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COMPARING MNB & SVM

Using Kaggle Sentiment Classification Dataset, Labeled by Amazon Turkers

Introduction

ARTIFICIAL INTELLIGENCE

What is ‘Artificial Intelligence?’ At the nexus of machines and humans is this strange
hard-to-grasp, even-harder-to-quantify blanket term called Artificial Intelligence. Once a
Hollywood blockbuster depicting one of the many strange futures and concepts that is
Artificial Intelligence, it is now a silicon valley buzzword, like bitcoin or blockchain, used to

excite stakeholders and artificially increase valuations.

In reality, Artificial Intelligence is considerably less glamorous. Artificial Intelligence is simply
taking advantage of computers (no, not in that way iRobot enthusiasts) by utilizing their
computing power across many different things that would be far too tedius (and error

prone) for a human to do.



For example, let's say we want to know how the world feels about the President of the
United States. In the olden days, before things like mass communication, computers and
the internet, we might have to walk door to door, ring the doorbell, interview the
inhabitants, take notes, and return to our university where we would manually sift through
the notes pulling out words that might seem more “positive” or “negative” in nature. This
could be manageable for one 2nd grader on his/her cul de sac, (I'd venture she’'d disagree,

though) but on a large scale, this is nearly impossible.

Let's pretend for a minute that we can magically snap our fingers and get a sentence from
each person. If each person in the United States simply wrote one sentence about the
President, we'd have over 300 million sentences to review. Even if it magically (call
Hogwarts) took us one second to review and categorize each sentence, and we worked
around the clock, it would take us over 9 years to do this -- and by then, we'd have a
different president! Not only is this nearly impossible, it is quite ineffective. Computers, on

the other hand, are quite effective at tasks like this.

Computers are absolutely amazing at menial tasks -- especially counting things. Computers
are also very good at doing math quickly and efficiently with numbers too large even for
our very expensive T.l. calculators. Computers have a lot of other skills but that is slightly
(ahem, well) beyond the scope of this research paper. In short, Artificial Intelligence is using
computers and machines to do things humans can’t do as well, and often using things like

counting and math to train computers to do even more amazing things.
ARTIFICIAL ARTIFICIAL INTELLIGENCE

What happens when we come across something a human still can do better than a
machine? What happens when this task is something like “lie detection” where it's hard to
quantify other than a “gut feeling?” How do we measure “gut feeling” and how can we train
a computer on something so nebulous? What happens when we are woefully ill-equipped
to teach a computer to do things because of our own inability to know exactly what minor
calculations are going on inside our head that say, “Oh yes, this is sarcasm.” Enter Amazon
and their Mechanical Turk program, creatively touting their product as “Artificial” Artificial
Intelligence. Backed by hundreds of thousands of workers (“turkers”), Amazon Mechanical

Turk (AMT) farms out this “gut feeling” to humans for a meager sum, all the while collecting



the data with the ultimate goal of automating the turkers out of existence. However, until
that day, humans are still behind AMT and they help those of us who are unfortunate

enough to come to a research project with unlabeled data.

Analysis & Models

Taken directly from the original data source:

The Rotten Tomatoes movie review dataset is a corpus of movie reviews used for sentiment
analysis, originally collected by Pang and Lee [1]. In their work on sentiment treebanks,
Socher et al. [2] used Amazon's Mechanical Turk to create fine-grained labels for all parsed
phrases in the corpus. This competition presents a chance to benchmark your
sentiment-analysis ideas on the Rotten Tomatoes dataset. You are asked to label phrases
on a scale of five values: negative, somewhat negative, neutral, somewhat positive, positive.
Obstacles like sentence negation, sarcasm, terseness, language ambiguity, and many

others make this task very challenging.

