 55, 61, 65, 69, 73, 77, 78, 87, 90, 93, 97]
[2, 8, 9, 24, 34, 39, 43, 51, 56, 60, 63, 64, 82, 83, 84, 86, 88, 89, 91, 92, 95, 96]
[6, 8, 14, 15, 18, 20, 21, 22, 23, 26, 33, 35, 41, 42, 51, 52, 53, 59, 60, 62, 67, 68, 69, 74, 77, 79, 80, 81, 82, 87, 90, 91, 94, 97]
[0, 1, 8, 10, 16, 21, 27, 32, 36, 37, 45, 47, 50, 64, 66, 72, 75, 83, 85, 86, 93]
[5, 6, 7, 9, 10, 11, 13, 16, 17, 18, 21, 23, 25, 30, 32, 33, 35, 37, 38, 41, 44, 49, 52, 53, 54, 57, 65, 66, 67, 68, 69, 70, 71, 76, 81, 83, 84]
[2, 8, 9, 24, 34, 39, 43, 51, 56, 60, 63, 64, 82, 83, 84, 86, 88, 89, 91, 92, 95, 96]
[1, 7, 9, 12, 17, 19, 27, 29, 30, 33, 40, 41, 42, 45, 47, 48, 50, 55, 61, 65, 69, 73, 77, 78, 87, 90, 93, 97]
[5, 6, 7, 9, 10, 11, 13, 16, 17, 18, 21, 23, 25, 30, 32, 33, 35, 37, 38, 41, 44, 49, 52, 53, 54, 57, 65, 66, 67, 68, 69, 70, 71, 76, 81, 83, 84]
[1, 3, 4, 5, 7, 10, 14, 16, 17, 19, 22, 23, 26, 28, 30, 34, 35, 36, 38, 40, 44, 46, 48, 49, 54, 55, 57, 58, 60, 61, 63, 64, 65, 70, 71, 73, 74, 75, 77, 79, 82, 85, 86, 88, 90, 95]
[0, 1, 8, 10, 16, 21, 27, 32, 36, 37, 45, 47, 50, 64, 66, 72, 75, 83, 85, 86, 93]
[11, 47, 55, 95, 96]
[0, 11, 42, 46]
[5, 6, 7, 9, 10, 11, 13, 16, 17, 18, 21, 23, 25, 30, 32, 33, 35, 37, 38, 41, 44, 49, 52, 53, 54, 57, 65, 66, 67, 68, 69, 70, 71, 76, 81, 83, 84]
[1, 7, 9, 12, 17, 19, 27, 29, 30, 33, 40, 41, 42, 45, 47, 48, 50, 55, 61, 65, 69, 73, 77, 78, 87, 90, 93, 97]
[3, 4, 6, 12, 15, 18, 20, 24, 25, 27, 31, 32, 34, 37, 38, 40, 43, 59, 61, 62, 66, 67, 68, 72, 73, 76, 78, 79, 80, 81, 89, 92, 93]
[2, 3, 4, 5, 12, 13, 14, 20, 22, 24, 26, 28, 31, 36, 39, 43, 45, 46, 48, 49, 52, 53, 54, 56, 58, 72, 75, 78, 85, 87, 88, 94, 96]
[2, 3, 4, 5, 12, 13, 14, 20, 22, 24, 26, 28, 31, 36, 39, 43, 45, 46, 48, 49, 52, 53, 54, 56, 58, 72, 75, 78, 85, 87, 88, 94, 96]
[5, 6, 7, 9, 10, 11, 13, 16, 17, 18, 21, 23, 25, 30, 32, 33, 35, 37, 38, 41, 44, 49, 52, 53, 54, 57, 65, 66, 67, 68, 69, 70, 71, 76, 81, 83, 84]
[13, 25, 29, 57, 59, 71]
[2, 3, 4, 5, 12, 13, 14, 20, 22, 24, 26, 28, 31, 36, 39, 43, 45, 46, 48, 49, 52, 53, 54, 56, 58, 72, 75, 78, 85, 87, 88, 94, 96]
[1, 3, 4, 5, 7, 10, 14, 16, 17, 19, 22, 23, 26, 28, 30, 34, 35, 36, 38, 40, 44, 46, 48, 49, 54, 55, 57, 58, 60, 61, 63, 64, 65, 70, 71, 73, 74, 75, 77, 79, 82, 85, 86, 88, 90, 95]
[6, 8, 14, 15, 18, 20, 21, 22, 23, 26, 33, 35, 41, 42, 51, 52, 53, 59, 60, 62, 67, 68, 69, 74, 77, 79, 80, 81, 82, 87, 90, 91, 94, 97]
[3, 4, 6, 12, 15, 18, 20, 24, 25, 27, 31, 32, 34, 37, 38, 40, 43, 59, 61, 62, 66, 67, 68, 72, 73, 76, 78, 79, 80, 81, 89, 92, 93]
[6, 8, 14, 15, 18, 20, 21, 22, 23, 26, 33, 35, 41, 42, 51, 52, 53, 59, 60, 62, 67, 68, 69, 74, 77, 79, 80, 81, 82, 87, 90, 91, 94, 97]
[15, 19, 44, 80, 97]
[5, 6, 7, 9, 10, 11, 13, 16, 17, 18, 21, 23, 25, 30, 32, 33, 35, 37, 38, 41, 44, 49, 52, 53, 54, 57, 65, 66, 67, 68, 69, 70, 71, 76, 81, 83, 84]
[1, 3, 4, 5, 7, 10, 14, 16, 17, 19, 22, 23, 26, 28, 30, 34, 35, 36, 38, 40, 44, 46, 48, 49, 54, 55, 57, 58, 60, 61, 63, 64, 65, 70, 71, 73, 74, 75, 77, 79, 82, 85, 86, 88, 90, 95]
[0, 1, 8, 10, 16, 21, 27, 32, 36, 37, 45, 47, 50, 64, 66, 72, 75, 83, 85, 86, 93]
[1, 3, 4, 5, 7, 10, 14, 16, 17, 19, 22, 23, 26, 28, 30, 34, 35, 36, 38, 40, 44, 46, 48, 49, 54, 55, 57, 58, 60, 61, 63, 64, 65, 70, 71, 73, 74, 75, 77, 79, 82, 85, 86, 88, 90, 95]
[5, 6, 7, 9, 10, 11, 13, 16, 17, 18, 21, 23, 25, 30, 32, 33, 35, 37, 38, 41, 44, 49, 52, 53, 54, 57, 65, 66, 67, 68, 69, 70, 71, 76, 81, 83, 84]
[1, 7, 9, 12, 17, 19, 27, 29, 30, 33, 40, 41, 42, 45, 47, 48, 50, 55, 61, 65, 69, 73, 77, 78, 87, 90, 93, 97]
[5, 6, 7, 9, 10, 11, 13, 16, 17, 18, 21, 23, 25, 30, 32, 33, 35, 37, 38, 41, 44, 49, 52, 53, 54, 57, 65, 66, 67, 68, 69, 70, 71, 76, 81, 83, 84]
[3, 4, 6, 12, 15, 18, 20, 24, 25, 27, 31, 32, 34, 37, 38, 40, 43, 59, 61, 62, 66, 67, 68, 72, 73, 76, 78, 79, 80, 81, 89, 92, 93]
[6, 8, 14, 15, 18, 20, 21, 22, 23, 26, 33, 35, 41, 42, 51, 52, 53, 59, 60, 62, 67, 68, 69, 74, 77, 79, 80, 81, 82, 87, 90, 91, 94, 97]
[1, 3, 4, 5, 7, 10, 14, 16, 17, 19, 22, 23, 26, 28, 30, 34, 35, 36, 38, 40, 44, 46, 48, 49, 54, 55, 57, 58, 60, 61, 63, 64, 65, 70, 71, 73, 74, 75, 77, 79, 82, 85, 86, 88, 90, 95]
[15, 19, 44, 80, 97]
[1, 7, 9, 12, 17, 19, 27, 29, 30, 33, 40, 41, 42, 45, 47, 48, 50, 55, 61, 65, 69, 73, 77, 78, 87, 90, 93, 97]
