KENDRA OSBURN | 10-25-19 | IST 736 | HW4 | DECEPTION & SUBJECTIVITY
KENDRA OSBURN | 11-10-19 | IST 736 | HW6 | Bernoulli Naive Bayes

DOES YOUR WRITING DECEIVE YOU?

Via @kuzelevdaniil

Introduction

Is it possible to tell when someone is lying? There are thousands of articles on Google
Scholar claiming that, yes, it is possible to tell when someone is lying. Everything from
someone’s temperature to pupil size to heart rate changes from truth to lie. But what about

words? Can the words people use give a hint to truthiness?

In the ever-expanding wild-west that is the internet, lie -- also referred to as fraud or
deception -- detection is more important than ever. When we, as a society, rely so heavily
on things like ratings or reviews, it's imperative that we know we can trust these reviews.
However, just like spam snuck into our inboxes, fraud is sneaking into our rating systems.

And it's not just bots! Humans are frequently paid to forge restaurant or product reviews.

What does this mean for both sellers and consumers? Is there any hope for truth in this

barren landscape?

Unfortunately for us researchers, there isn't a whole lot of data out there actually labeled as
“fraudulent.” Other researchers have gone as far as paying Mechanical Turk workers to
author their own “fraud” and this likely points to reasons why our fraud-filter isn't as
up-to-snuff as our spam-filter. With spam and email, we had/have an ever-growing dataset
that was conveniently being labeled for us already! We could simply look at the

user-labeled spam, the user-labeled not-spam and check differences. However, there is not
such an unintentionally-yet-actively maintained dataset for deception and since we're
already starting out on a weaker footing, it's hard to find the patterns we’d need to
accurately and intelligently make decisions about test sets when our training set is so very

small.

However, using the data she read about on the interwebs, one researcher took on this
monolithic task and tried to break it down as best she could. Despite referencing everything
from github to cornell whitepapers, the most she got was a sniff -- a whiff at a trail -- a hint

at a thread to pull -- and here is where you will read about her adventures.
Analysis & Models

ABOUT THE DATA

The researchers received the data as a semi-clean csv with three columns --‘lie’, ‘sentiment’
and ‘review'. Each row contained a review and a label if the review was a lie (t/f) and the
sentiment of the review (p/n). This semi-clean csv was imported and converted to a pandas
data frame with tab delimitation. The two columns of labels were separated into clean
columns and the reviews were cleaned of any rogue characters. A csv was exported.
Similarly, four separate corpuses were exported -- two for lie, two for sentiment. The final

corpuses were exported and then re-imported into the researcher’s pipelines.

See the appendix for Cleaning Code.

MODELS

NAIVE BAYES

What is Naive Bayes?

'We first segment the data by the class, and then compute the mean and variance of x in each
class.For example, the naive Bayes classifier will make the correct MAP decision rule classification so
long as the correct class is more probable than any other class.Like the multinomial model, this
model is popular for document classification tasks, where binary term occurrence features are used
rather than term frequencies.For example, suppose the training data contains a continuous
attribute.The discussion so far has derived the independent feature model, that is, the naive Bayes

probability model.’

This excerpt was created with the researcher’'s own summarizer and wikipedia! Clearly, this is
evidence that the summarizer needs more work. See Appendix: Summarizer Code for current

summarizer code status.

Results

SENTIMENT

To get ‘results’ for this quick-and-dirty assignment, the researchers compared the
‘pastability data’ to past data sets in their ‘sentiment analysis’ pipeline to answer the
question -- does this newly cleaned data behave very similarly, slightly similarly or not at all

similarly to a cleaner dataset from the wild?

HW1 PIPELINE

Text Blob
Kendra’s Ami's Data Cornell Dirty Data Joker Data Deception
Data Data Data
CORRECT NEG | 5/5 1/5 229/1000 |227/1000 |64/123 26/46
CORRECTPOS | 0/5 4/5 971/1000 |972/1000 |114/123 46/46

VADER

Kendra’'s Ami’s Data Cornell Dirty Data Joker Data Deception

Data Data Data
CORRECT NEG | /5 3/5 445/1000 |[454/1000 |64/123 26/46
CORRECTPOS | 5/5 3/5 828/1000 | 824/1000 |[114/123 45/46

NLTK

Kendra’'s Ami’'s Data Cornell Dirty Data Joker Data Deception

Data Data Data
CORRECT NEG | __ -- 89% 86% 81% 57%
CORRECT POS | -- 74% 70% 35% 93%
ACCURACY - - 81% 77% 58% 75%

Without any additional cleaning, the sentiment is predicted fairly well. Looking at
Deception Data alone, it appears that positive sentiment is more frequently accurately
predicted than negative sentiment.

