KENDRA OSBURN | 3-14-19 | IST707 | TEXT MINING

FAKE REVIEWS

Introduction

Text mining enables researchers to turn paragraphs of text into meaningful data by
extracting individual words. Unlike many other models, text mining isn't a singular method
that can be applied to data. Rather, it is a collection of many different methods — including
sentiment analysis, topic modeling, and lie detection — of transforming blocks of text into
data that can be processed, classified, and analyzed. As such, there are many different
libraries that can help achieve this textual information retrieval. The input is any block of
text, while the output is some variation of record data, often in the form of a term

document matrix.

Analysis & Models

I. EXPLORATORY DATA ANALYSIS

Before any true data-tuning, the data was run through the most baseline text-mining
program the author created during her first foray into text-mining. (She likes to create as
many reusable code blocks as possible for her future self to use. This is useful about 2% of

the time. This is one of those 2% times)

library(tm)

library(wordcloud)

file <- "your-file-here"

fileData <- readLines(file)

words.vec <- VectorSource(fileData)

words.corpus <- Corpus(words.vec)

words.corpus <- tm_map(words.corpus, content_transformer(tolower))
words.corpus <- tm_map(words.corpus, removePunctuation)
words.corpus <- tm_map(words.corpus, removeNumbers)

words.corpus <- tm_map(words.corpus, removeWords, stopwords("english"))
tdm <- TermDocumentMatrix(words.corpus)

m <- as.matrix(tdm)

wordCounts <- rowSums(m)

wordCounts <- sort(wordCounts, decreasing=TRUE)

wordcloud(names (wordCounts), wordCounts)

This produced these most frequent words and this illegible word cloud

head(wordCounts_nostopwords)
the and was food restaurant for
426 240 143 80 74 73

give grgers

believe rating = 10[* soflwallers clean

in
-
E-E nnls:.-“fe Z tofu EIJl..|ﬂ..-|I|cv cheap ista try E

bBEFEd gmtym 2 Jr-nks b

gardenthings
kitchen BriNg

tak@fﬂ&l‘ldly saidchiretiej o Iot tha|bu1hday

going chnnese‘”‘a'? sushi pizz

favorite view syracuse
american restaurants

oemealnor greats'g

though e rtered pretty dont

e ambiance jya

G
Ilk |aiemusgc el packad se Nlce '-{‘:Zn;egg:e

burger point coming paid worst (_",E][‘I‘je,:'u”_:'I nicesdrmg ravioli

a t 1 campu
aste ttle
finally 26y o eesaawesommmem,\f ?ﬂﬁr Price add marshal

defnltely b|andqua|lty|,~rre|| somethlng

gooa,;ztget apund 1AL DeSI
gredients AlWaYS qvic"'o'™" southern oo S cooked
half rudely {:ream attentive 82 night

ordered

A bar
wasnt g Pay £ sk ML, Siite holgenarally waited ,-_airead

E‘-fE sisler
ack Mi inutes e /% 40 amy Wueh
resnn = gpupulariong

While. reading (3L uite

maderecammend = 5looked really Sotindian day:?.n share. Eomed:';'i',ftﬁf:ﬁ z
B outstanding ypis | £ cant Drderf "b'esﬂfg? EL'lET':F yelp (rver family gireat
began ate (€3 S - evenﬂﬂpgg,,c;‘}whu I:ulenFller seemed call Z1ni fimes
T conlg" RIS Evtatertim, 98 g uct 9 § ii“é“ri‘éﬁ t5 80
arsa worth S0UP quml?eaﬁgsehkagmgﬁepfﬁnn:{ue"% |eE- shrim -—dBJ kind 5 Lﬁ;::e

s free neads

calhng

r
didnt
seated flavors \'gryuna amazmg dining Eﬂvl;ﬂnm%m

T PP

Then punctuation and stop words were removed. The result is the colorful word cloud

below.

beSt Went

‘restauran

dinner took time
people o

delicious
friends g =overallwell ot &

ordereds S Sgreat minutes

taste menu ‘Umce
neverc~C L2 CD evenwaltress
» around C O
@ *‘ Qtable b gl D
& F want-o
= really ver

]

®

plate i

serwce @ %
&

—=C
20

U .
o
@)

food

80 74 43 34

31

p|aCe amazmg
served Pizza
terrible 52
food restaurant place went best good

29

> findAssocs(tdm, "food", 0.4)

$food

everyday kadhai paneer whenever dal seemed
0.47 0.47 0.47 0.47 0.44 0.41

After that, the researcher got down to business and buckled into her office chair, which is

what the reader should do now because it's about to get lit like a 3.4 star romantic dinner.

The file data was read in and all of the excess columns were combined into one giant
column. The file now had three columns: sentiment, lie, review. The reviews were turned
into a corpus, but this was wrong. The reviews first needed to be turned into a vector and
then into a corpus. All the words were converted to lowercase. Then punctuation was
removed. Then Stopwords were removed. Stopwords are words that occur frequently and,

as such, offer little help and a lot of noise.

The data was then split into lie and sentiment, and then further split into testing and
training. The model was applied and got 50% accuracy! Normally, the researcher would be
very concerned about this, but she squandered away any “concern” time being wayyy to
excited about her final project.

Results

IST 707 | HW 8 | WEEK 9 | TEXT MINING
====================================
STEP 1: IMPORT LIBRARIES & DATA

====================================
library(tm)

library(wordcloud)

library(tidyr)

library(tidytext)

library(dplyr)

setwd("/Users/kosburn 1/syracuse/IST707/WK9")
file <- "deception_data_converted.csv"
fileData <- read.csv(file)

str(fileData)

og fileData <- fileData

fileData <- tidyr::unite(fileData, review, c("review", "X", "X.1", "X.2",
IIX.3II, IIX.4IIJ IIX.5II’ IIX.6ll, "X.7“, IIX.8"-’ IIX.9II’ llX.lell, IIX.11II’ IIX.12II,
"X.13", "X.14", "X.15", "X.1e", "X.17", "X.18", "X.19", "X.20"))

2i.TURN VARIABLE INTO A CORPUS "BAG OF WORDS"
2ia. FIRST VECTOR, THEN CORPUS
(corpus needs a vector to make corpus)

reviews <- fileData$review
words.vec <- VectorSource(reviews)
words.corpus <- Corpus(words.vec)
words.corpus

3i. TRANSFORM ALL WORDS TO LOWERCASE

words.corpus <- tm_map(words.corpus, content transformer(tolower))

3ii. REMOVE PUNCTUATION

words.corpus <- tm_map(words.corpus, removePunctuation)

3iii. REMOVE NUMBERS

words.corpus <- tm_map(words.corpus, removeNumbers)

3iv. REMOVE STOPWORDS

words.corpus <- tm_map(words.corpus, removeWords, stopwords("english"))

WHAT IS A TERM? TERM = DIFFERENT WORD
tdm <- TermDocumentMatrix(words.corpus)
tdmOG <- TermDocumentMatrix(words.corpus)

====================================
FOR TDM

m <- as.matrix(tdm)

wordCounts <- rowSums(m)

wordCounts <- sort(wordCounts, decreasing=TRUE)

head(wordCounts)

wordcloud(names (wordCounts), wordCounts)
wordcloud(names(wordCounts), wordCounts, min.freq=2, max.words=50,
rot.per=0.35, colors=brewer.pal(8, "Dark2"))

findAssocs(tdm, "food", 0.4)

Create DTM
dtm_reviews <- t(tdmOG)
matrix_reviews <- as.matrix(dtm_reviews)

df reviews <- tidy(matrix_reviews)

df_reviews normalized <- data.frame(t(apply(df_reviews, 1, function(i)

i/sum(1))))

NON NORMALIZED TEST AND TRAIN

TURN BACK INTO A MATRIX

lie <- fileData$lie

sentiment <- fileData$sentiment

alldata <-cbind(lie, sentiment, df _reviews)
alldata <- alldata[-c(83:84),]

alldata lie true_sentiment positive <- subset(alldata, lie == 't' &
sentiment =="p")
alldata_lie_true_sentiment_negative <- subset(alldata, lie == 't' &
sentiment =='n")
alldata_lie false _sentiment positive <- subset(alldata, lie == 'f' &
sentiment =="p")
alldata_lie false_sentiment_negative <- subset(alldata, lie == 'f' &
sentiment =='n")

Ali's amaze functions!!

#Creating a function to create a training df

my_sample fun <- function(df, n) {
sample(nrow(df), n)

#Creating a function to create a training df
my_train_set <- function(df, vector) {
df[vector,]

}

#Creating a function to create a testing df
my_ test set <- function(df, vector, n) {

df <- df[-vector,]

df[sample(nrow(df), n),]
}

sample lie true_sentiment_positive <-
my_sample_fun(alldata lie true_sentiment_positive, 15)
train_lie_ true_sentiment_positive <-

my_ train_set(alldata lie true_sentiment_positive,
sample_lie true_sentiment_positive)

test _lie true_sentiment_positive <-
my_test_set(alldata_lie true_sentiment_positive,
sample lie true_sentiment_positive, 6)

sample_lie true_sentiment_negative <-
my_sample_fun(alldata_lie true_sentiment_negative, 15)
train_lie true_sentiment_negative <-
my_train_set(alldata_lie true_sentiment_negative,
sample lie true_sentiment_negative)
test_lie_true_sentiment_negative «<-

my test set(alldata_lie true_sentiment_negative,
sample lie true_sentiment_negative, 6)

sample lie false_sentiment_positive <-
my_sample_fun(alldata lie false sentiment_positive, 15)
train_lie false sentiment_positive <-

my train_set(alldata_lie false sentiment_positive,
sample lie false_sentiment_positive)

test lie false_sentiment_positive <-
my_test_set(alldata_lie false sentiment_positive,
sample lie false sentiment_positive, 6)

sample _lie false_sentiment_negative <-
my_sample_fun(alldata_lie false_sentiment_negative, 15)

train_lie false_sentiment_negative <-
my_train_set(alldata_lie false_ sentiment_negative,
sample lie false sentiment_negative)

test_lie false sentiment_negative <-

my test set(alldata_lie false sentiment_negative,
sample_lie false_sentiment_negative, 6)

R e e e e e e e e e e e e e e
RUN MODELS: Naive Bayes

R e e e e e e e e e e e e e e
library(e1071)

train_set <- rbind(train_lie true_sentiment_positive,

train_lie true_sentiment_negative, train_lie false_ sentiment_positive,
train_lie false_sentiment_negative)

test_set <- rbind(test_lie true_sentiment positive,

test_lie true_sentiment_negative, test lie false_sentiment_positive,
test_lie false sentiment_negative)

train_set lie <- train_set[,!colnames(train_set) %in% c('sentiment')]
test _set_lie <- test_set[,!colnames(test_set) %in% c('sentiment')]

train_set sentiment <- train_set[,!colnames(train_set) %in% c('lie")]
test set _sentiment <- test set[,!colnames(test set) %in% c('lie')]

1 a3t 3o st e 3 3 e e 36 3t 6 36536 8 636 36 96 36 8 36 36 e 6 36 36 86 6 06 36 6 0 563

LIE
##**
train_set <- train_set lie

test _set <- test _set lie

test_label <- c('lie")
test_set_no_label <- test_set[,!colnames(test_set) %in% test label]

NB_el071<-naiveBayes(lie~., data=train_set, na.action = na.pass)
NB_el1l071 Pred <- predict(NB_el071, test set no_label)
(pred_table <- table(NB_el1071 Pred,test set$lie))

correct <- sum(diag(pred_table))

(accuracy <- correct/sum(pred_table))

##**

SENTIMENT

##**

train_set <- train_set sentiment
test set <- test set sentiment

test label <- c('sentiment')
test_set _no_label <- test_set[,!colnames(test _set) %in% test label]
test _sentiment lie label <- test set[,colnames(test set) %in% test label]

NB_el@71<-naiveBayes(sentiment~., data=train_set, na.action = na.pass)
NB_e1071 Pred <- predict(NB_el1071, test _set no_label)

(pred_table <- table(NB_el1071 Pred,test set$sentiment))

correct <- sum(diag(pred_table))

(accuracy <- correct/sum(pred_table))

Conclusion

The researchers had grand plans regarding text mining and sentiment analysis.
Their ultimate goal with this dataset was to determine whether reviews were
falsified or not. Sentiment analysis was applied for color. They can predict with 50%
accuracy, the same accuracy as a coin(!) whether the review is true or false, positive
or negative. This is depressing and again the researchers find themselves wishing
for the ability to bend space as well as the ability to mine text. They are also hoping
Dr. Gates hasn't gotten this far because a new paper has made its way into her
hands. If she is here, please know this is a reflection of (1) having a huge work
project in addition to school projects (2) over committing to our project!!

Regardless, | learned so much. Thank you!!