[6, 8, 14, 15, 18, 20, 21, 22, 23, 26, 33, 35, 41, 42, 51, 52, 53, 59, 60, 62, 67, 68, 69, 74, 77, 79, 80, 81, 82, 87, 90, 91, 94, 97]
[2, 3, 4, 5, 12, 13, 14, 20, 22, 24, 26, 28, 31, 36, 39, 43, 45, 46, 48, 49, 52, 53, 54, 56, 58, 72, 75, 78, 85, 87, 88, 94, 96]
[3, 4, 6, 12, 15, 18, 20, 24, 25, 27, 31, 32, 34, 37, 38, 40, 43, 59, 61, 62, 66, 67, 68, 72, 73, 76, 78, 79, 80, 81, 89, 92, 93]
[0, 1, 8, 10, 16, 21, 27, 32, 36, 37, 45, 47, 50, 64, 66, 72, 75, 83, 85, 86, 93]
[5, 6, 7, 9, 10, 11, 13, 16, 17, 18, 21, 23, 25, 30, 32, 33, 35, 37, 38, 41, 44, 49, 52, 53, 54, 57, 65, 66, 67, 68, 69, 70, 71, 76, 81, 83, 84]
[6, 8, 14, 15, 18, 20, 21, 22, 23, 26, 33, 35, 41, 42, 51, 52, 53, 59, 60, 62, 67, 68, 69, 74, 77, 79, 80, 81, 82, 87, 90, 91, 94, 97]
[1, 3, 4, 5, 7, 10, 14, 16, 17, 19, 22, 23, 26, 28, 30, 34, 35, 36, 38, 40, 44, 46, 48, 49, 54, 55, 57, 58, 60, 61, 63, 64, 65, 70, 71, 73, 74, 75, 77, 79, 82, 85, 86, 88, 90, 95]
[2, 3, 4, 5, 12, 13, 14, 20, 22, 24, 26, 28, 31, 36, 39, 43, 45, 46, 48, 49, 52, 53, 54, 56, 58, 72, 75, 78, 85, 87, 88, 94, 96]
[6, 8, 14, 15, 18, 20, 21, 22, 23, 26, 33, 35, 41, 42, 51, 52, 53, 59, 60, 62, 67, 68, 69, 74, 77, 79, 80, 81, 82, 87, 90, 91, 94, 97]
[1, 3, 4, 5, 7, 10, 14, 16, 17, 19, 22, 23, 26, 28, 30, 34, 35, 36, 38, 40, 44, 46, 48, 49, 54, 55, 57, 58, 60, 61, 63, 64, 65, 70, 71, 73, 74, 75, 77, 79, 82, 85, 86, 88, 90, 95]
[5, 6, 7, 9, 10, 11, 13, 16, 17, 18, 21, 23, 25, 30, 32, 33, 35, 37, 38, 41, 44, 49, 52, 53, 54, 57, 65, 66, 67, 68, 69, 70, 71, 76, 81, 83, 84]
[6, 8, 14, 15, 18, 20, 21, 22, 23, 26, 33, 35, 41, 42, 51, 52, 53, 59, 60, 62, 67, 68, 69, 74, 77, 79, 80, 81, 82, 87, 90, 91, 94, 97]
[2, 3, 4, 5, 12, 13, 14, 20, 22, 24, 26, 28, 31, 36, 39, 43, 45, 46, 48, 49, 52, 53, 54, 56, 58, 72, 75, 78, 85, 87, 88, 94, 96]
[3, 4, 6, 12, 15, 18, 20, 24, 25, 27, 31, 32, 34, 37, 38, 40, 43, 59, 61, 62, 66, 67, 68, 72, 73, 76, 78, 79, 80, 81, 89, 92, 93]
[2, 8, 9, 24, 34, 39, 43, 51, 56, 60, 63, 64, 82, 83, 84, 86, 88, 89, 91, 92, 95, 96]
[5, 6, 7, 9, 10, 11, 13, 16, 17, 18, 21, 23, 25, 30, 32, 33, 35, 37, 38, 41, 44, 49, 52, 53, 54, 57, 65, 66, 67, 68, 69, 70, 71, 76, 81, 83, 84]
[13, 25, 29, 57, 59, 71]
[3, 4, 6, 12, 15, 18, 20, 24, 25, 27, 31, 32, 34, 37, 38, 40, 43, 59, 61, 62, 66, 67, 68, 72, 73, 76, 78, 79, 80, 81, 89, 92, 93]
[6, 8, 14, 15, 18, 20, 21, 22, 23, 26, 33, 35, 41, 42, 51, 52, 53, 59, 60, 62, 67, 68, 69, 74, 77, 79, 80, 81, 82, 87, 90, 91, 94, 97]
[2, 3, 4, 5, 12, 13, 14, 20, 22, 24, 26, 28, 31, 36, 39, 43, 45, 46, 48, 49, 52, 53, 54, 56, 58, 72, 75, 78, 85, 87, 88, 94, 96]
[1, 3, 4, 5, 7, 10, 14, 16, 17, 19, 22, 23, 26, 28, 30, 34, 35, 36, 38, 40, 44, 46, 48, 49, 54, 55, 57, 58, 60, 61, 63, 64, 65, 70, 71, 73, 74, 75, 77, 79, 82, 85, 86, 88, 90, 95]
[1, 7, 9, 12, 17, 19, 27, 29, 30, 33, 40, 41, 42, 45, 47, 48, 50, 55, 61, 65, 69, 73, 77, 78, 87, 90, 93, 97]
[3, 4, 6, 12, 15, 18, 20, 24, 25, 27, 31, 32, 34, 37, 38, 40, 43, 59, 61, 62, 66, 67, 68, 72, 73, 76, 78, 79, 80, 81, 89, 92, 93]
[0, 1, 8, 10, 16, 21, 27, 32, 36, 37, 45, 47, 50, 64, 66, 72, 75, 83, 85, 86, 93]
[1, 3, 4, 5, 7, 10, 14, 16, 17, 19, 22, 23, 26, 28, 30, 34, 35, 36, 38, 40, 44, 46, 48, 49, 54, 55, 57, 58, 60, 61, 63, 64, 65, 70, 71, 73, 74, 75, 77, 79, 82, 85, 86, 88, 90, 95]
[28, 76]
[2, 3, 4, 5, 12, 13, 14, 20, 22, 24, 26, 28, 31, 36, 39, 43, 45, 46, 48, 49, 52, 53, 54, 56, 58, 72, 75, 78, 85, 87, 88, 94, 96]
[29, 92]
[13, 25, 29, 57, 59, 71]
[1, 7, 9, 12, 17, 19, 27, 29, 30, 33, 40, 41, 42, 45, 47, 48, 50, 55, 61, 65, 69, 73, 77, 78, 87, 90, 93, 97]
[1, 7, 9, 12, 17, 19, 27, 29, 30, 33, 40, 41, 42, 45, 47, 48, 50, 55, 61, 65, 69, 73, 77, 78, 87, 90, 93, 97]
[1, 3, 4, 5, 7, 10, 14, 16, 17, 19, 22, 23, 26, 28, 30, 34, 35, 36, 38, 40, 44, 46, 48, 49, 54, 55, 57, 58, 60, 61, 63, 64, 65, 70, 71, 73, 74, 75, 77, 79, 82, 85, 86, 88, 90, 95]
[5, 6, 7, 9, 10, 11, 13, 16, 17, 18, 21, 23, 25, 30, 32, 33, 35, 37, 38, 41, 44, 49, 52, 53, 54, 57, 65, 66, 67, 68, 69, 70, 71, 76, 81, 83, 84]
[3, 4, 6, 12, 15, 18, 20, 24, 25, 27, 31, 32, 34, 37, 38, 40, 43, 59, 61, 62, 66, 67, 68, 72, 73, 76, 78, 79, 80, 81, 89, 92, 93]
[2, 3, 4, 5, 12, 13, 14, 20, 22, 24, 26, 28, 31, 36, 39, 43, 45, 46, 48, 49, 52, 53, 54, 56, 58, 72, 75, 78, 85, 87, 88, 94, 96]
[2, 31, 50, 51, 62, 63, 74, 84, 89, 91]
[0, 1, 8, 10, 16, 21, 27, 32, 36, 37, 45, 47, 50, 64, 66, 72, 75, 83, 85, 86, 93]
