

TEAM 3 | 3-19-19 | IST707 | GROUP PROJECT

INTERNET MOVIE DATABASE

Ali Ho

Kendra Osburn

James Robertson

1

Introduction 3

Analysis and Models 4
About the Data 4

 Models 12
ASSOCIATION RULE MINING 12
K-MEANS CLUSTERING & HCLUST 13
DECISION TREES 14
NAIVE BAYES 14
KNN 15
SVM 15
RANDOM FOREST 16
TEXT-MINING 16

Results 16
ASSOCIATION RULE MINING 17
K-MEANS CLUSTERING & HCLUST 17

SCORE 17
PERCENT PROFIT 27

DECISION TREES 28
SCORE 28
PERCENT PROFIT 34

NAIVE BAYES 36
SCORE 36
SCORE PLUS 36

KNN 36
SCORE 36
PERCENT PROFIT 36

SVM 37
SCORE 38
PERCENT PROFIT 38

RANDOM FOREST 40
SCORE 40
PERCENT PROFIT 42

TEXT-MINING
COMPARISON 45

Conclusion 48

2

Introduction
43 billion dollars. This is the revenue of the film industry in the US in 20181. This is

a competitive industry with a large chunk of money that is up for grabs. It has an

average growth of 2% each year which makes the need for cutting edge analytics

even more urgent. For too long data has been put in the corner. Like Jennifer Grey

it needs to be front and center. Disruption is coming to the status quo and we’re

gonna make an offer you can’t refuse.

Can we recommend movies? Recommending movies is a huge money maker.

Netflix has run contests where they have paid out significant prizes for

improvement to their recommendation algorithm. An additional application of this

is in the realm of targeted marketing. Being able to recommend movies can be

used to deliver movie advertisements to target audiences. This can also be used to

produce advertisements that will target different demographics. Consider a movie

starring George Clooney and Susan Sarandon. Audiences that like O Brother

Where Art Thou and the Oceans trilogy could be delivered advertisements featuring

George Clooney. While audiences that like Rocky Horror Picture Show and Thelma

and Louise could be targeted by ads focussing on Susan Sarandon.

Where should the budget be spent to get desired results? Is the goal to maximize

profit or optimize review scores? Many indie studios and aspiring directors have a

strong desire for both. There are some ways for these directors get their feet wet.

For example, Stephen King allows new directors to adapt any of his short stories for

very little money. What other doors are available for these newcomers? Are there

genres that are better for ratings and recognition? What about for profit or

continued sustainability?

For larger production companies the focus shifts. These companies focus on

having a few blockbuster movies referred to as “Tent Pole” movies. These “tent

3

poles” provide buffers to the studios to produce riskier movies that might not be

profitable but allow them to continue operating. There is a large risk to studios and

their bottom line when one of these movies flops. Can flops be predicted from

early ratings? If they can be predicted can the losses be minimized by working with

theaters or a third party movie subscription service?

Analysis and Models

About the Data

The original data set contained 4,638 movies from multiple countries. The dataset

was reduced to include only the movies that were produced by American

production companies. The reduced dataset set contained 3,726 entries. The

dataset was further reduced to only include stars who appeared in at least 5

movies. This yielded a dataset with 1,998 entries. The final reduction was by the

most prolific directors, which resulted in a dataset containing 989 movies with 14

variables. Nas were checked for with sum(is.na), no nas were detected.

Variable Data Type Description

budget Numeric States the total budget for the movie

director Factor States the main director for the movie

genre Factor States the genre of the movie

gross Numeric States the total gross for the movie

name Factor States the title of the movie

rating Ordered
factor

States the rating of the movie: G, PG, PG-13
or R

released Ordered
factor

States the month that the movie was released

runtime Numeric States the total runtime of the movie

4

score Numeric States the score the movie received on IMDB

star Factor States the main star of the movie

votes Numeric States the number of votes the movie received
on IMDB

writer Factor States the main writer for the movie

year Ordered
factor

States the year the movie was released

VARIABLES THAT WERE ADDED TO THE DATASET

profit Numeric States the profit. Calculated from subtracting
the budget from gross for each movie.

percProf Numeric States the percent profit. Calculated from
dividing the profit by the budget for each
movie.

starGender Factor States the gender of the star

directorGender Factor States the gender of the director

starAge Numeric States the age of the star when in the movie

directorAge Numeric States the age of the director when directing
the movie

starPopularity Numeric States the star’s popularity on TMBD

directorPopularity Numeric States the director’s popularity on TMBD

Figure 1. Breakdown of the Dataset

A discretized dataset was created by quartiling each numeric column. The bottom

25% was discretized as “low”, the middle 50% as “average” and the top 25% as

“high”. The only exception was for percent profit, where the data was discretized as

“negative”, “average” and then the top 25% as “high”.

5

Figure 2. Visualization of Movies Genre By Year

The distribution of movies by year appears to be normally

distributed. Action, comedy and drama account for the majority

of the movies in the dataset. The dataset contains only one

science fiction movie, four fantasy movies, seven mysteries,

and eight horror movies. To classify by genre all genres with

the exception of action, comedy, and drama will be grouped in

a category called other.

Figure 2a. Counts of genres

6

Figure 3. Visualization of Movies by Gross Revenue, Budget and Genre

Titanic is the only movie, not in the action genre, to be in the top 6 movies for

gross. Movies to the left of the black line lose money, movies to the right of the line

break even to double their investment and movies to the right of the red line more

than double their investment. The majority of the movies appear to have a budget

of less than $100,000,000.