HW2 & HW3 PIPELINE

Top Words

Top Positive Words

..fre_c.h T tHE I it imere B OO
went :""‘ -.--I|I"f'r-1"'.'"h?.r."__ 'nLﬂug' ':"'
EEVEr “"-’Lqu r hthErE the

o _h-"' [L 1
[t L __:‘::h n:'.:r\-FdE icious i

favor i ije -T.r?ﬁtwl ‘ﬁf'd}:lxﬂ_hpla:‘:é-
arlrr].lazmg restaurant

EW’E qualityhoodie Frleudl:,r

lunshdishes 2splate

U“ l":.‘- ;.l-1l' bESt that

.;G et 018 E TR Tyt oL 0eT D

PLASER

-:J

E et o]
gmne-se th "' JukT
=

f rom

Llikecs
LLYPe fDchi ':Trl““-l ‘”" . AL
¥ ol %

'r. 1-’1|u| 'f."n'hl[h piz 1 Er- "“'n::l[

s e
" k] '_.:l
.IF..L PO

Naive Bayes Tests

SENTIMENT TESTS

Top Negative Words

would “when thE!’*E about

oy I"n]r"f-:J ﬁalaldwshﬂl'deil’ AF o m.1 aﬁeu |.1|1,I|

they. tastexinyen
D,-:_l,a‘;ﬁ e Ynever... 11;u-r
S LcpdWant

wlth“:‘;:'"fﬂLl.la'-RlLILL:J':TFM Eﬂ %
restaurant;:—*fﬁ’

"-"L"""_J bléng’t ey q{ﬂ E'dlr'lnrr '-h

O E[Eg EUDEI found thl S

LitE e aiing

hefgre i
sa1g- c:aTn;*'l']‘g"r viaats snlng 'Mm
give P Wallress; f“‘?”df- mi
I-E-.aIEwEr hﬂ'FE" E‘I:jll: -.|j:.11,n,
"ﬁﬁﬂwlfemw after ding 'd
J.-"ul:llﬂlna' l‘CE‘ﬂWth"r_ld:dnTbackl I'II e
haue wgsn,;_]UE H A gl H.:

L -||-r:"l' "':I.:.

GAUSSIAN

Vader Scores -- Gaussian
Accuracy: 0.7777777777777778
Accuracy: 0.7777777777777778

Accuracy: 0.9259259259259259
Accuracy: 0.8888888888888888
Accuracy: 0.8888888888888888
AVERAGE ACCURACY: 0.8518518518518519

Vader Scores from Summary -- Gaussian
Accuracy: 0.7777777777777778

Accuracy: 0.8518518518518519

Accuracy: 0.8888888888888888

Accuracy: 0.8518518518518519

Accuracy: 0.7777777777777778

AVERAGE ACCURACY: 0.8296296296296296

Vader Scores (original) and Vader Scores (summary) -- Gaussian

Accuracy: 0.7777777777777778
Accuracy: 0.8518518518518519
Accuracy: 0.8888888888888888
Accuracy: 0.8518518518518519
Accuracy: 0.8518518518518519
AVERAGE ACCURACY: 0.8444444444444444

Vader Scores 50 most frequent filtered words -- Gaussian

Accuracy: 0.8518518518518519
Accuracy: 0.7407407407407407
Accuracy: 0.9629629629629629
Accuracy: 0.8888888888888888
Accuracy: 0.7777777777777778
AVERAGE ACCURACY: 0.8444444444444444