[3, 4, 6, 12, 15, 18, 20, 24, 25, 27, 31, 32, 34, 37, 38, 40, 43, 59, 61, 62, 66, 67, 68, 72, 73, 76, 78, 79, 80, 81, 89, 92, 93]
[5, 6, 7, 9, 10, 11, 13, 16, 17, 18, 21, 23, 25, 30, 32, 33, 35, 37, 38, 41, 44, 49, 52, 53, 54, 57, 65, 66, 67, 68, 69, 70, 71, 76, 81, 83, 84]
[6, 8, 14, 15, 18, 20, 21, 22, 23, 26, 33, 35, 41, 42, 51, 52, 53, 59, 60, 62, 67, 68, 69, 74, 77, 79, 80, 81, 82, 87, 90, 91, 94, 97]
[1, 7, 9, 12, 17, 19, 27, 29, 30, 33, 40, 41, 42, 45, 47, 48, 50, 55, 61, 65, 69, 73, 77, 78, 87, 90, 93, 97]
[5, 6, 7, 9, 10, 11, 13, 16, 17, 18, 21, 23, 25, 30, 32, 33, 35, 37, 38, 41, 44, 49, 52, 53, 54, 57, 65, 66, 67, 68, 69, 70, 71, 76, 81, 83, 84]
[3, 4, 6, 12, 15, 18, 20, 24, 25, 27, 31, 32, 34, 37, 38, 40, 43, 59, 61, 62, 66, 67, 68, 72, 73, 76, 78, 79, 80, 81, 89, 92, 93]
[1, 3, 4, 5, 7, 10, 14, 16, 17, 19, 22, 23, 26, 28, 30, 34, 35, 36, 38, 40, 44, 46, 48, 49, 54, 55, 57, 58, 60, 61, 63, 64, 65, 70, 71, 73, 74, 75, 77, 79, 82, 85, 86, 88, 90, 95]
[2, 8, 9, 24, 34, 39, 43, 51, 56, 60, 63, 64, 82, 83, 84, 86, 88, 89, 91, 92, 95, 96]
[6, 8, 14, 15, 18, 20, 21, 22, 23, 26, 33, 35, 41, 42, 51, 52, 53, 59, 60, 62, 67, 68, 69, 74, 77, 79, 80, 81, 82, 87, 90, 91, 94, 97]
[1, 3, 4, 5, 7, 10, 14, 16, 17, 19, 22, 23, 26, 28, 30, 34, 35, 36, 38, 40, 44, 46, 48, 49, 54, 55, 57, 58, 60, 61, 63, 64, 65, 70, 71, 73, 74, 75, 77, 79, 82, 85, 86, 88, 90, 95]
[5, 6, 7, 9, 10, 11, 13, 16, 17, 18, 21, 23, 25, 30, 32, 33, 35, 37, 38, 41, 44, 49, 52, 53, 54, 57, 65, 66, 67, 68, 69, 70, 71, 76, 81, 83, 84]
[0, 1, 8, 10, 16, 21, 27, 32, 36, 37, 45, 47, 50, 64, 66, 72, 75, 83, 85, 86, 93]
[2, 3, 4, 5, 12, 13, 14, 20, 22, 24, 26, 28, 31, 36, 39, 43, 45, 46, 48, 49, 52, 53, 54, 56, 58, 72, 75, 78, 85, 87, 88, 94, 96]
[1, 3, 4, 5, 7, 10, 14, 16, 17, 19, 22, 23, 26, 28, 30, 34, 35, 36, 38, 40, 44, 46, 48, 49, 54, 55, 57, 58, 60, 61, 63, 64, 65, 70, 71, 73, 74, 75, 77, 79, 82, 85, 86, 88, 90, 95]
[3, 4, 6, 12, 15, 18, 20, 24, 25, 27, 31, 32, 34, 37, 38, 40, 43, 59, 61, 62, 66, 67, 68, 72, 73, 76, 78, 79, 80, 81, 89, 92, 93]
[5, 6, 7, 9, 10, 11, 13, 16, 17, 18, 21, 23, 25, 30, 32, 33, 35, 37, 38, 41, 44, 49, 52, 53, 54, 57, 65, 66, 67, 68, 69, 70, 71, 76, 81, 83, 84]
[0, 1, 8, 10, 16, 21, 27, 32, 36, 37, 45, 47, 50, 64, 66, 72, 75, 83, 85, 86, 93]
[5, 6, 7, 9, 10, 11, 13, 16, 17, 18, 21, 23, 25, 30, 32, 33, 35, 37, 38, 41, 44, 49, 52, 53, 54, 57, 65, 66, 67, 68, 69, 70, 71, 76, 81, 83, 84]
[3, 4, 6, 12, 15, 18, 20, 24, 25, 27, 31, 32, 34, 37, 38, 40, 43, 59, 61, 62, 66, 67, 68, 72, 73, 76, 78, 79, 80, 81, 89, 92, 93]
[1, 3, 4, 5, 7, 10, 14, 16, 17, 19, 22, 23, 26, 28, 30, 34, 35, 36, 38, 40, 44, 46, 48, 49, 54, 55, 57, 58, 60, 61, 63, 64, 65, 70, 71, 73, 74, 75, 77, 79, 82, 85, 86, 88, 90, 95]
[2, 8, 9, 24, 34, 39, 43, 51, 56, 60, 63, 64, 82, 83, 84, 86, 88, 89, 91, 92, 95, 96]
[2, 3, 4, 5, 12, 13, 14, 20, 22, 24, 26, 28, 31, 36, 39, 43, 45, 46, 48, 49, 52, 53, 54, 56, 58, 72, 75, 78, 85, 87, 88, 94, 96]
[39, 58, 70, 94]
[1, 7, 9, 12, 17, 19, 27, 29, 30, 33, 40, 41, 42, 45, 47, 48, 50, 55, 61, 65, 69, 73, 77, 78, 87, 90, 93, 97]
[1, 3, 4, 5, 7, 10, 14, 16, 17, 19, 22, 23, 26, 28, 30, 34, 35, 36, 38, 40, 44, 46, 48, 49, 54, 55, 57, 58, 60, 61, 63, 64, 65, 70, 71, 73, 74, 75, 77, 79, 82, 85, 86, 88, 90, 95]
[3, 4, 6, 12, 15, 18, 20, 24, 25, 27, 31, 32, 34, 37, 38, 40, 43, 59, 61, 62, 66, 67, 68, 72, 73, 76, 78, 79, 80, 81, 89, 92, 93]
[1, 7, 9, 12, 17, 19, 27, 29, 30, 33, 40, 41, 42, 45, 47, 48, 50, 55, 61, 65, 69, 73, 77, 78, 87, 90, 93, 97]
[6, 8, 14, 15, 18, 20, 21, 22, 23, 26, 33, 35, 41, 42, 51, 52, 53, 59, 60, 62, 67, 68, 69, 74, 77, 79, 80, 81, 82, 87, 90, 91, 94, 97]
[5, 6, 7, 9, 10, 11, 13, 16, 17, 18, 21, 23, 25, 30, 32, 33, 35, 37, 38, 41, 44, 49, 52, 53, 54, 57, 65, 66, 67, 68, 69, 70, 71, 76, 81, 83, 84]
[0, 11, 42, 46]
[1, 7, 9, 12, 17, 19, 27, 29, 30, 33, 40, 41, 42, 45, 47, 48, 50, 55, 61, 65, 69, 73, 77, 78, 87, 90, 93, 97]
[6, 8, 14, 15, 18, 20, 21, 22, 23, 26, 33, 35, 41, 42, 51, 52, 53, 59, 60, 62, 67, 68, 69, 74, 77, 79, 80, 81, 82, 87, 90, 91, 94, 97]
[2, 3, 4, 5, 12, 13, 14, 20, 22, 24, 26, 28, 31, 36, 39, 43, 45, 46, 48, 49, 52, 53, 54, 56, 58, 72, 75, 78, 85, 87, 88, 94, 96]
[2, 8, 9, 24, 34, 39, 43, 51, 56, 60, 63, 64, 82, 83, 84, 86, 88, 89, 91, 92, 95, 96]