The dataset is comprised of tab-separated files with phrases from the Rotten Tomatoes
dataset. The train/test split has been preserved for the purposes of benchmarking, but the
sentences have been shuffled from their original order. Each Sentence has been parsed
into many phrases by the Stanford parser. Each phrase has a Phraseld. Each sentence has a
Sentenceld. Phrases that are repeated (such as short/common words) are only included

once in the data.

e train.tsv contains the phrases and their associated sentiment labels. We have
additionally provided a Sentenceld so that you can track which phrases belong to a

single sentence.
e test.tsv contains just phrases. You must assign a sentiment label to each phrase.
The sentiment labels are:

e 0 -negative

e 1 -somewhat negative



e 2-neutral
e 3-somewhat positive

e 4 -positive

MODELS
MNB -- Multinomial Naive Bayes

Naive Bayes is a simple technique for constructing classifiers: models that assign class
labels to problem instances, represented as vectors of feature values, where the class
labels are drawn from some finite set. There is not a single algorithm for training such
classifiers, but a family of algorithms based on a common principle: all naive Bayes
classifiers assume that the value of a particular feature is independent of the value of any
other feature, given the class variable. For example, a fruit may be considered to be an
apple if it is red, round, and about 10 cm in diameter. A naive Bayes classifier considers
each of these features to contribute independently to the probability that this fruit is an
apple, regardless of any possible correlations between the color, roundness, and diameter

features.

For some types of probability models, naive Bayes classifiers can be trained very efficiently
in a supervised learning setting. In many practical applications, parameter estimation for
naive Bayes models uses the method of maximum likelihood; in other words, one can work
with the naive Bayes model without accepting Bayesian probability or using any Bayesian

methods.

Despite their naive design and apparently oversimplified assumptions, naive Bayes
classifiers have worked quite well in many complex real-world situations. In 2004, an
analysis of the Bayesian classification problem showed that there are sound theoretical
reasons for the apparently implausible efficacy of naive Bayes classifiers. Still, a
comprehensive comparison with other classification algorithms in 2006 showed that Bayes
classification is outperformed by other approaches, such as boosted trees or random

forests.

An advantage of naive Bayes is that it only requires a small number of training data to

estimate the parameters necessary for classification.



SVM -- Support Vector Machines

Classifying data is a common task in machine learning. Suppose some given data points
each belong to one of two classes, and the goal is to decide which class a new data point
will be in. In the case of support-vector machines, a data point is viewed as a p-dimensional
vector (a list of p numbers), and we want to know whether we can separate such points
with a (p-1)(p-1)-dimensional hyperplane. This is called a linear classifier. There are many
hyperplanes that might classify the data. One reasonable choice as the best hyperplane is
the one that represents the largest separation, or margin, between the two classes. So we
choose the hyperplane so that the distance from it to the nearest data point on each side is
maximized. If such a hyperplane exists, it is known as the maximum-margin hyperplane
and the linear classifier it defines is known as a maximum-margin classifier; or equivalently,

the perceptron of optimal stability.

More formally, a support-vector machine constructs a hyperplane or set of hyperplanes in
a high- or infinite-dimensional space, which can be used for classification, regression, or
other tasks like outliers detection. Intuitively, a good separation is achieved by the
hyperplane that has the largest distance to the nearest training-data point of any class
(so-called functional margin), since in general the larger the margin, the lower the

generalization error of the classifier.

Results

TASK 1

Build a unigram MNB model and a unigram SVM Model



VECTORIZATION 1 | CountVectorizer, Binary, Unigram (No SW, min_df = 5)

MNB: 60.6%

*%%xxCONFUSION MATRIX****%

[[ 733 1264 817 106  11]
[ 602 4132 5411 649  30]
[ 246 2397 25756 3226  239]
[ 19 454 5580 6248 767]
[ 1 54 725 1972 985]]

*%%*xxCLASSIFICATION REPORT*****

precision recall f1l-score support

0 0.46 0.25 0.32 2931

1 0.50 0.38 0.43 10824

2 0.67 0.81 0.73 31864

3 0.51 0.48 0.49 13068

4 0.48 0.26 0.34 3737

accuracy 0.61 62424
macro avg 0.53 0.44 0.47 62424
weighted avg 0.59 0.61 0.59 62424

0.606401384083045

SVM: 62.4%

[ 913 1229 696 79  14]
[ 705 4094 5472 527  26]
[ 190 2111 27063 2324 176]
[ 33 394 6011 5568 1062]
[ 3 51 582 1775 1326]]
=====CLASSIFICATION REPORT=====

precision recall fl1l-score support
(%] 0.50 0.31 0.38 2931
1 0.52 0.38 0.44 10824
2 0.68 0.85 0.76 31864
3 0.54 0.43 0.48 13068
4 0.51 0.35 0.42 3737




accuracy 0.62 62424
macro avg 0.55 0.46 0.49 62424
weighted avg 0.60 0.62 0.60 62424

0.6241830065359477

BEST RESULT: 62.4% (SVM)

VECTORIZATION 2 | CountVectorizer, Unigram (No SW, min_df = 5)

MNB: 60.6%

*%xxkCONFUSION MATRIX****%

[[ 742 1276 797 105  11]
[ 614 4126 5397 655  32]
[ 248 2385 25756 3239 236]
[ 19 456 5570 6253 770]
[ 1 53 729 1977 977]]

*%x**CLASSTFICATION REPORT****%

precision recall fl1l-score support

0 0.46 0.25 0.33 2931

1 0.50 0.38 0.43 10824

2 0.67 0.81 0.73 31864

3 0.51 0.48 0.49 13068

4 0.48 0.26 0.34 3737

accuracy 0.61 62424

macro avg 0.52 0.44 0.47 62424

weighted avg 0.59 0.61 0.59 62424
*%k ¥k kGCORES ¥ * ¥k *

0.606401384083045

SVM: 62.3%

[[ 918 1221 697 82  13]
[ 701 4080 5504 514  25]




[ 195 2106 27081 2310 172]

[ 34 396 6048 5533 1057]

[ 3 51 590 1772 1321]]
=====CLASSIFICATION REPORT=====

precision recall fl1l-score support

0 0.50 0.31 0.38 2931

1 0.52 0.38 0.44 10824

2 0.68 0.85 0.75 31864

3 0.54 0.42 0.48 13068

4 0.51 0.35 0.42 3737

accuracy 0.62 62424
macro avg 0.55 0.46 0.49 62424
weighted avg 0.60 0.62 0.60 62424

0.6236864026656415

BEST RESULT: 62.3% (SVM) -- Slightly worse than Vec 1

VECTORIZATION 3 | CountVectorizer, Bigram (No SW, min_df = 5)

MNB: 59.7

*%xxkCONFUSION MATRIX****%

[[ 867 1253 725 69  17]
[ 786 4440 4943 609  46]
[ 459 2961 24437 3600 407]
[ 41 513 5082 6375 1057]
[ 6 46 602 1911 1172]]

*%x%*CLASSTFICATION REPORT****%

precision recall fl1l-score support
0 0.40 0.30 0.34 2931
1 0.48 0.41 0.44 10824
2 0.68 0.77 0.72 31864
3 0.51 0.49 0.50 13068
4 0.43 0.31 0.36 3737




*kkkkGCORES* ¥ * **
0.5973824170190952

accuracy 0.60 62424
macro avg 0.50 0.45 0.47 62424
weighted avg 0.58 0.60 0.59 62424

SVM: 63%

[[ 1639 1276 542 63 11]
[ 864 4555 4911 457 37]
[ 252 2470 26246 2700 196]
[ 28 358 5383 6034 1265]
[ 5 27 452 1794 1459]]
=====CLASSIFICATION REPORT=====

precision recall fl1l-score support

(%] 0.47 0.35 0.41 2931

1 0.52 0.42 0.47 10824

2 0.70 0.82 0.76 31864

3 0.55 0.46 0.50 13068

4 0.49 0.39 0.44 3737

accuracy 0.63 62424

macro avg 0.55 0.49 0.51 62424

weighted avg 0.61 0.63 0.62 62424

0.6300941945405614

BEST RESULT:

63% (SVM) -- Slightly better than Vec 1 & Vec2




VECTORIZATION 4| TfidfVectorizer, Unigram (No SW, min_df = 5)

MNB: 58.4%

*%%xxCONFUSION MATRIX****%

[[ 107 1144 1613 67 0]
[ 61 2580 7821 361 1]
[ 19 1168 28673 1987  17]
[  © 147 7942 4883  96]
[ © 11 1374 2164 188]]

*%%*xxCLASSIFICATION REPORT*****

precision recall f1l-score support

0 0.57 0.04 0.07 2931

1 0.51 0.24 0.33 10824

2 0.60 0.90 0.72 31864

3 0.52 0.37 0.43 13068

4 0.62 0.05 0.09 3737

accuracy 0.58 62424
macro avg 0.57 0.32 0.33 62424
weighted avg 0.57 0.58 0.53 62424

0.5836056644880174

SVM: 62.5%

[ 795 1387 624 117 8]
[ 589 4336 5245 629  25]
[ 163 2299 26557 2684 161]
[ 24 408 5604 6220 812]
[ 2 40 551 2010 1134]]
=====CLASSIFICATION REPORT=====

precision recall fl1l-score support
0 0.51 0.27 0.35 2931
1 0.51 0.40 0.45 10824
2 0.69 0.83 0.75 31864
3 0.53 0.48 0.50 13068
4 0.53 0.30 0.39 3737
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accuracy 0.63 62424
macro avg 0.55 0.46 0.49 62424
weighted avg 0.61 0.63 0.61 62424

0.6254325259515571

BEST RESULT: 62.5% (SVM) -- Worse than Vec 3

VECTORIZATION 5| TfidfVectorizer, Unigram (No SW, min_df = 5, max_df)

MNB: 58.4%

*%xxkCONFUSION MATRIX****%

[[ 107 1144 1613 67 0]
[ 61 2580 7821 361 1]
[ 19 1168 28673 1987  17]
[ o 147 7942 4883  96]
[ e 11 1374 2164 188]]

*%x**CLASSTFICATION REPORT****%

precision recall fl1l-score support

0 0.57 0.04 0.07 2931

1 0.51 0.24 0.33 10824

2 0.60 0.90 0.72 31864

3 0.52 0.37 0.43 13068

4 0.62 0.05 0.09 3737

accuracy 0.58 62424

macro avg 0.57 0.32 0.33 62424

weighted avg 0.57 0.58 0.53 62424
*%k ¥k kGCORES ¥ * ¥k *

0.5836056644880174

SVM: 62.5%

[[ 795 1387 624 117 8]
[ 589 4336 5245 629  25]

11



[ 163 2299 26557 2684 161]

[ 24 408 5604 6220 812]

[ 2 40 551 2010 1134]]
=====CLASSIFICATION REPORT=====

precision recall fl1l-score support

0 0.51 0.27 0.35 2931

1 0.51 0.40 0.45 10824

2 0.69 0.83 0.75 31864

3 0.53 0.48 0.50 13068

4 0.53 0.30 0.39 3737

accuracy 0.63 62424
macro avg 0.55 0.46 0.49 62424
weighted avg 0.61 0.63 0.61 62424

0.6254325259515571

BEST RESULT: 62.5% (SVM) -- Worse than Vec 3, Same as Vec 4

VECTORIZATION 6| TfidfVectorizer, Bigram (No SW, min_df = 5, max_df)

MNB: 59.4%

*%%%xxCONFUSION MATRIX***%*%*

[[ 179 1186 1513 52 1]
[ 77 2868 7598 279 2]
[ 18 1242 28695 1897  12]
[ 1 140 7680 5128 119]
[ e 18 1326 2127 266]]

*%x%*CLASSTFICATION REPORT****%

precision recall fl1l-score support
0 0.65 0.06 0.11 2931
1 0.53 0.26 0.35 10824
2 0.61 0.90 0.73 31864
3 0.54 0.39 0.45 13068
4 0.67 0.07 0.13 3737

12




accuracy 0.59 62424
macro avg 0.60 0.34 0.36 62424
weighted avg 0.59 0.59 0.54 62424

*kkkkGCORES* ¥ * **
0.5948993976675637

SVM: 62.5%

[[ 916 1373 565 69 8]
[ 696 4666 4947 493 22]
[ 217 2507 26156 2827 157]
[ 25 364 5343 6334 1002]
[ 5 32 475 1962 1263]]
=====CLASSIFICATION REPORT=====

precision recall fl1l-score support

(%] 0.49 0.31 0.38 2931

1 0.52 0.43 0.47 10824

2 0.70 0.82 0.75 31864

3 0.54 0.48 0.51 13068

4 0.52 0.34 0.41 3737

accuracy 0.63 62424

macro avg 0.55 0.48 0.51 62424

weighted avg 0.61 0.63 0.62 62424

0.6301262334999359

BEST RESULT: 63% (SVM) Same as Vec 3, CountVectorizer with Bigrams

TASK 2

Vectorizer Settings for 0 CountVectorizer

13
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ALL TOGETHER NOW
TASK 3"

RESULTS B

TASK 1

TEST 1:

Ran both MNB and SVM with Vectorizer 1. MNB came back with a lot of numbers, so for
Vectorizer Test 2, [ edited the “token_pattern” parameters to explicitly include only alpha
words .

token_pattern=r'(?u)\b[a-zA-Z]{2,}\b’

TEST 3:
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This tested a non-binary unigram CountVectorizer vectorizer with the same token pattern
as Test 2. Results were nearly identical as Test 2, interestly SVM performed slightly less
well.