7

Figure 4. Visualization of Number of Movies per Star

The majority of the 190 stars in the dataset appear in less than seven movies. There

are 21 stars who appear in more than ten movies. The most prolific stars are Tom

Hanks, Nicolas Cage and Tom Cruise who star in more than 20 movies in the

dataset.

8

Figure 5. Visualization of Number of Movies per Director

The dataset contains 189 directors. The majority of the directors directed 3 to 5

movies within the dataset. The most prolific directors are Clint Eastwood, Ron

Howard and Woody Allen who all directed more than 15 movies in the dataset.

9

Figure 6. Visualization of Movie Score Discretized

The score were descritized so that scores of 6.1 or lower were classified as low,

scores between 6.1 and 7.2 as average and scores of 7.2 or higher as high. This

method resulted in 25% of the movies classified as low, 50% of the movies as

average and 25% as high.

10

Figure 7. Visualization of Percent Profit Discretized

Percent profit was descritized into three categories: negative, average, and high.

Negative accounts for all movies that made a profit less than their budget, average

is described as a percent profit greater than 0 but less than 1.17, and high is a

percent profit 1.17 or greater. This method resulted in 392 movies with a negative

percent profit, 349 movies with an average percent profit, and 248 movies with a

high percent profit.

11

TEXT DATA

The researchers gathered the textual data by scraping IMDb for reviews. While

most movies offered multiple reviews, the researchers chose to use a single review

for each. This single review was chosen by the ranking algorithm that determines

which review to display first on each IMDb movie page. Despite their best efforts,

the researchers were unable to determine the specific criteria IMDb’s algorithm

used. (Was it the number of “helpful” votes? The number of past reviews authored

by a given reviewer? Some combination of proprietary metrics hidden from IMDb

users?). In any case, the researchers chose the algorithm’s single review to

represent each movie for reasons of project scope more than accuracy. While this

methodology may serve the researchers in an educational context, it is clear that

additional reviews would be necessary in order to make any statistically useful

inferences.

SCRAPED IMDB & TMBD DATA

“A census taker once tried to test me. I ate his liver with some fava beans and a nice Chianti.”

-IMDB and TMBD data, probably

One of the many offshoot projects that sprung up and out of the initial endeavor

included a revised and updated scraper. This scraper combed not only IMDB

(Internet Movie Database) but TMDB (The Movie Database) for in-depth

actor/director/production information. This scraper, written in python with the aid

of the Beautiful Soup Library, collected everything from actor and director gender

to film trivia. Unfortunately only a small subset of this additional scraped data was

able to be utilized by the researchers due to time constraints.

Models

ASSOCIATION RULE MINING

12

The purpose of association rule mining is to find associations between the

variables. Through association rule mining, patterns emerge in the data that explain

customers who purchase item A usually also purchase item C. Actionable intel is

generated by utilizing the association rule mining technique. The function used for

association rule mining is apriori which is from the arules library. The apriori

function requires a discretized data frame, and the following parameters were used

supp and conf.

Figure 8. Formula for Support

Support is the amount of times that the items appear together in the data set

divided by the total amount of entries in the dataset.

Figure 9. Formula for Confidence

Confidence is the amount of times the items on the left-hand side and right-hand

side appear together divided by the count of times the item(s) on the left-hand side

appear in total.

Figure 10. Formula for Lift

Lift is calculated by the count of amount of times that the items on the left-hand

side and right-hand side appear together divided by the count of times the item(s)

on the left-hand side appear multiplied by the count of times the item(s) on the

right-hand side appear. Once the rules are generated and stored in a vector, it is

13

possible to sort the rules by support, confidence or support. To do this use the

sort() function. Finally, the inspect() function displays the list of the rules that were

created.

K-MEANS CLUSTERING & HCLUST

k-means()

K-means is an unsupervised machine learning clustering algorithm. It is

unsupervised because the labels are removed from the dataset. It requires all

attributes to be numeric. K-means requires the data frame or distance matrix and

the parameter for the number of centroids to generate (k). Nstart =50 was used to

generate 50 initial groups of k clusters and then kmeans uses the best random

generation of k clusters for the algorithm. Set.seed() was used to replicate the

results. Once the random centroids are selected, kmeans starts an iterative

process of recalculating the centroid every time a new entry is included in the

cluster. Kmeans groups items based on similarity.

hclust()

hclust() is an unsupervised machine learning hierarchical clustering algorithm. All

the attributes must be numeric. Hclust requires the data frame or distance matrix

and takes the method parameter. The default method is complete. Hclust creates a

dendrogram and the cutree() function is used to create a specific number of

clusters.

DECISION TREES

rpart()

Rpart is a supervised machine learning recursive partitioning and regression tree

technique. It is supervised because the training data contains the labels that are to

be predicted. It requires all variables to be either numeric, discretized, or in bins.

The target variable must be a factor. Rpart requires a formula, the data frame that

is being used and the method. The method for classification tasks is “class”.

14

Optional parameters include control=rpart.control and parms = list(split =

'information'). Rpart() by default splits by gini. To split by information gain parms =

list(split = 'information') was used. Rpart creates a decision tree model to predict

the classification of entries in the data frame. Rpart.plot generate a visual of the

decision tree with the root node, internal nodes and the leaf nodes.

NAIVE BAYES

naive_bayes()

Naïve Bayes is a supervised machine learning classification technique. The

algorithm calculates the probability of the event happening. There are multiple

libraries that can be used for the naïve bayes technique. The two libraries used in

the analysis are naiveBayes and e1071. The models have the same requirements;

however, the plotting options are different. The target variable must be a factor.

Naïve bayes requires a formula and the data frame that is being used.