[3, 4, 6, 12, 15, 18, 20, 24, 25, 27, 31, 32, 34, 37, 38, 40, 43, 59, 61, 62, 66, 67, 68, 72, 73, 76, 78, 79, 80, 81, 89, 92, 93]
[5, 6, 7, 9, 10, 11, 13, 16, 17, 18, 21, 23, 25, 30, 32, 33, 35, 37, 38, 41, 44, 49, 52, 53, 54, 57, 65, 66, 67, 68, 69, 70, 71, 76, 81, 83, 84]
[1, 3, 4, 5, 7, 10, 14, 16, 17, 19, 22, 23, 26, 28, 30, 34, 35, 36, 38, 40, 44, 46, 48, 49, 54, 55, 57, 58, 60, 61, 63, 64, 65, 70, 71, 73, 74, 75, 77, 79, 82, 85, 86, 88, 90, 95]
[15, 19, 44, 80, 97]
[2, 3, 4, 5, 12, 13, 14, 20, 22, 24, 26, 28, 31, 36, 39, 43, 45, 46, 48, 49, 52, 53, 54, 56, 58, 72, 75, 78, 85, 87, 88, 94, 96]
[1, 7, 9, 12, 17, 19, 27, 29, 30, 33, 40, 41, 42, 45, 47, 48, 50, 55, 61, 65, 69, 73, 77, 78, 87, 90, 93, 97]
[0, 1, 8, 10, 16, 21, 27, 32, 36, 37, 45, 47, 50, 64, 66, 72, 75, 83, 85, 86, 93]
[2, 3, 4, 5, 12, 13, 14, 20, 22, 24, 26, 28, 31, 36, 39, 43, 45, 46, 48, 49, 52, 53, 54, 56, 58, 72, 75, 78, 85, 87, 88, 94, 96]
[1, 3, 4, 5, 7, 10, 14, 16, 17, 19, 22, 23, 26, 28, 30, 34, 35, 36, 38, 40, 44, 46, 48, 49, 54, 55, 57, 58, 60, 61, 63, 64, 65, 70, 71, 73, 74, 75, 77, 79, 82, 85, 86, 88, 90, 95]
[0, 11, 42, 46]
[1, 7, 9, 12, 17, 19, 27, 29, 30, 33, 40, 41, 42, 45, 47, 48, 50, 55, 61, 65, 69, 73, 77, 78, 87, 90, 93, 97]
[11, 47, 55, 95, 96]
[0, 1, 8, 10, 16, 21, 27, 32, 36, 37, 45, 47, 50, 64, 66, 72, 75, 83, 85, 86, 93]
[1, 7, 9, 12, 17, 19, 27, 29, 30, 33, 40, 41, 42, 45, 47, 48, 50, 55, 61, 65, 69, 73, 77, 78, 87, 90, 93, 97]
[1, 3, 4, 5, 7, 10, 14, 16, 17, 19, 22, 23, 26, 28, 30, 34, 35, 36, 38, 40, 44, 46, 48, 49, 54, 55, 57, 58, 60, 61, 63, 64, 65, 70, 71, 73, 74, 75, 77, 79, 82, 85, 86, 88, 90, 95]
[2, 3, 4, 5, 12, 13, 14, 20, 22, 24, 26, 28, 31, 36, 39, 43, 45, 46, 48, 49, 52, 53, 54, 56, 58, 72, 75, 78, 85, 87, 88, 94, 96]
[5, 6, 7, 9, 10, 11, 13, 16, 17, 18, 21, 23, 25, 30, 32, 33, 35, 37, 38, 41, 44, 49, 52, 53, 54, 57, 65, 66, 67, 68, 69, 70, 71, 76, 81, 83, 84]
[1, 3, 4, 5, 7, 10, 14, 16, 17, 19, 22, 23, 26, 28, 30, 34, 35, 36, 38, 40, 44, 46, 48, 49, 54, 55, 57, 58, 60, 61, 63, 64, 65, 70, 71, 73, 74, 75, 77, 79, 82, 85, 86, 88, 90, 95]
[2, 3, 4, 5, 12, 13, 14, 20, 22, 24, 26, 28, 31, 36, 39, 43, 45, 46, 48, 49, 52, 53, 54, 56, 58, 72, 75, 78, 85, 87, 88, 94, 96]
[1, 7, 9, 12, 17, 19, 27, 29, 30, 33, 40, 41, 42, 45, 47, 48, 50, 55, 61, 65, 69, 73, 77, 78, 87, 90, 93, 97]
[0, 1, 8, 10, 16, 21, 27, 32, 36, 37, 45, 47, 50, 64, 66, 72, 75, 83, 85, 86, 93]
[2, 31, 50, 51, 62, 63, 74, 84, 89, 91]
[2, 8, 9, 24, 34, 39, 43, 51, 56, 60, 63, 64, 82, 83, 84, 86, 88, 89, 91, 92, 95, 96]
[6, 8, 14, 15, 18, 20, 21, 22, 23, 26, 33, 35, 41, 42, 51, 52, 53, 59, 60, 62, 67, 68, 69, 74, 77, 79, 80, 81, 82, 87, 90, 91, 94, 97]
[2, 31, 50, 51, 62, 63, 74, 84, 89, 91]
[6, 8, 14, 15, 18, 20, 21, 22, 23, 26, 33, 35, 41, 42, 51, 52, 53, 59, 60, 62, 67, 68, 69, 74, 77, 79, 80, 81, 82, 87, 90, 91, 94, 97]
[5, 6, 7, 9, 10, 11, 13, 16, 17, 18, 21, 23, 25, 30, 32, 33, 35, 37, 38, 41, 44, 49, 52, 53, 54, 57, 65, 66, 67, 68, 69, 70, 71, 76, 81, 83, 84]
[2, 3, 4, 5, 12, 13, 14, 20, 22, 24, 26, 28, 31, 36, 39, 43, 45, 46, 48, 49, 52, 53, 54, 56, 58, 72, 75, 78, 85, 87, 88, 94, 96]
[2, 3, 4, 5, 12, 13, 14, 20, 22, 24, 26, 28, 31, 36, 39, 43, 45, 46, 48, 49, 52, 53, 54, 56, 58, 72, 75, 78, 85, 87, 88, 94, 96]
[5, 6, 7, 9, 10, 11, 13, 16, 17, 18, 21, 23, 25, 30, 32, 33, 35, 37, 38, 41, 44, 49, 52, 53, 54, 57, 65, 66, 67, 68, 69, 70, 71, 76, 81, 83, 84]
[6, 8, 14, 15, 18, 20, 21, 22, 23, 26, 33, 35, 41, 42, 51, 52, 53, 59, 60, 62, 67, 68, 69, 74, 77, 79, 80, 81, 82, 87, 90, 91, 94, 97]
[2, 3, 4, 5, 12, 13, 14, 20, 22, 24, 26, 28, 31, 36, 39, 43, 45, 46, 48, 49, 52, 53, 54, 56, 58, 72, 75, 78, 85, 87, 88, 94, 96]
[1, 3, 4, 5, 7, 10, 14, 16, 17, 19, 22, 23, 26, 28, 30, 34, 35, 36, 38, 40, 44, 46, 48, 49, 54, 55, 57, 58, 60, 61, 63, 64, 65, 70, 71, 73, 74, 75, 77, 79, 82, 85, 86, 88, 90, 95]
[5, 6, 7, 9, 10, 11, 13, 16, 17, 18, 21, 23, 25, 30, 32, 33, 35, 37, 38, 41, 44, 49, 52, 53, 54, 57, 65, 66, 67, 68, 69, 70, 71, 76, 81, 83, 84]
[1, 3, 4, 5, 7, 10, 14, 16, 17, 19, 22, 23, 26, 28, 30, 34, 35, 36, 38, 40, 44, 46, 48, 49, 54, 55, 57, 58, 60, 61, 63, 64, 65, 70, 71, 73, 74, 75, 77, 79, 82, 85, 86, 88, 90, 95]
[1, 7, 9, 12, 17, 19, 27, 29, 30, 33, 40, 41, 42, 45, 47, 48, 50, 55, 61, 65, 69, 73, 77, 78, 87, 90, 93, 97]
[11, 47, 55, 95, 96]
[56]