BAG OF WORDS TESTS

GAUSSIAN

MULTINOMIAL

Starting point -- Gaussian

Accuracy: 0.8148148148148148

Accuracy: 0.7407407407407407

Accuracy: 0.8148148148148148

Accuracy: 0.7407407407407407

Accuracy: 0.8888888888888888

AVERAGE ACCURACY: 0.7999999999999999

Starting point -- Multinomial

Accuracy: 0.7407407407407407

Accuracy: 0.7777777777777778

Accuracy: 0.9629629629629629

Accuracy: 0.8148148148148148

Accuracy: 0.9629629629629629

AVERAGE ACCURACY: 0.8518518518518519

DIY Cleaner
Accuracy: 0.7777777777777778

DIY Cleaner -- Multinomial
Accuracy: 0.9259259259259259

Accuracy: 0.7407407407407407
Accuracy: 0.8148148148148148
Accuracy: 0.7777777777777778
Accuracy: 0.8518518518518519
AVERAGE ACCURACY: 0.7925925925925925

Accuracy: 0.7777777777777778
Accuracy: 0.9259259259259259
Accuracy: 0.8518518518518519
Accuracy: 0.9629629629629629
AVERAGE ACCURACY: 0.888888888888889

Pruned Words -- Gaussian

Accuracy: 0.8148148148148148

Accuracy: 0.7777777777777778

Accuracy: 0.7777777777777778

Accuracy: 0.7037037037037037

Accuracy: 0.8888888888888888

AVERAGE ACCURACY: 0.7925925925925925

Pruned Words -- Multinomial

Accuracy: 0.8518518518518519

Accuracy: 0.7037037037037037

Accuracy: 0.8518518518518519

Accuracy: 0.8148148148148148

Accuracy: 0.8888888888888888

AVERAGE ACCURACY: 0.8222222222222222

NLTK negs -- Gaussian

Accuracy: 0.7037037037037037

Accuracy: 0.7037037037037037

Accuracy: 0.8888888888888888

Accuracy: 0.7777777777777778

Accuracy: 0.7777777777777778

AVERAGE ACCURACY: 0.7703703703703704

NLTK negs -- Multinomial

Accuracy: 0.7037037037037037

Accuracy: 0.7037037037037037

Accuracy: 0.8888888888888888

Accuracy: 0.7777777777777778

Accuracy: 0.7777777777777778

AVERAGE ACCURACY: 0.7703703703703704

Bigram Feats -- Gaussian

Accuracy: 0.6296296296296297

Accuracy: 0.6666666666666666

Accuracy: 0.7777777777777778

Accuracy: 0.7037037037037037

Accuracy: 0.7037037037037037

AVERAGE ACCURACY: 0.6962962962962963

Bigram Feats -- Multinomial

Accuracy: 0.7407407407407407

Accuracy: 0.6666666666666666

Accuracy: 0.6666666666666666

Accuracy: 0.5925925925925926

Accuracy: 0.6666666666666666

AVERAGE ACCURACY: 0.6666666666666666

No Shared Words -- Gaussian

Accuracy: 0.8148148148148148

Accuracy: 0.7777777777777778

Accuracy: 0.8518518518518519

Accuracy: 0.9259259259259259

Accuracy: 0.8888888888888888

AVERAGE ACCURACY: 0.8518518518518519

No Shared Words -- Multinomial

Accuracy: 0.7777777777777778

Accuracy: 0.7777777777777778

Accuracy: 1.0

Accuracy: 0.8148148148148148

Accuracy: 0.9259259259259259

AVERAGE ACCURACY: 0.8592592592592592

So now that we've established this is a reliable dataset (as it performed similarly to other

large datasets for sentiment), let's explore the real challenge -- deception.

DECEPTION

Can sentiment be used to predict deception?

As the pipelines were already in place, the researchers ran the exact same “sentiment

pipelines” for the deception data. However, instead of attempting to predict “negative” and

“positive,” this time trying to predict “true” or “false.”

Text Blob

Deception Data (sentiment)

Deception Data (deception)

CORRECT NEG | 26/46 CORRECT FALSE 14/46
CORRECTPOS | 46/46 CORRECT TRUE 34/46
VADER

Deception Data (sentiment)

Deception Data (deception)

CORRECT NEG | 26/46 CORRECT FALSE 13/46
CORRECTPOS | 45/46 CORRECT TRUE 32/46
NLTK

Deception Data (sentiment)

Deception Data (deception)

CORRECT NEG | 5704 CORRECT FALSE 57%
CORRECTPOS | 9304 CORRECT TRUE 57%
ACCURACY 75% ACCURACY 57%

Clearly, with a 57% accuracy, sentiment is not the way to predict deception.

Can parts of speech be used to predict deception?

Quick EDA with bar graphs:

Top 10 Items (ALL) Prior to Cleaning

80_
-I-IED_
=
=
S 40-
20
D_
= = = Z2 Mo U o o un o o
o— J [aa)
= () o EE}}

Word

Top 10 POS (TRUE) Prior to Cleaning

Count

5 2202258
Ez =

Top 10 POS (FALSE) Prior to Cleaning

40

= = =2 = U m
= O = |

NNS

PR

VBD
VB

Word

“NN" stands for “Noun, singular or mass” which matches up with our very first EDA

bar graphs. (To see what all the tags mean, please see Appendix) Initial EDA

suggests that there are similarities but also areas where we should definitely dig
further -- possibly, part of speech bigrams?

POS BIGRAMS

10

(NN “NL)
(:22: \NN.)
(.Q9A. ".d¥d.)
(1 “1a)
(,agA. ‘\NN,)
(NN, “I1)
(NN, “.NN.)
(:NI. :NN.)
(.1Q, “.NI)
(NN, “.1d.)

=
S
=

Top 10 POS Bigrams (ALL)

uno)

Top 10 POS Bigrams (TRUE)

(.22, \NN.)
(.8A "OL)
(,Q9A, “.ddd.)
Gl *.1q.)
(.a9A. \NN.)
(NN, 41D
(NN, “.NN.)
(:NI, 'NN,)
(.14, ".NI)
(.NN. “.1Q.))

=
o
=

Junod

11

Top 10 POS Bigrams (FALSE)

Count

2 FEZ =z zao=0 0z

Z2 0O - Z 2 o .m W 2

h*-‘.--l—}'__?-‘-k

--2-- -D--_

= =2 = = - = .~ = Z2

T £ 2<%z E
Word

Not as helpful either.
Naive Bayes Tests

SENTIMENT TESTS

GAUSSIAN

Vader Scores -- Gaussian

Accuracy: 0.4444444444444444

Accuracy: 0.4444444444444444

Accuracy: 0.4444444444444444

Accuracy: 0.48148148148148145

Accuracy: 0.4074074074074074

AVERAGE ACCURACY: 0.44444444444444436

Vader Scores from Summary -- Gaussian
Accuracy: 0.5555555555555556

Accuracy: 0.6296296296296297

Accuracy: 0.5555555555555556

Accuracy: 0.48148148148148145

Accuracy: 0.48148148148148145

AVERAGE ACCURACY: 0.5407407407407407

12

Vader Scores (original) and Vader Scores (summary) -- Gaussian

Accuracy: 0.48148148148148145

Accuracy: 0.6666666666666666

Accuracy: 0.5555555555555556

Accuracy: 0.5185185185185185

Accuracy: 0.4074074074074074

AVERAGE ACCURACY: 0.5259259259259259

Vader Scores 50 most frequent filtered words -- Gaussian

Accuracy: 0.5555555555555556
Accuracy: 0.5925925925925926
Accuracy: 0.5555555555555556
Accuracy: 0.5185185185185185
Accuracy: 0.5925925925925926
AVERAGE ACCURACY: 0.562962962962963

BAG OF WORDS TESTS

GAUSSIAN

MULTINOMIAL

Starting point -- Gaussian

Accuracy: 0.5185185185185185

Accuracy: 0.5185185185185185

Accuracy: 0.5555555555555556

Accuracy: 0.5185185185185185

Accuracy: 0.5185185185185185

AVERAGE ACCURACY: 0.5259259259259259

Starting point -- Multinomial

Accuracy: 0.4444444444444444

Accuracy: 0.48148148148148145

Accuracy: 0.48148148148148145

Accuracy: 0.6296296296296297

Accuracy: 0.5925925925925926

AVERAGE ACCURACY: 0.5259259259259259

DIY Cleaner

Accuracy: 0.48148148148148145

Accuracy: 0.5185185185185185

Accuracy: 0.5925925925925926

Accuracy: 0.48148148148148145

Accuracy: 0.48148148148148145

AVERAGE ACCURACY: 0.5111111111111111

DIY Cleaner -- Multinomial

Accuracy: 0.4074074074074074

Accuracy: 0.4444444444444444

Accuracy: 0.48148148148148145

Accuracy: 0.6296296296296297

Accuracy: 0.4444444444444444

AVERAGE ACCURACY: 0.4814814814814815

Pruned Words -- Gaussian
Accuracy: 0.5555555555555556

Pruned Words -- Multinomial
Accuracy: 0.5185185185185185

13

Accuracy: 0.48148148148148145

Accuracy: 0.5185185185185185

Accuracy: 0.48148148148148145

Accuracy: 0.5185185185185185

AVERAGE ACCURACY: 0.5111111111111111

Accuracy: 0.5185185185185185
Accuracy: 0.5925925925925926
Accuracy: 0.6296296296296297
Accuracy: 0.5555555555555556
AVERAGE ACCURACY: 0.562962962962963

NLTK negs -- Gaussian

Accuracy: 0.5555555555555556

Accuracy: 0.5925925925925926

Accuracy: 0.4074074074074074

Accuracy: 0.4444444444444444

Accuracy: 0.48148148148148145

AVERAGE ACCURACY: 0.4962962962962963

NLTK negs -- Multinomial

Accuracy: 0.5555555555555556

Accuracy: 0.5925925925925926

Accuracy: 0.4074074074074074

Accuracy: 0.4444444444444444

Accuracy: 0.48148148148148145

AVERAGE ACCURACY: 0.4962962962962963

Bigram Feats -- Gaussian

Accuracy: 0.4074074074074074

Accuracy: 0.5185185185185185

Accuracy: 0.5555555555555556

Accuracy: 0.5555555555555556

Accuracy: 0.48148148148148145

AVERAGE ACCURACY: 0.5037037037037038

Bigram Feats -- Multinomial

Accuracy: 0.5555555555555556

Accuracy: 0.5185185185185185

Accuracy: 0.5555555555555556

Accuracy: 0.6296296296296297

Accuracy: 0.6666666666666666

AVERAGE ACCURACY: 0.5851851851851851

No Shared Words -- Gaussian

Accuracy: 0.5555555555555556

Accuracy: 0.7037037037037037

Accuracy: 0.5925925925925926

Accuracy: 0.6296296296296297

Accuracy: 0.6666666666666666

AVERAGE ACCURACY: 0.6296296296296295

No Shared Words -- Multinomial
Accuracy: 0.5555555555555556
Accuracy: 0.6296296296296297
Accuracy: 0.6296296296296297
Accuracy: 0.7037037037037037
Accuracy: 0.6666666666666666
AVERAGE ACCURACY: 0.6370370370370371

HW6 Addition

Now with Bernoulli

SENTIMENT

DECEPTION

Starting point -- Bernoulli
Accuracy: 0.7777777777777778

Starting point -- Bernoulli
Accuracy: 0.4444444444444444

14

Accuracy: 0.6296296296296297
Accuracy: 0.8148148148148148
Accuracy: 0.7777777777777778
Accuracy: 0.7777777777777778
AVERAGE ACCURACY: 0.7555555555555555

Accuracy: 0.5185185185185185
Accuracy: 0.5185185185185185
Accuracy: 0.4074074074074074
Accuracy: 0.4074074074074074
AVERAGE ACCURACY: 0.45925925925925926

DIY Cleaner -- Bernoulli

Accuracy: 0.7777777777777778

Accuracy: 0.6296296296296297

Accuracy: 0.8148148148148148

Accuracy: 0.7407407407407407

Accuracy: 0.7777777777777778

AVERAGE ACCURACY: 0.7481481481481481

DIY Cleaner -- Bernoulli

Accuracy: 0.5185185185185185

Accuracy: 0.48148148148148145

Accuracy: 0.5185185185185185

Accuracy: 0.4074074074074074

Accuracy: 0.4074074074074074

AVERAGE ACCURACY: 0.4666666666666667

Pruned Words -- Bernoulli

Accuracy: 0.8148148148148148

Accuracy: 0.6666666666666666

Accuracy: 0.8148148148148148

Accuracy: 0.7777777777777778

Accuracy: 0.7777777777777778

AVERAGE ACCURACY: 0.7703703703703704

Pruned Words -- Bernoulli

Accuracy: 0.5925925925925926

Accuracy: 0.4444444444444444

Accuracy: 0.5185185185185185

Accuracy: 0.48148148148148145

Accuracy: 0.4444444444444444

AVERAGE ACCURACY: 0.4962962962962962

NLTK negs -- Bernoulli

Accuracy: 0.5555555555555556

Accuracy: 0.5185185185185185

Accuracy: 0.6666666666666666

Accuracy: 0.6296296296296297

Accuracy: 0.5925925925925926

AVERAGE ACCURACY: 0.5925925925925926

NLTK negs -- Bernoulli

Accuracy: 0.5185185185185185

Accuracy: 0.5185185185185185

Accuracy: 0.48148148148148145

Accuracy: 0.4444444444444444

Accuracy: 0.37037037037037035

AVERAGE ACCURACY: 0.4666666666666666

Bigram Feats -- Bernoulli

Accuracy: 0.5185185185185185

Accuracy: 0.4444444444444444

Accuracy: 0.5185185185185185

Accuracy: 0.48148148148148145

Accuracy: 0.48148148148148145

AVERAGE ACCURACY: 0.4888888888888888

Bigram Feats -- Bernoulli

Accuracy: 0.5185185185185185

Accuracy: 0.48148148148148145

Accuracy: 0.5555555555555556

Accuracy: 0.5185185185185185

Accuracy: 0.4074074074074074

AVERAGE ACCURACY: 0.4962962962962963

No Shared Words -- Bernoulli

Accuracy: 0.7777777777777778

Accuracy: 0.5925925925925926

Accuracy: 0.8518518518518519

Accuracy: 0.7037037037037037

Accuracy: 0.7777777777777778

AVERAGE ACCURACY: 0.7407407407407407

No Shared Words -- Bernoulli

Accuracy: 0.5555555555555556

Accuracy: 0.6296296296296297

Accuracy: 0.6296296296296297

Accuracy: 0.5555555555555556

Accuracy: 0.5925925925925926

AVERAGE ACCURACY: 0.5925925925925926

15

Sentiment classifications proved to be just as accurate as other datasets. This is likely due
to the many and varied ways we can look at and attempt to classify and label sentiment.
For example, if | gave five people a printout of tweets and asked them to label them as
positive or negative, this would likely be an easier task than identifying a false review. Why
is that? It likely means that the “packets of meaning” that can convey sentiment (words,
sometimes word order) are smaller and more easily distinguishable in analysis. If we as
humans still struggle with identifying the features that point out deception (in writing) than
how can we train a computer to do so? Additionally, how can we train a computer when we

don't have as many labeled datasets?

Theoretically, we could employ Mechanical Turkers to write fake data for us. However,
without knowing the motivation behind the fake data (are they, the fake data creators out
in the wild, trying to overcorrect for a bad yelp review? Boost a movie's score on IMDB?
Raise an Amazon Products star rating so it appears on the first page? Bash a hotel that
discriminated against a minority? Destroy a business because they inappropriately fired
someone?) we are inadvertently overcorrecting before we've even analyzed the data. We
would be creating a great model for predicting “Did a Mechanical Turker write this review.”
Which, while that might be the future, isn’t useful across the platforms where this model

would need to be used (filtering out fake reviews from all sources).
Conclusion

Classifying reviews based on sentiment alone proved to be a fairly easy exercise for a few
reasons. First, there is a large amount of labeled data in the field. Second, the “packets of
meaning” that convey sentiment can be something as small as a mneome or as large as a
sentence. In this paper, the packets of meaning were words, but that doesn’t mean they

couldn't be other parts of the letters that make up the words that make up the sentences

16

that make up the reviews. In sentiment classification, we can look at these packets of
meaning from many different angles. We can look at the “valence” of a word (using an
external dictionary, something like Vader or TextBlob), we can look at the words that follow
negation words and we can look at all the words spread out together in a sparse matrix

and let the computer find patterns for itself.

Unfortunately, deception isn't as easy of an exercise for a similarly long laundry list of
reasons. While sentiment has external dictionaries (both literally and figuratively -- if we
use the word “awesome” that goes to a dictionary in our mind that associates that word
with positive things, however, it's fun to note that this word wasn't always positive and if |
lived a couple of centuries ago, my internal dictionary would classify this word as negative)
to help the classification process along, there are no single words or collections of words

that scream “deception.”

Future study is going to center around topic modeling and comparison of the topics within
the review to the topic of the thing being reviewed. The researchers had high hopes that
there would be patterns within parts of speech but they were flummoxed by both the lack
of data and the inability of the data to conform to their hypotheses. How dare it. The
researchers couldn’t help but laugh as each of their attempts lead to lower and lower

accuracies, culminating in a personal best of low accuracy at 44%.

APPENDIX

Cleaning Code

#!/usr/bin/env python

coding: utf-8

HW4 -- Sentiment and Lies

STEP 1: Import the data

NOTE: May need to change delimiter based on the data file

import pandas as pd

df = pd.read_csv('deception_data_converted_final.csv', sep='\t')
df[:5]

STEP 2: Pull out the labels

def get_labels(row):
split_row = str(row).split(',")
lie = split_row[@]
sentiment = split_row[1]
return [lie, sentiment, split_row[2:]]
df['all'] = df.apply(lambda row: get_labels(row['lie,sentiment,review']), axis=1)

17

df[:5]

df['lie'] = df.apply(lambda row: row['all'][@][@], axis=1)
df[:5]

df['sentiment'] = df.apply(lambda row: row['all'][1][@], axis=1)
df[:5]

df['review'] = df.apply(lambda row: ''.join(row['all'][2]), axis=1)
df[:5]

clean_df = df.copy()
clean_df.drop(['lie,sentiment,review', 'all'], axis=1, inplace=True)

clean_df
STEP 3: Clean the data

def clean_rogue_characters(string):
exclude = ["\\',"\'","'""]
string = ''.join(string.split('\\n"))
string = ''.join(ch for ch in string if ch not in exclude)
return string
clean_df['review'] = clean_df['review'].apply(lambda x: clean_rogue_characters(x))
clean_df['review'][0]
STEP 4: Export cleaned, formatted CSV

clean_df.to_csv('hw4_data.csv',index=False)

df = pd.read_csv('hw4_data.csv')
df[:5]

STEP 5: Split df into data sets
LIE DFs

lie df_f = df[df['lie'] == 'f']
lie df_t = df[df['lie'] == 't']

SENTIMENT DFs

sent_df _n = df[df['sentiment'] == 'n']
sent_df_p = df[df['sentiment'] == 'p']

STEP S5b: Export to Corpus to run on current pipelines

def print_to_file(rating, review, num, title):
both = review
output_filename = str(rating) + '_'+ title +'_' + str(num) + '.txt'
outfile = open(output_filename, 'w')
outfile.write(both)
outfile.close()
def export_to_corpus(df, subj, title):
for num,row in enumerate(df['review']):
print_to_file(subj, row, num, title)

export_to_corpus(sent_df n, 'neg', 'hw4_n')
export_to_corpus(sent_df p, 'pos', 'hw4_p')

export_to_corpus(lie_df_f, 'false', 'hw4_f')

18

export_to_corpus(lie_df_t, 'true', 'hw4_t')

Summarizer Code

#!/usr/bin/env python

coding: utf-8

HOW TO SUMMARIZE IN PYTHON

Following [this tutorial!](https://stackabuse.com/text-summarization-with-nltk-in-python/) | 10-13-19
STEP 1: GET THE DATA!!

Step la: Import libraries

import bs4 as bs

import urllib.request

import re

Step 1b: Use the libraries to scrape the WHOLE INTERNET!! (jk just this page)

url = 'https://en.wikipedia.org/wiki/Lizard"’
url = 'https://en.wikipedia.org/wiki/cat’
url = 'https://en.wikipedia.org/wiki/Naive_Bayes_classifier'’

url = 'https://en.wikipedia.org/wiki/Machine_learning' # good at 20 words
url = 'https://en.wikipedia.org/wiki/Artificial_intelligence' # good at 30 words
scraped_data = urllib.request.urlopen('https://en.wikipedia.org/wiki/Artificial_intelligence')
scraped_data =
urllib.request.urlopen('https://en.wikipedia.org/wiki/Harry_Potter_and_the_Philosopher%27s_Stone")
scraped_data = urllib.request.urlopen(url)
article = scraped_data.read()
parsed_article = bs.BeautifulSoup(article, 'lxml")
Step 1c: Use "find_all® from “BeautifulSoup™ to get all of the p tags
paragraphs = parsed_article.find_all('p")
article_text = ""
for p in paragraphs:

article_text += p.text
article_text[:1000]
STEP 2: CLEAN (& preprocess) THE DATA!!
Step 2a: Use regex and “re.sub’ to remove square brackets and extra spaces from ORIGINAL
article_text
article_text = re.sub(r'\[[0-9]*\]', '', article_text)
article_text = re.sub(r'\s+', ' ', article_text)
article_text[:1000]
Step 2b: Use regex and "re.sub” to remove extra characters and digits for a new FORMATTED_TEXT
variable
formatted_article_text = re.sub('[”a-zA-Z]', ' ', article_text)
formatted_article_text = re.sub(r'\s+', ' ', formatted article_text)
formatted_article_text[:1000]
STEP 3: TOKENIZE SENTENCES!!
import nltk
sentence_list = nltk.sent_tokenize(article_text)
sentence_list[:5]
STEP 4: FIND WORD FREQUENCY, WEIGHTED!!
Step 4a: Remove Stopwords
stopwords = nltk.corpus.stopwords.words('english"')
Step 4b: Tokenize Words & DIY Frequency Distribution
word_frequencies = {}
for word in nltk.word_tokenize(formatted_article_text):

if word not in stopwords:

if word not in word_frequencies.keys():
word_frequencies[word] = 1

19

else:
word_frequencies[word] += 1
Step 4c: Calculate Weighted Frequency
max_frequency = max(word_frequencies.values())
for word in word_frequencies.keys():
word_frequencies[word] = (word_frequencies[word]/max_frequency)
STEP 5: CALCULATE SENTENCE SCORES
ILLUSTRATIVE EXAMPLE
Nothing removed
for sent in sentence_list[:1]:
for word in nltk.word_tokenize(sent.lower()):
print(word)
ILLUSTRATIVE EXAMPLE
Stopwords etc. removed
We are ONLY assigning values/weights to the words in the sentences that are inside our freq dist!
for sent in sentence_list[:1]:
for word in nltk.word_tokenize(sent.lower()):
if word in word_frequencies.keys():
print(word)
sentence_scores = {}
for sent in sentence_ list:
for word in nltk.word_tokenize(sent.lower())[:50]:
if word in word_frequencies.keys():
if len(sent.split(' ')) < 30:
if sent not in sentence_scores.keys():
sentence_scores[sent] = word_frequencies[word]
else:
sentence_scores[sent] += word_frequencies[word]
sorted_sentences = sorted(sentence_scores.items(), key=lambda kv: kv[1], reverse=True)
sorted_sentences[:10]
summary = [sent[@] for sent in sorted_sentences[:5]]
''.join(summary)
''.join(summary).strip()
summary_2 = [sent[@] for sent in sentence_scores.items() if sent[1] > 3]
''.join(summary_2).strip()

Parts of Speech (POS) Tags

20

Number Tag
1 B
B CD
3. DT
4, EX
A FW
G. IN
T J1

B. JIR
9. JI5
10. LS
11. MD
12. NN
13. NNS
14. NNP
15.

16. PDT
17. POS
18. PRP
19. PRP$
20. RB
21 RBR
i RB5
23. RP
24, SYM
it TO
26. UH
27 VB
28. VBD
29, VBG
30, VBN
il VBFP
32. VBZ
33. WDT
34, WP
15 WPS
246, WRB

Description

Coordinating conjunction
Cardinal number
Determiner

Existential there

Foreign word

Preposition or subordinating conjunction

Adjective

Adjective, comparative
Adjective, superlative
List item marker
Modal

Noun, singular or mass
Noun, plural

Proper noun, singular

NNPS Proper noun, plural

Predeterminer

Possessive ending

Personal pronoun

Possessive pronoun

Adverb

Adverb, comparative

Adverb, superlative

Particle

Symbol

to

Interjection

Verb, base form

Verb, past tense

Verb, gerund or present participle
Verb, past participle

Verb, non-3rd person singular present
Verb, 3rd person singular present
Wh-determiner

Wh-pronoun

Possesive wh-nrononn
a

Wh-adverb

20