KNN

kNN()

kNN is a supervised machine learning classification algorithm. The algorithm uses

the nearest neighbors (the closest points) to determine which class the entry

belongs in. The training and test datasets must have the label removed, however

the training label is used in the algorithm. kNN is part of the class library. It requires

the training data frame without the classifying label, the test data frame, cl the

classifications of the training dataset, k the number of nearest neighbors and prob

equals true or false. The training labels must be a factor.

SVM

svm()

Support vector machine is a supervised machine learning technique mainly used

for classification problems. The training data contains the labels that are to be

15

predicted. Svm can transform the data into n-dimensional space and finds the

hyperplane that best separates the data. The best hyperplane will have the

maximum distance between classes. The optimal hyperplane will have a large

margin between the support vectors (the data points for the different classes that

are closest to the margin). Svm requires a formula, the data frame that is being

used, the type of kernel, cost and whether the data needs to be scaled or not. There

are three main kernels used for svm transformations: radial, polynomial and linear.

A kernel transforms data into a new dimension so that a margin can be

determined. Cost specifies the level of penalization for having points inside the

hyperplane margin. If there is a low cost, then the points within the margins have

less of a penalty than if there is a high cost. If scale equals TRUE, then the svm

algorithm will automatically scale the data. However, if the data has already been

scaled then it is necessary to put scale = FALSE. The svm algorithm is then used to

predict the class of the test data.

RANDOM FOREST

randomForest()

Random forest is an ensembling supervised machine learning technique that trains

multiple decision trees and then combines their results into one final model.

Random forest can also be run as an unsupervised technique. It can be utilized in

classification and regression problems. The random forest algorithm requires a

formula and the training data frame. There are numerous parameters that can be

implemented. One parameter is ntree which states the number of trees that are to

be created. It is important that ntree is large enough to ensure that every row in the

dataset receives multiple predictions.

TEXT-MINING

Text mining enables researchers to turn paragraphs of text into meaningful data by

extracting individual words. Unlike many other models, text mining isn’t a singular

method that can be applied to data. Rather, it is a collection of many different

16

methods — including sentiment analysis, topic modeling, and lie detection — of

transforming blocks of text into data that can be processed, classified, and

analyzed. As such, there are many different libraries that can help achieve this

textual information retrieval. The input is any block of text, while the output is some

variation of record data, often in the form of a term document matrix.

Results

I. ASSOCIATION RULE MINING

THIS IS WHERE ALL THE FUN HAPPENED!! The researchers could have spent their entire

project JUST focusing on association rule mining and tuning different parameters and

scraping different sites. In fact, one researcher scraped every single cast member from

every single movie in the dataset. Right down to makeup assistant #4. Unfortunately, due

to limitations of time and energy, the researcher was unable to actually make use of this

9mb file.

The data used in this model was descritized. In order to maximize the number of “best”

rules, a loop was created to cycle through each attribute and put that attribute on the right

hand side and funnel the results into a new data frame. From there, the data could be

sorted more easily.

Figure 11.

17

STARS ON THE LHS, BY STAR

Figure 12.

STARS ON THE LHS, BY STAR

○ TOP 10 RULES FOR LIFT (RHS = All variables)

18

Figure 13.

○ TOP 10 RULES FOR LIFT (RHS = Stars)

19

Figure 14.

○ TOP 10 RULES FOR CONFIDENCE (RHS = All variables)

II. These are unfortunately boring rules as there is a clear (and mathematical) relationship
between budget, gross and percent profit. However, we left them in to see how they
behave not with one another but how they behave with the other variables.

20

Figure 15.

○ TOP 10 RULES FOR CONFIDENCE (RHS = Stars)

21

22

○ TOP 10 RULES FOR SUPPORT (RHS = All variables)

Figure 16.

III. K-MEANS CLUSTERING & HCLUST

SCORE

kmeans()

Model 1

The first model utilized a normalized dataset of all numeric variables with the score variable

removed. The data frame contains 741 observations of 12 variables. The data was

normalized by dividing every value each column by the maximum value in the column. This

23

resulted with values between 0 and 1.

Figure 16a. Code Snippet to Normalize Dataset

Figure 17. First 5 Rows of the norm_everything_kMeans df

The data frame was then converted into a cosine distance matrix for the first model.

The elbow method was used to determine the best range of k values.

Figure 18. Code Snippet to Determine the best k value

24

Figure 19. Elbow Method for Distance Matrix DF

25

The best range of clusters appears to be between 4 - 6 . The first attempt with

kmeans had a k of 4 and a nstart of 50.

Figure 20. 4 Cluster Plot of kmeans with Cosine Distance Matrix

Figure 21. Table of Results for kmeans k = 4 Cosine Distance Matrix

The first attempt did not appear to appropriately cluster the movies by score.

Cluster 3 had the most success by clustering 48 high scores together with only 8

average scores and 2 low scores. The other 3 clusters did not have the same

element of success. The within cluster sum of squares are 108, 121, 116, and 113.

The second attempt had a k of 6 and a nstart of 50.

Figure 22. Table of Results for kmeans k = 6 Cosine DIstance Matrix

26

Figure 23. 6 Cluster Plot of kmeans with Cosine Distance Matrix

The second attempt did not net significantly better results. Cluster 4 clustered 24

high scores with only 1 average and 1 low score. Cluster 1 also clustered mainly

average and high scores, with only 9 low scores. The within cluster sum of squares

by cluster are: 68, 79, 65, 49, 58, and 53. Clustering with all variables is not proving

to be beneficial.

Model 2

The second model utilizes the distance matrix from model 1, but the dimensions

are reduced to include only votes, budget, runtime and profit. Figure 24 is a visual

of the dataframe before the cosine distance matrix transformation.