[2, 3, 4, 5, 12, 13, 14, 20, 22, 24, 26, 28, 31, 36, 39, 43, 45, 46, 48, 49, 52, 53, 54, 56, 58, 72, 75, 78, 85, 87, 88, 94, 96]
[2, 8, 9, 24, 34, 39, 43, 51, 56, 60, 63, 64, 82, 83, 84, 86, 88, 89, 91, 92, 95, 96]
[5, 6, 7, 9, 10, 11, 13, 16, 17, 18, 21, 23, 25, 30, 32, 33, 35, 37, 38, 41, 44, 49, 52, 53, 54, 57, 65, 66, 67, 68, 69, 70, 71, 76, 81, 83, 84]
[1, 3, 4, 5, 7, 10, 14, 16, 17, 19, 22, 23, 26, 28, 30, 34, 35, 36, 38, 40, 44, 46, 48, 49, 54, 55, 57, 58, 60, 61, 63, 64, 65, 70, 71, 73, 74, 75, 77, 79, 82, 85, 86, 88, 90, 95]
[13, 25, 29, 57, 59, 71]
[2, 3, 4, 5, 12, 13, 14, 20, 22, 24, 26, 28, 31, 36, 39, 43, 45, 46, 48, 49, 52, 53, 54, 56, 58, 72, 75, 78, 85, 87, 88, 94, 96]
[39, 58, 70, 94]
[1, 3, 4, 5, 7, 10, 14, 16, 17, 19, 22, 23, 26, 28, 30, 34, 35, 36, 38, 40, 44, 46, 48, 49, 54, 55, 57, 58, 60, 61, 63, 64, 65, 70, 71, 73, 74, 75, 77, 79, 82, 85, 86, 88, 90, 95]
[3, 4, 6, 12, 15, 18, 20, 24, 25, 27, 31, 32, 34, 37, 38, 40, 43, 59, 61, 62, 66, 67, 68, 72, 73, 76, 78, 79, 80, 81, 89, 92, 93]
[6, 8, 14, 15, 18, 20, 21, 22, 23, 26, 33, 35, 41, 42, 51, 52, 53, 59, 60, 62, 67, 68, 69, 74, 77, 79, 80, 81, 82, 87, 90, 91, 94, 97]
[13, 25, 29, 57, 59, 71]
[1, 3, 4, 5, 7, 10, 14, 16, 17, 19, 22, 23, 26, 28, 30, 34, 35, 36, 38, 40, 44, 46, 48, 49, 54, 55, 57, 58, 60, 61, 63, 64, 65, 70, 71, 73, 74, 75, 77, 79, 82, 85, 86, 88, 90, 95]
[6, 8, 14, 15, 18, 20, 21, 22, 23, 26, 33, 35, 41, 42, 51, 52, 53, 59, 60, 62, 67, 68, 69, 74, 77, 79, 80, 81, 82, 87, 90, 91, 94, 97]
[2, 8, 9, 24, 34, 39, 43, 51, 56, 60, 63, 64, 82, 83, 84, 86, 88, 89, 91, 92, 95, 96]
[3, 4, 6, 12, 15, 18, 20, 24, 25, 27, 31, 32, 34, 37, 38, 40, 43, 59, 61, 62, 66, 67, 68, 72, 73, 76, 78, 79, 80, 81, 89, 92, 93]
[1, 3, 4, 5, 7, 10, 14, 16, 17, 19, 22, 23, 26, 28, 30, 34, 35, 36, 38, 40, 44, 46, 48, 49, 54, 55, 57, 58, 60, 61, 63, 64, 65, 70, 71, 73, 74, 75, 77, 79, 82, 85, 86, 88, 90, 95]
[1, 7, 9, 12, 17, 19, 27, 29, 30, 33, 40, 41, 42, 45, 47, 48, 50, 55, 61, 65, 69, 73, 77, 78, 87, 90, 93, 97]
[6, 8, 14, 15, 18, 20, 21, 22, 23, 26, 33, 35, 41, 42, 51, 52, 53, 59, 60, 62, 67, 68, 69, 74, 77, 79, 80, 81, 82, 87, 90, 91, 94, 97]
[2, 31, 50, 51, 62, 63, 74, 84, 89, 91]
[3, 4, 6, 12, 15, 18, 20, 24, 25, 27, 31, 32, 34, 37, 38, 40, 43, 59, 61, 62, 66, 67, 68, 72, 73, 76, 78, 79, 80, 81, 89, 92, 93]
[2, 8, 9, 24, 34, 39, 43, 51, 56, 60, 63, 64, 82, 83, 84, 86, 88, 89, 91, 92, 95, 96]
[1, 3, 4, 5, 7, 10, 14, 16, 17, 19, 22, 23, 26, 28, 30, 34, 35, 36, 38, 40, 44, 46, 48, 49, 54, 55, 57, 58, 60, 61, 63, 64, 65, 70, 71, 73, 74, 75, 77, 79, 82, 85, 86, 88, 90, 95]
[2, 31, 50, 51, 62, 63, 74, 84, 89, 91]
[1, 3, 4, 5, 7, 10, 14, 16, 17, 19, 22, 23, 26, 28, 30, 34, 35, 36, 38, 40, 44, 46, 48, 49, 54, 55, 57, 58, 60, 61, 63, 64, 65, 70, 71, 73, 74, 75, 77, 79, 82, 85, 86, 88, 90, 95]
[2, 8, 9, 24, 34, 39, 43, 51, 56, 60, 63, 64, 82, 83, 84, 86, 88, 89, 91, 92, 95, 96]
[0, 1, 8, 10, 16, 21, 27, 32, 36, 37, 45, 47, 50, 64, 66, 72, 75, 83, 85, 86, 93]
[1, 3, 4, 5, 7, 10, 14, 16, 17, 19, 22, 23, 26, 28, 30, 34, 35, 36, 38, 40, 44, 46, 48, 49, 54, 55, 57, 58, 60, 61, 63, 64, 65, 70, 71, 73, 74, 75, 77, 79, 82, 85, 86, 88, 90, 95]
[1, 7, 9, 12, 17, 19, 27, 29, 30, 33, 40, 41, 42, 45, 47, 48, 50, 55, 61, 65, 69, 73, 77, 78, 87, 90, 93, 97]
[5, 6, 7, 9, 10, 11, 13, 16, 17, 18, 21, 23, 25, 30, 32, 33, 35, 37, 38, 41, 44, 49, 52, 53, 54, 57, 65, 66, 67, 68, 69, 70, 71, 76, 81, 83, 84]
[0, 1, 8, 10, 16, 21, 27, 32, 36, 37, 45, 47, 50, 64, 66, 72, 75, 83, 85, 86, 93]
[5, 6, 7, 9, 10, 11, 13, 16, 17, 18, 21, 23, 25, 30, 32, 33, 35, 37, 38, 41, 44, 49, 52, 53, 54, 57, 65, 66, 67, 68, 69, 70, 71, 76, 81, 83, 84]
[3, 4, 6, 12, 15, 18, 20, 24, 25, 27, 31, 32, 34, 37, 38, 40, 43, 59, 61, 62, 66, 67, 68, 72, 73, 76, 78, 79, 80, 81, 89, 92, 93]
[5, 6, 7, 9, 10, 11, 13, 16, 17, 18, 21, 23, 25, 30, 32, 33, 35, 37, 38, 41, 44, 49, 52, 53, 54, 57, 65, 66, 67, 68, 69, 70, 71, 76, 81, 83, 84]
[6, 8, 14, 15, 18, 20, 21, 22, 23, 26, 33, 35, 41, 42, 51, 52, 53, 59, 60, 62, 67, 68, 69, 74, 77, 79, 80, 81, 82, 87, 90, 91, 94, 97]
[3, 4, 6, 12, 15, 18, 20, 24, 25, 27, 31, 32, 34, 37, 38, 40, 43, 59, 61, 62, 66, 67, 68, 72, 73, 76, 78, 79, 80, 81, 89, 92, 93]
[5, 6, 7, 9, 10, 11, 13, 16, 17, 18, 21, 23, 25, 30, 32, 33, 35, 37, 38, 41, 44, 49, 52, 53, 54, 57, 65, 66, 67, 68, 69, 70, 71, 76, 81, 83, 84]