TEST 4:
MOTIVATION: To get a better accuracy
MANIPULATING: grams -- trying bi-grams this time.

Overall, our best accuracy yet -- SVM removing bigrams yielded 63%. Interestingly,
bigrams with MNB decreased the accuracy.

TEST 5:
MOTIVATION: To get a better accuracy
MANIPULATING: grams -- trying bi-grams this time WITH new tokenizer

New tokenizer increased the performance of both SVM and MNB by a fraction of a percent.

TEST 6:

MOTIVATION: To get a better accuracy

MANIPULATING: Vectorizer function -- switching from CountVectorizer to TfidfVectorizer
SVM with unigrams performed one percentage point better with CV than with TFIDF.

TEST 7:
MOTIVATION: To get a better accuracy

MANIPULATING: Vectorizer function -- switching from CountVectorizer to TfidfVectorizer,
now with the new tokenizer.

Interestingly, removing numbers (‘new tokenizer’) didn’t make much of a difference with
TFIDF.

TEST 8:
MOTIVATION: To get a better accuracy

MANIPULATING: Vectorizer function -- switching from CountVectorizer to TfidfVectorizer,
now with bigrams

SVM Test 5 is still best performer. So Bigrams + CV + SVM is current best performer.
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TEST 9:
MOTIVATION: To get a better accuracy

MANIPULATING: Vectorizer function -- switching from CountVectorizer to TfidfVectorizer,
now with bigrams, now with the new tokenizer

MNB stayed the same as Test 8 (new tokenizer with bigrams didn’t impact) but svm
increased by 1/10th of a percent from test 8.

TASK 3

KAGGLE 1 (trained on 60%) 0.58792
KAGGLE 2 (trained on whole) 0.59145
KAGGLE 3 (with my best) 0.60494

KAGGLE 3 (with CV best) 0.60149

Results, pt2.

The researchers realized that their own hubris was yet again to blame in this futile
endeavor. Did the researchers really think that they'd be able to come up with something
new and innovative to a 5 year old problem? Did the researchers really think that a budding
young data scientist could actually achieve higher than a 60% accuracy at the kaggle
competition? Yes, they were young and naive enough to think just that. The researchers are
embarrassed by how obsessed they became with this “challenge” and they are even more
embarrassed by the amount of time they sunk into this endeavor. The husband of the
researchers commented that this is not for naught -- this is all part of the greater “learning
experience” and the things the researchers tried on this particular attempt will continue to
fuel their future endeavors, if only as a guide for “what not to do.” The researchers continue
to feel like they might be heroines in their own adventures, just to one day be “discovered’
as the unique, slightly obsessed, clearly oddly wired, quasi-intellectuals that will one day
crack The Code, despite not even knowing that Code it is they are supposed to crack.
Professor Gates, if you're reading this, please help me help myself -- what do you do when

you go down such a deep rabbit hole that you've forgotten the taste of your own tongue?

Conclusion
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There are still things that humans do better than machines. We know that horseradish
doesn’t belong in brownie recipes, we can tell if a tweet is sarcastic, we can identify if this is
a photo of a chiuaua or a muffin. The reason machines can't do this yet isn't because they
aren't “smart enough.” Well, maybe it is, depending on your definition of intelligence. If
intelligence is measured as the collection of everything we've ever learned, then yes, this is

because the computer isn't “smart enough.”

The computers simply haven't been given enough data to determine that those are
blueberries and not chiuaua eyeballs. In the same way that a small child thinks every
four-legged creature is “doggie” until s/he has been out in the world long enough to collect
more data (“This four-legged creature is always bigger than a dog and it also makes a totally

m

different noise!! I've noticed that the adults refer to this one as ‘horse™ — “This four-legged
creature isn't nearly as friendly but absolutely loves to snuggle, the adults refer to it as ‘cat’

so maybe it also isn't a “doggie!!”) the computer is simply at a data-disadvantage.

The solution, just like with the small child, is expose the computer/child to more data. That
is exactly what Amazon Mechanical Turk is doing. It is using “Artificial” Artificial Intelligence
(humans) to feed the computers the data it will eventually need to be able to consistently

say “chihuahua” vs “muffin.”
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