27

Figure 24. First 5 Rows of the reduced_norm_everything_kMeans df

The elbow method was used to determine the best range of k values.

Figure 25. Elbow Method for Reduced Distance Matrix DF

28

The best range of clusters appears to be between 4 - 6 . The first attempt with

kmeans had a k of 4 and a nstart of 50.

Figure 26. 4 Cluster Plot of kmeans with Reduced Cosine Distance Matrix

Figure 27. Table of Results for kmeans k = 4 Reduced Cosine DIstance Matrix

The model successfully classified only high scores in cluster 1. Cluster 2 is

comprised of 182 movies with a low or average score and only 48 movies with a

high score. The 79% of the entries are average or low. However, the other two

clusters do not appear to successfully cluster the scores. The within cluster sum of

squares by cluster are 122, 103, 146, and 84.

29

The second attempt had a k of 6 and a nstart of 50.

Figure 28. 6 Cluster Plot of kmeans with Reduced Cosine Distance Matrix

Figure 29. Table of Results for kmeans k = 6 Reduced Cosine DIstance Matrix

This models appears to have slightly better results than the previous model.

Clusters 2 and 3 are comprised entirely of high scores. The within cluster sum of

squares by cluster are: 62, 29, 16, 61, 49, and 55.

Model 3

The third model used the reduced dataset from model two without the cosine

distance matrix.

30

The elbow method was used to determine the best range of k values.

Figure 30. Elbow Method for Reduced Distance Matrix DF

The best range of clusters appears to be between 4 - 6 . The first attempt with

kmeans had a k of 4 and a nstart of 50.

31

Figure 31. 4 Cluster Plot of kmeans with Reduced everything_Movies USA

Figure 32. Table of Results for kmeans k = 4 Reduced everything_MoviesUSA

Cluster 4 is comprised entirely of high scores. The other clusters are a combination

of low, average and high scores. The within cluster sum of squares by cluster are: 5,

4, 2, and 2.

The second attempt had a k of 5 and a nstart of 50.

32

Figure 33. 5 Cluster Plot of kmeans with Reduced everything_Movies USA

Figure 34. Table of Results for kmeans k = 5 Reduced everything_MoviesUSA

Clusters 1 and 2 successfully classified high scores. Cluster 1 included only 16

average scores with 108 high scores and cluster 2 contained 24 high scores. The

other three clusters had more variability between the distribution of scores.

However, appears to decently classify average and low scores together. The within

cluster sum of squares by cluster are: 3, 2, 2, 2, 2. Ultimately, clustering has not

provided especially fruitful. More data needs to be included to yield better results

when clustering for score.

33

PERCENT PROFIT

Toto, I’ve got a feeling we’re not in Kansas anymore.

Dorothy is correct. This is not Kansas. This is N-dimensional space. Within this

N-Dimensional space, the munchkins in the machines attempted to cluster percent profit

into meaningful groups… and failed miserably. This model utilized the normalized dataset.

(NOTE: Because clustering is an unsupervised learning method, the data was not broken

into test and training sets for this model). The profit and gross columns were removed. The

label was saved and work commenced. The first task was to lure the best number of

clusters from the dataset. This involved using WSS and produced the elbow graph as

shown in Figure 35 below. Then a distance matrix with cosine similarity was created and

these graphs were born.

Figure 35.

34

Figure 36.

35

Figure 37

In summation, percent profit can’t be meaningfully clustered with the data on hand.

hclust()

Model

The hclust model used model 2, the reduced cosine distance matrix from kmeans.

The first attempt at hclust used a method of average and a cutree of 4.

Figure 38. Table of Results for hclust k = 4 Reduced Distance Cosine Matrix

36

The model clustered the majority of the scores in cluster one, however clusters 3 and 4 are

comprised solely movies with a high score. Cluster 2 is comprised of mainly average and

high scores with 5 low scores.

The second hclust model used the reduced cosine distance and a cutree of 10.

Figure 39. Table of Results for hclust k = 10 Reduced Distance Cosine Matrix

The model clustered the majority of movies in cluster 1. However, clusters 6 - 10

were successful in classifying the high scores and cluster 5 successful scores as

average and high.

IV. DECISION TREES

SCORE

Model 1

The first model for the decision tree utilized a fully discretized data frame, with 741

observations of 16 variables. The variables for title, director, star and released were

removed from the original discretized dataset.

Figure 40. First 5 Rows of the dt_discretized_train_score df

The data frame was then split into a training and test dataset. The training dataset

contained 519 observations. There were 173 high scores, 173 average scores and

173 low scores. The testing dataset was comprised on 74 high scores, 74 average

scores, and 74 low scores for a total of 222 observations. The score label was

removed from the testing set.

37

Figure 41. Decision Tree for Score

The minsplit was 40 and cp was set to 0. The decision tree for score contains 13

internal nodes. The original variables used in the decision tree are votes, rating,

genre, percProf, runtime, budget, and gross.

Figure 42. Table of Results for Decision Tree

The decision tree had an overall accuracy of 64% when predicting score. The model

accurately predicted low score 69%, average score 46%, and high scores 76% of the

38

time. The model had the most difficulty with average scores.

Figure 43. Visualization of Accuracy Percentage for Decision Tree

The second decision tree model included a parameter to split based on information

gain. The minsplit was increased to 70, and cp was reduced to -1.

Figure 44. Code Snippet for Decision Tree with Information Gain

39

Figure 45. Visualization of Decision Tree with Information Gain

The decision tree with information gain has 11 internal nodes. The variables that

the data was split by are votes, rating, genre, runtime, budget, and

directorPopularity.

Figure 46. Table of Results for Decision Tree with Information Gain

The decision tree had an overall accuracy of 60% when predicting score. The model

accurately predicted low score 66%, average score 41%, and high scores 74% of the

time. The model had the most difficulty with average scores. Compared to the first

40

decision tree, this model had a reduction in accuracy.

Figure 47. Visualization of Accuracy Percentage for Decision Tree with Information Gain

Comparison of Decision Tree Models for Score

41

Figure 48. Visualization of the Comparison of Accuracy Percentage for All everything MoviesUSA Score Decision Tree

The decision tree without information gain was the most successful model when

classifying low, average and high scores. Likewise it also had the highest overall

accuracy with 64% compared to the information gain model of 60%.

PERCENT PROFIT

The same discretized dataset was used to predict percent profit. Similarly, the variables for

title, director, star and released were removed from the original discretized dataset, as well

as gross and profit. The data was split into testing and training data and fed into the

decision tree model. Three models were created, the accuracy of each outlined below.

42

Figures 49-53.

43

44

The results varied across models. Yet again, despite being discretized, normalized, prepped

and re-prepped, the dataset, regardless the model within the model, did not predict

percent profit with any level of statistically significant accuracy.

V. NAIVE BAYES

"I mean, it's sort of exciting, isn't it, breaking the rules?" — Hermione Granger

SCORE

Model 1

The first model utilized a dataset of all numeric variables with the score variable removed.

The data frame contains 741 observations of 13 variables.

45

Figure 54. First 5 Rows of the Training Data Frame for Naive Bayes for Score

The data frame was then split into a training and test dataset. The training dataset

contained 519 observations. There were 173 high scores, 173 average scores and

173 low scores. The testing dataset was comprised on 74 high scores, 74 average

scores, and 74 low scores for a total of 222 observations. The score label was

removed from the testing set.

Figure 55. Table of Results for Naive Bayes Model 1

The first naive bayes model had an overall accuracy level of 58%. The model

accurately predicted low scores 80%, average scores 42%, and high scores 49% of

the time.

46

Figure 56. Visualization of Accuracy Percentage for Score everything MoviesUSA Naive Bayes

Model 2

The second model used a reduced data frame from attributes that CORElearn

attribute eval with the information gain estimator deemed to be the most

significant.

47

Figure 57. Code Snippet of CORElearn attribute eval

Figure 58. Output of CORElearn attribute evaluation

Core learn with information gain determined that the attributes that yield the

greatest amount of information gain are runtime, percProf, and directorPopularity.

The dataset was reduced to include only those 3 attributes.

Figure 59. First 5 Rows of the Training Data Frame for Naive Bayes for Score Model 2

The second attempt at naive bayes was run with the CoreModel function and

specified the model as naive bayes.

Figure 60. Code Snippet to Run Naive Bayes with the CoreModel function from the CORElearn Package

The CoreModel Naive Bayes model with the reduced data frame had an overall

accuracy of 59%.

Figure 61. Table of Results for CORElearn NB with DF Reduced by Information Gain

48

The model accurately predicted low scores 73%, average scores 29% and high scores 73%

of the time.

Figure 62. Visualization of Accuracy Percentage for Score Naive Bayes CoreLean Model 1

Model 3

49

The third model used a data frame that was reduced in a similar way as model two,

however instead of using information gain as the estimator gainRatio was used.

CORElearn deemed that votes, runtime, gross, directorAge, and percProf were the

best attributes to use.

Figure 63. First 5 Rows of the Testing Data Frame for Naive Bayes for Score Model 3

The third model was run using the same method as the second model. The

CoreModel Naive Bayes had an overall accuracy of 60%.

Figure 64. Table of Results for cl model 3

The model accurately predicted low scores 70%, average scores 32% and high

scores 78% of the time.

50

Figure 65. Visualization of Accuracy Percentage for NB Score CoreLean - Model 3

Comparison of Naive Bayes Models for Score

51

Figure 66. Visualization of Comparison of Accuracy Percentage for All Everything MoviesUSA Score Naive Bayes

The three models had their own strengths and weaknesses when classifying score.

All models had a difficult time classifying average scores. The original model

excelled classifying low scores, but suffered when classifying both average and high

scores. The Cl Model 1 nicely classified low and high scores, but had the worst

classification accuracy for average scores. Cl Model 3 had the best accuracy when

classifying high scores, but the worst accuracy when classifying low scores.

52

Figure 67. Comparison of Overall Accuracy Percentage for All everything MoviesUSA Score Naive Bayes

The three models had similar overall accuracy percentages at 58%, 59% and 60%. It

is important to decide which accuracy levels are most important in the dataset to

ultimately decide which model performed the best for Naive Bayes.

SCORE PLUS (Explaining the 81%)

After getting discouraged one too many times, a certain researcher set out to poke and

prod the data a slightly different way than before. Instead of using singular numbers, the

researcher decided to aggregate and average both the star and the director’s score history.

53

This, combined with aggressive discretization, lead to the giant, intentionally provocative,

headline that will encourage business moguls and universities to invest more heavily in the

truly, truely disruptive research.

====================================

AGGREGATE & MATH THE DATA

====================================

FOR STARS **************************

& SCORES ***************************

starAvgScore <- aggregate(df$score, by=list(star=df$star), FUN=mean)

starMaxScore <- aggregate(df$score, by=list(star=df$star), FUN=max)

starMinScore <- aggregate(df$score, by=list(star=df$star), FUN=min)

starFrequency <- aggregate(df$score, by=list(star=df$star), FUN=length)

starPower <- cbind(starAvgScore, starMaxScore[,2], starMinScore[,2],
starFrequency[,2])

& PercPROF **************************

starAvgPercProf <- aggregate(df$percProf, by=list(star=df$star), FUN=mean)

starMaxPercProf <- aggregate(df$percProf, by=list(star=df$star), FUN=max)

starMinPercProf <- aggregate(df$percProf, by=list(star=df$star), FUN=min)

combining & renaming

starPower <- cbind(starAvgScore, starMaxScore[,2], starMinScore[,2],
starFrequency[,2],
 starAvgPercProf[,2], starMaxPercProf[,2],
starMinPercProf[,2])
colnames(starPower) <- c('star', 'starScoreAvg',
'starScoreMax','starScoreMin', 'starFrequency',
 'starPPAvg', 'starPPMax', 'starPPMin')

FOR DIRECTORS ***********************

& SCORES ****************************

directorAvgScore <- aggregate(df$score, by=list(director=df$director),

FUN=mean)

directorMaxScore <- aggregate(df$score, by=list(director=df$director),

FUN=max)

directorMinScore <- aggregate(df$score, by=list(director=df$director),

FUN=min)

directorFrequency <- aggregate(df$score, by=list(director=df$director),

FUN=length)

directorPower <- cbind(directorAvgScore, directorMaxScore[,2],
directorMinScore[,2], directorFrequency[,2])

54

& PercPROF ***************************

directorAvgPercProf <- aggregate(df$percProf,

by=list(director=df$director), FUN=mean)

directorMaxPercProf <- aggregate(df$percProf,

by=list(director=df$director), FUN=max)

directorMinPercProf <- aggregate(df$percProf,

by=list(director=df$director), FUN=min)

combining & renaming

directorPower <- cbind(directorAvgScore, directorMaxScore[,2],
directorMinScore[,2], directorFrequency[,2],
 directorAvgPercProf[,2], directorMaxPercProf[,2],
directorMinPercProf[,2])
colnames(directorPower) <- cbind('director', 'directorScoreAvg',
'directorScoreMax', 'directorScoreMin', 'directorFrequency',
 'directorPPAvg', 'directorPPMax',
'directorPPMin')

The aggressive mathing and discretization resulted in the most promising accuracy

percentage yet. More testing is definitely needed but this serves to reinforce the

importance of strong numeric data points in a dataset when using such models.

VI. KNN

SCORE

Model 1

The first model utilized a dataset of all numeric variables with the score variable removed.

The data frame contains 741 observations of 13 variables.

Figure 68. First 5 Rows of the Training Data Frame for kNN for Score

55

The data frame was then split into a training and test dataset. The training dataset

contained 519 observations. There were 173 high scores, 173 average scores and

173 low scores. The testing dataset was comprised on 74 high scores, 74 average

scores, and 74 low scores for a total of 222 observations. The score label was

removed from both the training and testing set.

The k for the first model was determined by taking the square root of the total

number of entries in both the testing and training data frames. This set the k at 27.

Figure 69. Code Snippet for kNN model 1

Knn requires the training data, the testing data, the training label, k and probability.

The overall accuracy of the model was 45%.

Figure 70. Table of Results for k = 27 Model 1

The model accurately predicted low scores 45%, average scores 43%, and high

scores 47% of the time. The model does not accurately predict score and is

significantly less accurate than the previous models.

56

Figure 71. Visualization of Accuracy Percentage for kNN k = 27

To find the best k value for the dataset kNN was run using the caret package. The

model included 20 different possible k values and train control set up a 10-fold

cross validation. The model required the training data frame with the label and the

method to run.

Figure 72. Code Snippet to Determine the Best K-Value

57

Figure 73. Chart of Best K Values for kNN everythingMoviesUSA for Score

The graph and running the following line of code

“everything_model_kNN$bestTune” determined that the best k value is 23.

The second attempt for kNN used a k of 23.

Figure 74. Table of Results for kNN k = 23 for everything_MoviesUSA

58

The change in k, only increased the overall accuracy of the model to 46%. The

model accurately predicted low scores 53%, average scores 42%, and high scores

45% of the time.

Figure 75. Visualization of Accuracy Percentage for kNN k = 23 for everything_MoviesUSA Score

Model 2

In an attempt to improve the results for kNN, the data frame was reduced to

include only votes, runtime, percProf, and directorPopularity.

59

Figure 76. First 5 Rows of the Reduced Data Frame for Model 2

Figure 77. Chart of Best K Values for kNN everything_MoviesUSA CL Model 1 - Reduced

60

The best k value was determined to be 43. The k was set for 43 for this model.

Figure 78. Table of Results for k = 43 for CL Model 1 Reduced DF

Figure 79. Visualization of Accuracy Percentage for kNN k = 43 for everything MoviesUSA CL Model 1

61

The model did a nice job of classifying low and high scores, however had a difficult

time classifying average scores with an accuracy of 16%.

Two other models were run with different attributes included in the data frame.

However, both of those models had an accuracy rate of 43% or less and will not be

discussed in the paper.

Comparison of All Models for kNN Score

Figure 80. Visualization of Accuracy Percentage of All everything MoviesUSA Score kNN

62

The third model, cl model 1 k = 43, had significant better accuracy for low and high

scores than the other two kNN models, however its accuracy for average score was

significantly less than the other two models. The two models for kNN with all

numeric variables included had similar results even with the slightly different k

values. The model with the best overall percentage is the third model.

○ PERCENT PROFIT

The non-discretized dataset was used to predict percent profit using K Nearest Neighbor.

Similarly, all non-numeric variables were removed from the original dataset, as well as

gross and profit. The data was split into testing and training data and fed into the KNN

model. Multiple models were created, none with significant accuracy. One is shown below.

Figure 81.

63

Figure 82.