[3, 4, 6, 12, 15, 18, 20, 24, 25, 27, 31, 32, 34, 37, 38, 40, 43, 59, 61, 62, 66, 67, 68, 72, 73, 76, 78, 79, 80, 81, 89, 92, 93]
[6, 8, 14, 15, 18, 20, 21, 22, 23, 26, 33, 35, 41, 42, 51, 52, 53, 59, 60, 62, 67, 68, 69, 74, 77, 79, 80, 81, 82, 87, 90, 91, 94, 97]
[6, 8, 14, 15, 18, 20, 21, 22, 23, 26, 33, 35, 41, 42, 51, 52, 53, 59, 60, 62, 67, 68, 69, 74, 77, 79, 80, 81, 82, 87, 90, 91, 94, 97]
[1, 7, 9, 12, 17, 19, 27, 29, 30, 33, 40, 41, 42, 45, 47, 48, 50, 55, 61, 65, 69, 73, 77, 78, 87, 90, 93, 97]
[5, 6, 7, 9, 10, 11, 13, 16, 17, 18, 21, 23, 25, 30, 32, 33, 35, 37, 38, 41, 44, 49, 52, 53, 54, 57, 65, 66, 67, 68, 69, 70, 71, 76, 81, 83, 84]
[5, 6, 7, 9, 10, 11, 13, 16, 17, 18, 21, 23, 25, 30, 32, 33, 35, 37, 38, 41, 44, 49, 52, 53, 54, 57, 65, 66, 67, 68, 69, 70, 71, 76, 81, 83, 84]
[1, 3, 4, 5, 7, 10, 14, 16, 17, 19, 22, 23, 26, 28, 30, 34, 35, 36, 38, 40, 44, 46, 48, 49, 54, 55, 57, 58, 60, 61, 63, 64, 65, 70, 71, 73, 74, 75, 77, 79, 82, 85, 86, 88, 90, 95]
[39, 58, 70, 94]
[1, 3, 4, 5, 7, 10, 14, 16, 17, 19, 22, 23, 26, 28, 30, 34, 35, 36, 38, 40, 44, 46, 48, 49, 54, 55, 57, 58, 60, 61, 63, 64, 65, 70, 71, 73, 74, 75, 77, 79, 82, 85, 86, 88, 90, 95]
[13, 25, 29, 57, 59, 71]
[5, 6, 7, 9, 10, 11, 13, 16, 17, 18, 21, 23, 25, 30, 32, 33, 35, 37, 38, 41, 44, 49, 52, 53, 54, 57, 65, 66, 67, 68, 69, 70, 71, 76, 81, 83, 84]
[2, 3, 4, 5, 12, 13, 14, 20, 22, 24, 26, 28, 31, 36, 39, 43, 45, 46, 48, 49, 52, 53, 54, 56, 58, 72, 75, 78, 85, 87, 88, 94, 96]
[3, 4, 6, 12, 15, 18, 20, 24, 25, 27, 31, 32, 34, 37, 38, 40, 43, 59, 61, 62, 66, 67, 68, 72, 73, 76, 78, 79, 80, 81, 89, 92, 93]
[0, 1, 8, 10, 16, 21, 27, 32, 36, 37, 45, 47, 50, 64, 66, 72, 75, 83, 85, 86, 93]
[1, 3, 4, 5, 7, 10, 14, 16, 17, 19, 22, 23, 26, 28, 30, 34, 35, 36, 38, 40, 44, 46, 48, 49, 54, 55, 57, 58, 60, 61, 63, 64, 65, 70, 71, 73, 74, 75, 77, 79, 82, 85, 86, 88, 90, 95]
[3, 4, 6, 12, 15, 18, 20, 24, 25, 27, 31, 32, 34, 37, 38, 40, 43, 59, 61, 62, 66, 67, 68, 72, 73, 76, 78, 79, 80, 81, 89, 92, 93]
[1, 7, 9, 12, 17, 19, 27, 29, 30, 33, 40, 41, 42, 45, 47, 48, 50, 55, 61, 65, 69, 73, 77, 78, 87, 90, 93, 97]
[2, 31, 50, 51, 62, 63, 74, 84, 89, 91]
[1, 3, 4, 5, 7, 10, 14, 16, 17, 19, 22, 23, 26, 28, 30, 34, 35, 36, 38, 40, 44, 46, 48, 49, 54, 55, 57, 58, 60, 61, 63, 64, 65, 70, 71, 73, 74, 75, 77, 79, 82, 85, 86, 88, 90, 95]
[6, 8, 14, 15, 18, 20, 21, 22, 23, 26, 33, 35, 41, 42, 51, 52, 53, 59, 60, 62, 67, 68, 69, 74, 77, 79, 80, 81, 82, 87, 90, 91, 94, 97]
[0, 1, 8, 10, 16, 21, 27, 32, 36, 37, 45, 47, 50, 64, 66, 72, 75, 83, 85, 86, 93]
[1, 3, 4, 5, 7, 10, 14, 16, 17, 19, 22, 23, 26, 28, 30, 34, 35, 36, 38, 40, 44, 46, 48, 49, 54, 55, 57, 58, 60, 61, 63, 64, 65, 70, 71, 73, 74, 75, 77, 79, 82, 85, 86, 88, 90, 95]
[2, 3, 4, 5, 12, 13, 14, 20, 22, 24, 26, 28, 31, 36, 39, 43, 45, 46, 48, 49, 52, 53, 54, 56, 58, 72, 75, 78, 85, 87, 88, 94, 96]
[5, 6, 7, 9, 10, 11, 13, 16, 17, 18, 21, 23, 25, 30, 32, 33, 35, 37, 38, 41, 44, 49, 52, 53, 54, 57, 65, 66, 67, 68, 69, 70, 71, 76, 81, 83, 84]
[3, 4, 6, 12, 15, 18, 20, 24, 25, 27, 31, 32, 34, 37, 38, 40, 43, 59, 61, 62, 66, 67, 68, 72, 73, 76, 78, 79, 80, 81, 89, 92, 93]
[28, 76]
[6, 8, 14, 15, 18, 20, 21, 22, 23, 26, 33, 35, 41, 42, 51, 52, 53, 59, 60, 62, 67, 68, 69, 74, 77, 79, 80, 81, 82, 87, 90, 91, 94, 97]
[1, 3, 4, 5, 7, 10, 14, 16, 17, 19, 22, 23, 26, 28, 30, 34, 35, 36, 38, 40, 44, 46, 48, 49, 54, 55, 57, 58, 60, 61, 63, 64, 65, 70, 71, 73, 74, 75, 77, 79, 82, 85, 86, 88, 90, 95]
[1, 7, 9, 12, 17, 19, 27, 29, 30, 33, 40, 41, 42, 45, 47, 48, 50, 55, 61, 65, 69, 73, 77, 78, 87, 90, 93, 97]
[3, 4, 6, 12, 15, 18, 20, 24, 25, 27, 31, 32, 34, 37, 38, 40, 43, 59, 61, 62, 66, 67, 68, 72, 73, 76, 78, 79, 80, 81, 89, 92, 93]
[1, 7, 9, 12, 17, 19, 27, 29, 30, 33, 40, 41, 42, 45, 47, 48, 50, 55, 61, 65, 69, 73, 77, 78, 87, 90, 93, 97]
[2, 3, 4, 5, 12, 13, 14, 20, 22, 24, 26, 28, 31, 36, 39, 43, 45, 46, 48, 49, 52, 53, 54, 56, 58, 72, 75, 78, 85, 87, 88, 94, 96]
[1, 3, 4, 5, 7, 10, 14, 16, 17, 19, 22, 23, 26, 28, 30, 34, 35, 36, 38, 40, 44, 46, 48, 49, 54, 55, 57, 58, 60, 61, 63, 64, 65, 70, 71, 73, 74, 75, 77, 79, 82, 85, 86, 88, 90, 95]
[3, 4, 6, 12, 15, 18, 20, 24, 25, 27, 31, 32, 34, 37, 38, 40, 43, 59, 61, 62, 66, 67, 68, 72, 73, 76, 78, 79, 80, 81, 89, 92, 93]
[6, 8, 14, 15, 18, 20, 21, 22, 23, 26, 33, 35, 41, 42, 51, 52, 53, 59, 60, 62, 67, 68, 69, 74, 77, 79, 80, 81, 82, 87, 90, 91, 94, 97]
[3, 4, 6, 12, 15, 18, 20, 24, 25, 27, 31, 32, 34, 37, 38, 40, 43, 59, 61, 62, 66, 67, 68, 72, 73, 76, 78, 79, 80, 81, 89, 92, 93]
[6, 8, 14, 15, 18, 20, 21, 22, 23, 26, 33, 35, 41, 42, 51, 52, 53, 59, 60, 62, 67, 68, 69, 74, 77, 79, 80, 81, 82, 87, 90, 91, 94, 97]
[15, 19, 44, 80, 97]
[3, 4, 6, 12, 15, 18, 20, 24, 25, 27, 31, 32, 34, 37, 38, 40, 43, 59, 61, 62, 66, 67, 68, 72, 73, 76, 78, 79, 80, 81, 89, 92, 93]
[6, 8, 14, 15, 18, 20, 21, 22, 23, 26, 33, 35, 41, 42, 51, 52, 53, 59, 60, 62, 67, 68, 69, 74, 77, 79, 80, 81, 82, 87, 90, 91, 94, 97]
[5, 6, 7, 9, 10, 11, 13, 16, 17, 18, 21, 23, 25, 30, 32, 33, 35, 37, 38, 41, 44, 49, 52, 53, 54, 57, 65, 66, 67, 68, 69, 70, 71, 76, 81, 83, 84]
[1, 3, 4, 5, 7, 10, 14, 16, 17, 19, 22, 23, 26, 28, 30, 34, 35, 36, 38, 40, 44, 46, 48, 49, 54, 55, 57, 58, 60, 61, 63, 64, 65, 70, 71, 73, 74, 75, 77, 79, 82, 85, 86, 88, 90, 95]
[2, 8, 9, 24, 34, 39, 43, 51, 56, 60, 63, 64, 82, 83, 84, 86, 88, 89, 91, 92, 95, 96]
[6, 8, 14, 15, 18, 20, 21, 22, 23, 26, 33, 35, 41, 42, 51, 52, 53, 59, 60, 62, 67, 68, 69, 74, 77, 79, 80, 81, 82, 87, 90, 91, 94, 97]
[2, 8, 9, 24, 34, 39, 43, 51, 56, 60, 63, 64, 82, 83, 84, 86, 88, 89, 91, 92, 95, 96]
[5, 6, 7, 9, 10, 11, 13, 16, 17, 18, 21, 23, 25, 30, 32, 33, 35, 37, 38, 41, 44, 49, 52, 53, 54, 57, 65, 66, 67, 68, 69, 70, 71, 76, 81, 83, 84]
[0, 1, 8, 10, 16, 21, 27, 32, 36, 37, 45, 47, 50, 64, 66, 72, 75, 83, 85, 86, 93]
[2, 31, 50, 51, 62, 63, 74, 84, 89, 91]
[5, 6, 7, 9, 10, 11, 13, 16, 17, 18, 21, 23, 25, 30, 32, 33, 35, 37, 38, 41, 44, 49, 52, 53, 54, 57, 65, 66, 67, 68, 69, 70, 71, 76, 81, 83, 84]
[2, 8, 9, 24, 34, 39, 43, 51, 56, 60, 63, 64, 82, 83, 84, 86, 88, 89, 91, 92, 95, 96]
[2, 3, 4, 5, 12, 13, 14, 20, 22, 24, 26, 28, 31, 36, 39, 43, 45, 46, 48, 49, 52, 53, 54, 56, 58, 72, 75, 78, 85, 87, 88, 94, 96]
[1, 3, 4, 5, 7, 10, 14, 16, 17, 19, 22, 23, 26, 28, 30, 34, 35, 36, 38, 40, 44, 46, 48, 49, 54, 55, 57, 58, 60, 61, 63, 64, 65, 70, 71, 73, 74, 75, 77, 79, 82, 85, 86, 88, 90, 95]
[0, 1, 8, 10, 16, 21, 27, 32, 36, 37, 45, 47, 50, 64, 66, 72, 75, 83, 85, 86, 93]
[0, 1, 8, 10, 16, 21, 27, 32, 36, 37, 45, 47, 50, 64, 66, 72, 75, 83, 85, 86, 93]
[1, 3, 4, 5, 7, 10, 14, 16, 17, 19, 22, 23, 26, 28, 30, 34, 35, 36, 38, 40, 44, 46, 48, 49, 54, 55, 57, 58, 60, 61, 63, 64, 65, 70, 71, 73, 74, 75, 77, 79, 82, 85, 86, 88, 90, 95]
[2, 8, 9, 24, 34, 39, 43, 51, 56, 60, 63, 64, 82, 83, 84, 86, 88, 89, 91, 92, 95, 96]
[2, 3, 4, 5, 12, 13, 14, 20, 22, 24, 26, 28, 31, 36, 39, 43, 45, 46, 48, 49, 52, 53, 54, 56, 58, 72, 75, 78, 85, 87, 88, 94, 96]
[1, 7, 9, 12, 17, 19, 27, 29, 30, 33, 40, 41, 42, 45, 47, 48, 50, 55, 61, 65, 69, 73, 77, 78, 87, 90, 93, 97]
[6, 8, 14, 15, 18, 20, 21, 22, 23, 26, 33, 35, 41, 42, 51, 52, 53, 59, 60, 62, 67, 68, 69, 74, 77, 79, 80, 81, 82, 87, 90, 91, 94, 97]
[2, 3, 4, 5, 12, 13, 14, 20, 22, 24, 26, 28, 31, 36, 39, 43, 45, 46, 48, 49, 52, 53, 54, 56, 58, 72, 75, 78, 85, 87, 88, 94, 96]
[1, 3, 4, 5, 7, 10, 14, 16, 17, 19, 22, 23, 26, 28, 30, 34, 35, 36, 38, 40, 44, 46, 48, 49, 54, 55, 57, 58, 60, 61, 63, 64, 65, 70, 71, 73, 74, 75, 77, 79, 82, 85, 86, 88, 90, 95]
[2, 8, 9, 24, 34, 39, 43, 51, 56, 60, 63, 64, 82, 83, 84, 86, 88, 89, 91, 92, 95, 96]
[2, 31, 50, 51, 62, 63, 74, 84, 89, 91]
[3, 4, 6, 12, 15, 18, 20, 24, 25, 27, 31, 32, 34, 37, 38, 40, 43, 59, 61, 62, 66, 67, 68, 72, 73, 76, 78, 79, 80, 81, 89, 92, 93]
[2, 8, 9, 24, 34, 39, 43, 51, 56, 60, 63, 64, 82, 83, 84, 86, 88, 89, 91, 92, 95, 96]
[6, 8, 14, 15, 18, 20, 21, 22, 23, 26, 33, 35, 41, 42, 51, 52, 53, 59, 60, 62, 67, 68, 69, 74, 77, 79, 80, 81, 82, 87, 90, 91, 94, 97]
[1, 3, 4, 5, 7, 10, 14, 16, 17, 19, 22, 23, 26, 28, 30, 34, 35, 36, 38, 40, 44, 46, 48, 49, 54, 55, 57, 58, 60, 61, 63, 64, 65, 70, 71, 73, 74, 75, 77, 79, 82, 85, 86, 88, 90, 95]
[1, 7, 9, 12, 17, 19, 27, 29, 30, 33, 40, 41, 42, 45, 47, 48, 50, 55, 61, 65, 69, 73, 77, 78, 87, 90, 93, 97]
[2, 31, 50, 51, 62, 63, 74, 84, 89, 91]
[6, 8, 14, 15, 18, 20, 21, 22, 23, 26, 33, 35, 41, 42, 51, 52, 53, 59, 60, 62, 67, 68, 69, 74, 77, 79, 80, 81, 82, 87, 90, 91, 94, 97]
[2, 8, 9, 24, 34, 39, 43, 51, 56, 60, 63, 64, 82, 83, 84, 86, 88, 89, 91, 92, 95, 96]