The results varied (but not by much) across all KNN models. Again, these models lack a

significant level of accuracy and need additional data in order to be useful.

VII. SVM

SCORE

Model 1

The first model utilized a normalized dataset of all numeric variables with the score variable

removed. The data frame contains 741 observations of 12 variables. The data was

normalized by dividing every value each column by the maximum value in the column. This

64

resulted with values between 0 and 1.

Figure 82a. Code Snippet to Normalize Dataset

Figure 83. First 5 Rows of the norm_everything_svm Test DF

The data frame was then split into a training and test dataset. The training dataset

contained 519 observations. There were 173 high scores, 173 average scores and

173 low scores. The testing dataset was comprised of 74 high scores, 74 average

scores, and 74 low scores for a total of 222 observations. The score label was

removed from the testing set.

The first attempt for svm utilized a radial kernel and a cost of .1.

Figure 84. Table of Results for svm_radial Model 1

The model accurately predicted low scores 57%, average scores 80% and high scores 12%

of the time. It is interesting to note that the model did not classify any other scores as high,

except for the scores that were actually high. The model classified the majority of movies as

having an average score.

65

Figure 85. Visualization of Accuracy Percentage for SVM Radial Model for Score

The second attempt at svm utilized the polynomial kernel.

Figure 86. Table of Results for SVM Polynomial Linear Kernel

The model had an overall accuracy of 42%. The model successfully classified low scores

80%, average scores 39%, and high scores 7% of the time. The model misclassified average

scores as low scores. Only 15 low scores were misclassified as average scores. However

high scores were classified as both average and low, with the exception of the 5 scores that

were correctly classified.

66

Figure 87. Visualization of Accuracy Percentage for SVM Polynomial Model for Score

The third attempt for svm utilized the linear kernel. This model had an overall accuracy of

54%.

Figure 88. Table of Results for SVM Linear Kernel

The model accurately classified low scores 55%, average scores 80%, and high scores 27%

of the time.

67

Figure 89. Visualization of Accuracy Percentage for SVM Linear Model for Score

Comparison of All SVM Models for Score

68

Figure 90. Visualization of Comparison of Accuracy Percentage for All everything MoviesUSA Score SVM

The three svm models with different kernels all had a difficult time correctly classifying

movies with a high score. The linear kernel provided the highest accuracy percentage at

54%.

PERCENT PROFIT

The normalized dataset was used to predict percent profit. Similarly, the variables for title,

director, star and released were removed from the original discretized dataset, as well as

gross and profit, The data was split into testing and training data and fed into the SVM

model.

69

Figures 91-94.

70

71

The predictive accuracy across all three SVM models was similar, however, the differences

between the “Negative,” “Average” and “High” predictions varied greatly between linear,

polynomial and radial. Unfortunately, the researchers aren’t yet sure how to melt the three

different models into one ubermodel, so the fact that SVM polynomial was so adept at

predicting high profits is lost to the world until future models (likely with different and

additional data) can be run.

VIII. RANDOM FOREST

SCORE

Model 1

The first model for random forest utilized a fully discretized data frame, with 741

observations of 15 variables. The variables for title, director, star, released and genre were

removed from the original discretized dataset.

Figure 95. First 5 Rows of the rf_discretized_train_score df

The data frame was then split into a training and test dataset. The training dataset

contained 519 observations. There were 173 high scores, 173 average scores and

173 low scores. The testing dataset was comprised on 74 high scores, 74 average

scores, and 74 low scores for a total of 222 observations. The score label was

removed from the testing set.

The first model for random forest utilized the CORELearn package and used the

cvLearn function to predict 20 trees with a 10-fold cross validation. The cvLearn is

more appropriate for a large data set and can specify just the target variable.

72

Figure 96. Code Snippet for cvCoreModel Random Forest

The code in figure 96 states the target variable is score, from the

rf_discretized_train_score data frame, the model = “rf”, random forest, the number

of trees to create is 20 with a cross fold validation of 10 and to return the best

model.

Figure 97. Table of Results Random Forest CV Model

73

The model had an overall accuracy of 61%. It correctly identified low scores 70%,

average scores 30%, and high scores 77% of the time.

Figure 98. Visualization of Accuracy Percentage for Random Forest for Score CV Model 1

cvLearn also has the ability to evaluate the attributes.

74

Figure 99. Attribute Evaluation of Attributes for Random Forest

The attributes that were shown to have the most importance in the random forest

model are: votes, runtime, budget, and directorPopularity. These will be the only

four attributes included in model 2.

The second attempt at random forest utilized the randomForest function.

FIgure 100. Table of Results for Random Forest Model

The model had an overall accuracy of 64%. It correctly identified low scores 68%,

average scores 47%, and high scores 76% of the time.

75

Figure 101. Visualization of Accuracy Percentage for Random Forest for Score Model 1

Model 2

The second model reduced the dataset from model 1 to include only the top

attributes determined from the attribute evaluation in cvLearn. The model includes

only votes, runtime, budget, and directorPopularity.

76

Figure 102. First 5 Rows of the Reduced Data Frame for Random Forest

Figure 103. Table of Results for the Reduced Random Forest Model 2

The model had an overall accuracy of 56%. It correctly identified low scores 66%,

average scores 20%, and high scores 76% of the time.

Figure 104. Visualization of Accuracy Percentage for Random Forest for Score Model 2 - Reduced Dimensions

77

Comparison of Random Forest Models for Score

Figure 105. Comparison of Accuracy Percentage for ALl Everything MoviesUSA Score Random Forest

All models appeared to have the same accuracy for classifying high scores and

similar accuracy when classifying low scores. The difference in the models is

apparent when classifying average scores. The random forest model with reduced

dimensions was not successful in this classification. The CV model 1 and random

forest model 1 were both more successful, but the random forest model 1 was the

78

most successful. Ultimately the random forest model 1 proved to have the highest

overall accuracy at 64%

PERCENT PROFIT

Both models for random forest utilized the same fully discretized data frame, with 741

observations of 15 variables. Just like with score, the variables for title, director, star,

released and genre were removed from the original discretized dataset.

Figures 106-109.

79

80

81

Once again, despite being pushed and prodded into every possible model, the dataset did

not yield reveal its secrets to the researchers. So far, the models have proved educational

but inconclusive. Despite being downtrodden with continued meidiogracy from their

beloved models, the researchers continue to enthusiastically search for clues to the hidden

treasures within the Internet Movie Database.

IX. TEXT-MINING

“Heigh-ho, heigh-ho, it's off to work we go”

-Seven anonymous miners (not minors)

The data was run through the baseline text-mining r-script.

library(tm)
library(wordcloud)
file <- "your-file-here"
fileData <- readLines(file)

words.vec <- VectorSource(fileData)

words.corpus <- Corpus(words.vec)

words.corpus <- tm_map(words.corpus, content_transformer(tolower))

words.corpus <- tm_map(words.corpus, removePunctuation)

words.corpus <- tm_map(words.corpus, removeNumbers)

words.corpus <- tm_map(words.corpus, removeWords,

stopwords("english"))
tdm <- TermDocumentMatrix(words.corpus)

m <- as.matrix(tdm)

wordCounts <- rowSums(m)

wordCounts <- sort(wordCounts, decreasing=TRUE)
wordcloud(names(wordCounts), wordCounts)

wordcloud(names(wordCounts), wordCounts, min.freq=2, max.words=50,
rot.per=0.35, colors=brewer.pal(8, "Dark2"))
wordToAssociate <- "your-word-here"
findAssocs(tdm, wordToAssociate, 0.2)

Figure 110.

Figure 110 was the result.

82

Figure 111.

83

After refining by removing punctuation and stopwords, Figure 112. was the result.

Figure 112.

The researchers had grand plans regarding text mining. Their ultimate goal with

this dataset was to determine whether early reviews were a potential indicator of

box-office flops. Instead of running any predictive algorithms on this dataset, the

researchers chose to rely solely on text mining. Sentiment analysis was applied to

84

the mined dataset, and the results ran counter to the researchers’ original

hypothesis. In technical terms, 6% of the words in the reviews corresponded to the

“negative.txt” document used in the sentiment analysis, while 9% of the words

corresponded to the “positive.txt” document. In short, when analyzed as a whole,

the reviews were 6% negative and 9% positive.

X. COMPARISON OF ALL MODELS FOR SCORE

Figure 113. Comparison of All Models for Score

Random Forest and Decision Trees were the best predictors for score. Ultimately, the

majority of the models had a difficult time distinguishing average scores. It is important to

reexamine how the scores were discretized and take into account that the average score

had a very small range. For future analysis, the scores might be discretized differently, and

ideally more data would be scraped about the movies.

Conclusion

Initially, the researchers set out to answer three major questions. These questions

were intentionally vague and set lofty goals to facilitate a more thorough

exploration of the methods employed, as well as lay the groundwork for future

85

studies on this topic. First, can this project recommend movies based on watch

history? Without relevant viewing data, the answer remains inconclusive. As an

alternative, however, the project can recommend movies based on other criteria,

including specific actors, directors, genres, ratings, runtime, and more. For instance,

a viewer interested in action movies will likely enjoy director Michael Bay’s work,

while a viewer looking for a PG-13 comedy without regard to user ratings will likely

enjoy movies featuring actor Adam Sandler.

Second, can this project help independent film producers optimize their limited

budgets to meet their desired goals? This is where the researchers achieved the

most success. The researchers tailored both outcome variables (score and percent

profit) to make recommendations on two objectives indie filmmakers would most

likely optimize for: achieving high ratings, and saving money. While the project’s

initial models are not as accurate as the researchers hoped, they create a

foundation that can be used to provide more concrete recommendations in the

future. Association rule mining, on the other hand, provided much more confident

recommendations. For instance, filmmakers looking for a high user rating with a

low budget should make an R-rated crime drama, while those looking for more

revenue should work in the action genre. (If, for some reason, a filmmaker wanted

to produce a high-cost, low-scoring movie, Eddie Murphy is their ideal star.)

Finally, can this project predict a critical failure based on textual analysis of early

reviews? Based on time and data limitations, the researchers quickly modified this

goal and reached their conclusions through the aforementioned models, rather

than text mining. The new question was: can this project accurately predict the

IMDB user rating of a given movie based on a series of data points? After combining

the gross revenue of a given movie with the average score of the director and lead

actor’s past movies using Naive Bayes, the project was able to predict with 81%

accuracy whether that movie achieved a user rating of 6 or higher.

86

Movies represent both a significant challenge and a significant opportunity when it

comes to data analysis. The movie industry is one of the most significant industries

worldwide, both in terms of cultural impact and total revenue generated. In the

United States alone, movies made a combined $43 billion in 2018. Yet the growth of

this industry is slowing, with studios relying on fewer “tentpole” films to make more

of their profits. This strategy carries considerable risk, as a “flop” could have even

more significant consequences than in the past. With new and better data analysis

tools, filmmakers could work more effectively to produce movies that generate

maximum financial and critical success for a minimum of risk, all while making a

lasting and positive contribution to our culture.

87

https://deadline.com/2018/07/film-industry-revenue-2017-ibisworld-report-gloomy-box-office-1202425692/