[2, 8, 9, 24, 34, 39, 43, 51, 56, 60, 63, 64, 82, 83, 84, 86, 88, 89, 91, 92, 95, 96]
[29, 92]
[3, 4, 6, 12, 15, 18, 20, 24, 25, 27, 31, 32, 34, 37, 38, 40, 43, 59, 61, 62, 66, 67, 68, 72, 73, 76, 78, 79, 80, 81, 89, 92, 93]
[0, 1, 8, 10, 16, 21, 27, 32, 36, 37, 45, 47, 50, 64, 66, 72, 75, 83, 85, 86, 93]
[3, 4, 6, 12, 15, 18, 20, 24, 25, 27, 31, 32, 34, 37, 38, 40, 43, 59, 61, 62, 66, 67, 68, 72, 73, 76, 78, 79, 80, 81, 89, 92, 93]
[1, 7, 9, 12, 17, 19, 27, 29, 30, 33, 40, 41, 42, 45, 47, 48, 50, 55, 61, 65, 69, 73, 77, 78, 87, 90, 93, 97]
[6, 8, 14, 15, 18, 20, 21, 22, 23, 26, 33, 35, 41, 42, 51, 52, 53, 59, 60, 62, 67, 68, 69, 74, 77, 79, 80, 81, 82, 87, 90, 91, 94, 97]
[2, 3, 4, 5, 12, 13, 14, 20, 22, 24, 26, 28, 31, 36, 39, 43, 45, 46, 48, 49, 52, 53, 54, 56, 58, 72, 75, 78, 85, 87, 88, 94, 96]
[39, 58, 70, 94]
[1, 3, 4, 5, 7, 10, 14, 16, 17, 19, 22, 23, 26, 28, 30, 34, 35, 36, 38, 40, 44, 46, 48, 49, 54, 55, 57, 58, 60, 61, 63, 64, 65, 70, 71, 73, 74, 75, 77, 79, 82, 85, 86, 88, 90, 95]
[11, 47, 55, 95, 96]
[2, 8, 9, 24, 34, 39, 43, 51, 56, 60, 63, 64, 82, 83, 84, 86, 88, 89, 91, 92, 95, 96]
[11, 47, 55, 95, 96]
[2, 3, 4, 5, 12, 13, 14, 20, 22, 24, 26, 28, 31, 36, 39, 43, 45, 46, 48, 49, 52, 53, 54, 56, 58, 72, 75, 78, 85, 87, 88, 94, 96]
[2, 8, 9, 24, 34, 39, 43, 51, 56, 60, 63, 64, 82, 83, 84, 86, 88, 89, 91, 92, 95, 96]
[15, 19, 44, 80, 97]
[1, 7, 9, 12, 17, 19, 27, 29, 30, 33, 40, 41, 42, 45, 47, 48, 50, 55, 61, 65, 69, 73, 77, 78, 87, 90, 93, 97]
[6, 8, 14, 15, 18, 20, 21, 22, 23, 26, 33, 35, 41, 42, 51, 52, 53, 59, 60, 62, 67, 68, 69, 74, 77, 79, 80, 81, 82, 87, 90, 91, 94, 97]
t0
ReviewID T_ID sentiment big_array
0 0 T_0 N [N, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, N, 0, 0, 0, ...
34 11 T_0 N [N, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, N, 0, 0, 0, ...
126 42 T_0 N [N, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, N, 0, 0, 0, ...
140 46 T_0 N [N, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, N, 0, 0, 0, ...
sparse_df
ReviewID T_ID sentiment big_array
0 0 T_0 N [N, nan, nan, nan, nan, nan, nan, nan, nan, na...
1 0 T_1 N [N, nan, nan, nan, nan, nan, nan, nan, nan, na...
2 0 T_2 N [N, N, nan, nan, nan, nan, nan, nan, N, nan, N...
3 1 T_3 N [nan, N, nan, N, N, N, nan, N, nan, nan, N, na...
4 1 T_2 N [N, N, nan, nan, nan, nan, nan, nan, N, nan, N...
... ... ... ... ...
289 96 T_5 N [nan, nan, P, N, P, N, nan, nan, nan, nan, nan...
290 96 T_7 P [nan, nan, N, nan, nan, nan, nan, nan, N, N, n...
291 97 T_13 P [nan, nan, nan, nan, nan, nan, nan, nan, nan, ...
292 97 T_4 P [nan, N, nan, nan, nan, nan, nan, N, nan, N, n...
293 97 T_10 P [nan, nan, nan, nan, nan, nan, P, nan, N, nan,...

294 rows × 4 columns

t0 = sparse_df[sparse_df['T_ID'] == 'T_0']
t0
ReviewID T_ID sentiment big_array
0 0 T_0 N [N, nan, nan, nan, nan, nan, nan, nan, nan, na...
34 11 T_0 N [N, nan, nan, nan, nan, nan, nan, nan, nan, na...
126 42 T_0 N [N, nan, nan, nan, nan, nan, nan, nan, nan, na...
140 46 T_0 N [N, nan, nan, nan, nan, nan, nan, nan, nan, na...
even_cleaner_df['T_ID'].unique()
array(['T_0', 'T_1', 'T_2', 'T_3', 'T_4', 'T_5', 'T_6', 'T_7', 'T_8',
       'T_9', 'T_10', 'T_11', 'T_12', 'T_13', 'T_14', 'T_15', 'T_16',
       'T_17'], dtype=object)
sparse_df['big_array'][sparse_df['T_ID'] == 'T_2'].tolist()[0][:5]
['N', 'N', 'nan', 'nan', 'nan']

Finally Calculate the Kappa

y1 = sparse_df['big_array'][sparse_df['T_ID'] == 'T_0'].tolist()[0]
y2 = sparse_df['big_array'][sparse_df['T_ID'] == 'T_1'].tolist()[0]
cohen_kappa_score(y1,y2)
0.39004149377593356

And calculate kappas for other combinations (but not all combinations)

def calculate_kappa(num):
    y1 = sparse_df['big_array'][sparse_df['T_ID'] == 'T_'+str(num)].tolist()[0]
    y2 = sparse_df['big_array'][sparse_df['T_ID'] == 'T_'+str(num + 1)].tolist()[0]
    return cohen_kappa_score(y1,y2)

kappas = [calculate_kappa(num) for num in range(16)]
kappas
[0.39004149377593356,
 0.07634307257304429,
 0.023255813953488413,
 0.11578947368421055,
 -0.10975609756097549,
 -0.04981253347616499,
 0.29547088425593093,
 -0.02821170435999054,
 -0.01071003570011908,
 0.005658536585365748,
 -0.06968933669185562,
 -0.04457364341085279,
 -0.04457364341085279,
 -0.02235469448584193,
 -0.015544041450777257,
 -0.01730103806228378]

Wonderful. More negative numbers. I love life.

Updated: