
Kaggle Movie Review Sentiment
Ali Ho & Kendra Osburn | NLP | 6/13/19

HIGHEST ACCURACY ACHIEVED: 94%*

In order to standardize our measurements and conclusions across all experiments, we ran
each set of features through three different evaluation measures (​overall accuracy,
cross-validation, confusion matrix​) each giving us unique insights into whether or not
this new function helped our classification goal.

 The ​overall accuracy​ was simply a Naive Bayes classifier and returned a percentage. This
was a good high-level view of our new features.

The ​cross-validation​ took Naive Bayes a step further by breaking the testing and training
datasets into “folds.” It returned precision, recall, and F1. Recall is calculated by adding up
all of the correctly classified movie reviews (the true positives) and dividing it by the sum of
the movie reviews that were false positives (for example movie reviews that were predicted
to be positive, but were in fact negative) and the true positives. Precision is calculated by
adding up all of the correctly classified movie reviews (the true positives) and dividing it by
the sum of the movie reviews that were false negatives (movie reviews that are positive,
but were not predicted as positive) and the true positives. F1 is the “harmonic mean” of
precision and recall. Movie reviews do not have the same level of seriousness with false
positives and false negatives as there is with a spam filter. For a spam filter, it is much
worse to classify an email as spam, that is in fact not than the other way around.

Lastly, the ​confusion matrix​ was implemented to ensure enough of each unique grouping
made it into the test set, ensuring our data wasn’t unintentionally skewed towards any
particular sentiment.

EXPERIMENTS: Part One
Testing separate features in separate files

STARTING POINT ACCURACY

WHAT WAS IMPLEMENTED

This is the accuracy of the program when we received it. We did change line 201 to obtain
a random sample. It was determined that in order to have a true understanding of how
the new features are affecting the data a seed needed to be set. This way we will always
have the same sample of data that was randomly sampled. This is the best way to
compare accuracies.

CODE

random.​Random(723)​.shuffle(phrasedata)

IN ENGLISH

Random(723) sets a seed in order to replicate the data that was randomly selected every
time we run random.shuffle.

CODE

train_set, test_set = featuresets[round(.1*int(limit)):], featuresets[:round(.1*int(limit))]
classifier = nltk.NaiveBayesClassifier.train(train_set)
print('Overall Accuracy', nltk.classify.accuracy(classifier, test_set))

IN ENGLISH

Creates a test and train dataset. The train set is comprised of 90% of the data and the
test set is comprised of the other 10%. It is then run in the Naive Bayes classifier provided
by nltk. The output of the classifier is then printed as “Overall Accuracy x%”

CODE

goldlist = []
 predictedlist = []
 for (features, label) in test_set:
 goldlist.append(label)
 predictedlist.append(classifier.classify(features))

 cm = nltk.ConfusionMatrix(goldlist, predictedlist)

 print(cm.pretty_format(sort_by_count=True, show_percents=False, truncate = 9))

IN ENGLISH

This code creates a confusion matrix. The code has a loop that goes through the test set
and compares the actual labels(goldlist) to the predicted labels(predicitedlist). It then
uses the ConfusionMatrix function from nltk to create a confusion matrix. The print
statement show_percents = False, means that the actual number and not percentage will
be shown in the confusion matrix.

REASON

We wanted to have a baseline to compare our results to. Without setting a seed, every
time the file is run a different random selection will be generated and the overall
accuracy can vary depending on the selection. By setting a random seed, we are able to
test how each feature did or did not affect the baseline.

NEW ACCURACY

By creating a confusion matrix, we can see that neutral sentiment are being classified
correctly the majority of the time. The reviews that are strongly negative (0) and strongly
positive (4) has the lowest success rate for our Naive Bayes classifier. One thing to
mention is that this data set is unbalanced, which the majority of our reviews rated as
neutral. Therefore, it we should pay attention to the Micro percentages versus the macro.
The seed that we chose has a slightly lower overall accuracy then the random sample.

STARTING POINT ACCURACY

WHAT WAS IMPLEMENTED

We decided to bin the sentiments into 3 different categories: negative, neutral, positive.
Reviews that had sentiment scores of:
 0 or 1 binned as negative
 2 binned as neutral
 3 or 4 binned as positive

CODE

each phrase has a list of tokens and the sentiment label (from 0 to 4)
bin to only 3 categories for better performance
 ​for phrase in phraselist:
 tokens = nltk.word_tokenize(phrase[0])
 sentiment = int(phrase[1])
 if (sentiment == 2):
 phrasedocs.append((tokens, 'neutral'))
 if ((sentiment == 0) or (sentiment == 1)):
 phrasedocs.append((tokens, 'negative'))
 if ((sentiment == 3) or (sentiment == 4)):

 phrasedocs.append((tokens, 'positive'))

IN ENGLISH

This is a loop that is going through our phraselist and appending it to add either neutral,
negative or positive depending on the sentiment value. It then appends the phrasedocs
with the tokens for each review phrase and if the review is positive, negative or neutral.

REASON

We decided to bin the data into 3 groups: positive, negative and neutral. The data was
originally binned by negative, slightly negative, neutral, slightly positive and positive.
However, we are mainly interested if the movie review was negative, neutral or positive,
and not on the level of negativity or positivity. Therefore, binning into 3 groups seemed
like the best option.

NEW ACCURACY

Binning into 3 groups increased the overall accuracy from 53.6% to 60.6%. The confusion
matrix, shows that the classifier correctly classified 403 neutral phrases out of 505, 112
positive phrases out of 263, and 91 negative reviews out of 232. The classifier classified
almost 50% of negative and positive reviews as neutral. This needs to be improved.

STARTING POINT ACCURACY

WHAT WAS IMPLEMENTED

We decided to remove the neutral bin. All reviews that were classified as neutral were not
included in this experiment.

CODE

 # create list of phrase documents as (list of words, label)
 phrasedocs = []
 neutraldocs = []
 # add all the phrases
 # each phrase has a list of tokens and the sentiment label (from 0 to 4)
 ### bin to only 3 categories for better performance
 ​ for phrase in phraselist:
 tokens = nltk.word_tokenize(phrase[0])
 #The following code is changing all 0, 1 to "negative", 2 - "neutral", 3 & 4 to "positive"

 #This is essentially binning the phrasedocs into 2 categories: positive and negative
 sentiment = int(phrase[1])
 if (sentiment == 2):
 ​ neutraldocs.append​((tokens, 'neutral'))
 if ((sentiment == 0) or (sentiment == 1)):
 phrasedocs.append((tokens, 'negative'))
 if ((sentiment == 3) or (sentiment == 4)):
 phrasedocs.append((tokens, 'positive'))

IN ENGLISH

We decided to only append the phrasedocs with the positive and negative reviews. The
neutral docs are being added to neutraldocs instead of phrasedocs.

REASON

By looking at the reviews that were broken down to phrases, many phrases were one or
two words and the sentiment was neutral because the word was neutral. We are truly
only interested in the sentiment for the whole review and not for an individual word. We
also are mainly interested in if the review is negative or positive and not neutral. We
ultimately want to know if that movie is getting positive reviews and therefore we should
go see it.

NEW ACCURACY

This greatly increased our accuracy level as we have reduced the noise from the neutral
reviews. Our data is also much more balanced and therefore we can look at the macro
averages instead of the micro averages. The micro averages are better for unbalanced
labels. The confusion matrix, as well as, the average precision per label shows that the
classifier had more success correctly classifying positive reviews. We increased the
precision, recall and F1 accuracies.

STARTING POINT ACCURACY

WHAT WAS IMPLEMENTED

Stopwords were removed.

CODE

from nltk.corpus import stopwords

IN ENGLISH

This imports the stopwords list from the nltk.corpus

CODE

stopwords = nltk.corpus.stopwords.words('english')
stopwords.extend([',', '.', '-', 'movie', 'film', '``', '`', "'", "...", '--'])

IN ENGLISH

The stopword list from nltk is being saved in an array. We then looked at the top 100
words and decided to add to the stopword list and included some punctuation and the
words movie and film.

CODE

all_words_list = [word for (sent, cat) in docs for word in sent ​if word not in stopwords​]

IN ENGLISH

This creates a list of all of the words in the reviews that are not in stopwords.

REASON

We believe that stopwords add noise to the movie reviews. We do not feel like the
inclusion of stopwords will positively influence our classifier. For this reason, we decided
to remove stopwords and see if our intuition is correct.

NEW ACCURACY

The overall accuracy increased from 60.6% to 62.1%. Removing stopwords appears to
have helped our classification task. By removing stopwords, we were able to correctly
classify an additional 8 positive reviews, and 10 negative reviews. This increased our
micro average precision to 61.1%, recall to 60.6% and F1 to 59.4%. The F1 average scores
per label increased for positive and negative, but decreased for neutral. This is
acceptable, because ultimately we want a classifier that is able to correctly classify all
labels, and not just neutral. We are willing to lose a little bit of accuracy for neutral, but
gain precision and recall for positive and negative, which ultimately will increase our F1.

STARTING POINT ACCURACY - NO NEUTRAL

WHAT WAS IMPLEMENTED

The stopwords were removed using the steps mentioned above.

NEW ACCURACY

Interestingly, removing the stopwords for the dataset without neutral labels decreased
the overall accuracy. The average precision, increased for both positive and negative
movie reviews. Recall also increased for negative reviews. However, the F1 decreased for
both negative and positive reviews. Stopwords appear to be important when classifying
for only positive and negative reviews. When stopwords were included we were able to
correctly classify 11 more positive reviews and 2 more negative reviews. We had an
increase of 11 false negatives with stopwords included and 2 more false negatives.

STARTING POINT ACCURACY

WHAT WAS IMPLEMENTED

Negation was included. This attempt does not remove stopwords and the base file is the
binned python file. No other changes were made.

CODE

def Not_features(document, word_features, negationwords):
 features = {}
 for word in word_features:

features['V_{}'.format(word)] = False
features['V_NOT{}'.format(word)] = False
#go through document words in order

 for i in range(0, len(document)):
word = document[i]
if((i + 1) < len(document)) and ((word in negationwords) or

(word.endswith("n't"))):

 i += 1
 features['V_NOT{}'.format(document[i])] = (document[i] in word_features)

else:
 features['V_{}'.format(word)] = (word in word_features)
 return features

IN ENGLISH

This defines a negation function that will go through every word in the word features
and negate the word that follows a negation word or “n’t”.

CODE

negationwords = ['no', 'not', 'never', 'none', 'nowhere', 'nothing', 'noone', 'rather',
'hardly', 'scarcely', 'rarely', 'seldom', 'neither', 'nor']

IN ENGLISH

Creates a list of the negation words that we listed

CODE

NOT_featuresets = [(Not_features(d, word_features, negationwords), c) for (d, c) in
docs]

IN ENGLISH

Calls the Not_features function that was defined above. The NOT_featuresets is
generating an array. Each item in the array has both an object of features and the
sentiment. The object of features contains every word in word_features so V_word :
TRUE, V_NOTword : FALSE. It states whether or not that word follows a negation word
and if the word is in the phrase.

REASON

We felt that negative reviews would have more negation in them than positive or neutral
reviews. If this is the case, we expect to see a higher precision and recall for negative
reviews and possibly a lower precision for neutral reviews.

NEW ACCURACY

Negation improved our macro averages for precision, recall and F1. It did decrease the
neutral average precision, but increased the recall. The increase in recall shows that the
classifier is not assigning everything to neutral, but in fact is being more selective.
Precision for neutral decreased because we had previously predicted 403 neutral reviews
correctly, but now are only correctly classifying 386 neutral reviews. This is acceptable
because the initial version classified 645 reviews as neutral and this version with negation
only classified 587 reviews as neutral. Which means that it classified more reviews than
before as either positive or negative. We were able to correctly classify 18 more positive
reviews with negation and 27 more negative reviews. Negation was very beneficial in
classifying positive and negative reviews.

STARTING POINT ACCURACY - NO NEUTRAL

WHAT WAS IMPLEMENTED

Negation was included. This attempt does not remove stopwords and the base file is the
binned python file. No other changes were made. The steps were the same as the steps
listed above for negation.

NEW ACCURACY

Negation yet again proved fruitful for classifying positive and negative movie reviews.
Prior to negation the classifier was classifying the majority of movie reviews as positive.
The initial version classified 607 of the 1,000 movie reviews as positive, where in actuality
there are only 540 positive movie reviews. With negation this was slightly corrected and
therefore precision, recall and F1 increased for both positive and negative movie reviews.
The macro averages also all increased. We were successfully able to classify 30 more
negative movie reviews and only lost 1 correctly classified positive movie review. This was
a successful attempt. The combination of bigrams to negation did not change any of the
accuracies or predictions when compared to the negation file.

STARTING POINT ACCURACY

WHAT WAS IMPLEMENTED

Bigrams were implemented to the python file with binned data. It is important to note
that when creating bigrams, you cannot remove stopwords as then the bigrams would
not be accurate.

CODE

from nltk.collocations import *
bigram_measures = nltk.collocations.BigramAssocMeasures()

IN ENGLISH

This imports the nltk.collocations.BigramAssocMeasures from the nltk.collocations and
saves it in bigram_measures.

CODE

def bigram_document_features(document, word_features, bigram_features):

 document_words = set(document)
 document_bigrams = nltk.bigrams(document)
 features = {}
 for word in word_features:

features['V_{}'.format(word)] = (word in document_words)
 for bigram in bigram_features:

features['B_{}_{}'.format(bigram[0], bigram[1])] = (bigram in
document_bigrams)
 return features

IN ENGLISH

This defines a bigram function that contains both word features and bigram features.
There are two loops in this function. The first loop goes through every word in the
phrases and creates a sparse matrix with V_word and states True or False depending if
the word is in that specific phrase. The second loop creates a sparse matrix of bigrams
V_word_word and states true or false depending if that bigram is in the phrase.

CODE

 finder = BigramCollocationFinder.from_words(all_words_list)

IN ENGLISH

This line goes through all of the words in the all_words_list and creates bigrams and
stores them in an array called finder.

CODE

bigram_features = finder.nbest(bigram_measures.pmi, 500)

IN ENGLISH

This line evaluates the bigrams using the pmi method and returns the top 500 bigrams
based on their pmi score.

CODE

bigram_featuresets = [(bigram_document_features(d, word_features,
bigram_features), c) for (d, c) in docs]

IN ENGLISH

Calls the bigram_document_features function that was defined above. The
bigram_document_features is generating an array. Each item in the array has both an
object of features and the sentiment. The object of features contains every word in the
phrases followed by true or false, depending on if the word is represented in that specific
phrase, it also contains the top 500 bigrams with a true or false, depending on if the
bigram appears in that phrase followed by the sentiment.

REASONS

Bigrams are an important tool used in sentiment classification. However, we wonder how
helpful they will be in this instance, because the phrases are broken down into multiple
phrases and sentences are not kept together.

NEW ACCURACY

Implementing bigrams with a pmi score, did not change the classification accuracy at all.
We will experiment to see if either the bigrams with a raw frequency or chi square scores
will prove beneficial.

STARTING POINT ACCURACY

WHAT WAS IMPLEMENTED

Bigrams were implemented to the python file with binned data. It is important to note
that when creating bigrams, you cannot remove stopwords as then the bigrams would
not be accurate. This attempt uses the chi_sq measure

CODE

bigram_features = finder.nbest(bigram_measures.​chi_sq​, 500)

IN ENGLISH

This line evaluates the bigrams using the pmi method and returns the top 500 bigrams
based on their chi square score.

NEW ACCURACY

Implementing bigrams with a chi square score, did not change the classification accuracy
at all. We will experiment to see if the bigrams with a raw frequency measure have an
affect on the classifier.

STARTING POINT ACCURACY

WHAT WAS IMPLEMENTED

Bigrams were implemented to the python file with binned data. It is important to note
that when creating bigrams, you cannot remove stopwords as then the bigrams would
not be accurate. This attempt used the raw frequency measure.

CODE

bigram_features = finder.nbest(bigram_measures.​raw_freq​, 500)

IN ENGLISH

This line evaluates the bigrams using the pmi method and returns the top 500 bigrams
based on their raw frequency.

NEW ACCURACY

Bigrams with a raw frequency measure, did impact the overall accuracy very slightly. The
original accuracy was 60.6% and the new overall accuracy is 60.7%. With the raw
frequency we were able to correctly classify one addition neutral movie review, which
was previously classified as positive.

STARTING POINT ACCURACY - NO NEUTRAL

WHAT WAS IMPLEMENTED

Bigrams were implemented to the python file neutral removed. The steps to implement
bigrams are described above.

NEW ACCURACY

Bigrams with a pmi measure had no effect on the classifier for the negative and positive
reviews. We will attempt this with bigrams with a raw frequency measure.

STARTING POINT ACCURACY - NO NEUTRAL

WHAT WAS IMPLEMENTED

Bigrams were implemented to the python file neutral removed. The steps to implement
bigrams are described above.

NEW ACCURACY

Bigrams with a raw frequency measure had a minimal effect on the positive and negative
review classifier. The F1 per label decreased by one one-thousandth for negative reviews.
The Macro average precision decreased by one one-thousandth, as well. The overall
accuracy remained the same. Since this is a balanced dataset, we are discussing macro
averages and not micro averages.

STARTING POINT ACCURACY

WHAT WAS IMPLEMENTED

A score of the negative and positive words were included in the classifier.

CODE

def readSubjectivity(path):
 flexicon = open(path, 'r')
 sldict = { }
 for line in flexicon:
 fields = line.split()
 strength = fields[0].split("=")[1]
 word = fields[2].split("=")[1]
 posTag = fields[3].split("=")[1]
 stemmed = fields[4].split("=")[1]
 polarity = fields[5].split("=")[1]
 if (stemmed == 'y'):

 isStemmed = True
 else:
 isStemmed = False
 sldict[word] = [strength, posTag, isStemmed, polarity]
 return sldict

IN ENGLISH

This function creates three arrays: poslist, neutrallist, & neglist. It goes through all of the
words and appends each array depending on if the word is positive, negative or neutral.

CODE

SLpath = "./SentimentLexicons/subjclueslen1-HLTEMNLP05.tff"
SL = readSubjectivity(SLpath)

IN ENGLISH

This code uses the read_subkectivity_three_types function defined above to read in the
subjclueslen1-HLTEMNLP05.tff file.

CODE

def SL_features(document, word_features, SL):
 document_words = set(document)
 features = {}

 for word in word_features:
 features['V_{}'.format(word)] = (word in document_words)
 # count variables for the 4 classes of subjectivity
 weakPos = 0
 strongPos = 0
 weakNeg = 0
 strongNeg = 0
 for word in document_words:
 if word in SL:
 strength, posTag, isStemmed, polarity = SL[word]
 if strength == 'weaksubj' and polarity == 'positive':
 weakPos += 1
 if strength == 'strongsubj' and polarity == 'positive':
 strongPos += 1
 if strength == 'weaksubj' and polarity == 'negative':
 weakNeg += 1
 if strength == 'strongsubj' and polarity == 'negative':
 strongNeg += 1
 features['positivecount'] = weakPos + (5 * strongPos)
 features['negativecount'] = weakNeg + (5 * strongNeg)

 return features

IN ENGLISH

Then there is another loop that goes through every single word and creates a count of
words that are weak positive, strong positive, weak negative, or strong negative. Weak
positive and negative words are only counted once, however strong positive and negative
words are given more weight and counted 5 times. The function ultimately produces
features that include a positive count and a negative count for each review.

CODE

SL_featuresets = [(SL_features(d, word_features, SL), c) for (d, c) in docs]

IN ENGLISH

Calls the SL_features function that was defined above. The SL_features is generating an
array. Each item in the array has both an object of features and the sentiment. The object
of features contains every word in the phrases followed by true or false, depending on if
the word is represented in that specific phrase, it also contains a positive and negative
word count followed by the sentiment.

REASON

We felt that classification would be assisted with a list of positive and negative word
scores. We believed that positive reviews would have a higher positive word score than
neutral and negative reviews. Likewise, that negative reviews would have a higher
negative word score than neutral and positive reviews.

NEW ACCURACY

The inclusion of word subjectivity positively influence our accuracy. Precision for neutral
slightly decreased, but precision for negative and positive increased. The micro precision,
recall and F1 all increased. We were able to successfully classify 13 more positive reviews
and 10 more negative reviews. We only correctly classified 395 neutral reviews compared
to the 403 neutral reviews that were correctly classified without subjectivity. This is
acceptable as the classifier is now classifying more reviews and negative and positive and
not all reviews as neutral.

STARTING POINT ACCURACY - NO NEUTRAL

WHAT WAS IMPLEMENTED

Sentiment for the negative and positive file

NEW ACCURACY

The inclusion of subjectivity greatly increased precision for negative reviews. It also
increased the F1 for both negative and positive reviews. We were able to correctly classify
one addition positive movie review and 53 negative movie reviews. Word subjectivity was
extremely beneficial in our accuracy for positive and negative movie reviews.

STARTING POINT ACCURACY

WHAT WAS IMPLEMENTED

This attempt combined negation and bigrams together.

CODE

def Not_features(document, word_features, bigram_features, negationwords):
 document_words = set(document)
 document_bigrams = nltk.bigrams(document)
 features = {}
 for word in word_features:

features['V_{}'.format(word)] = False
features['V_NOT{}'.format(word)] = False

 for bigram in bigram_features:
features['B_{}_{}'.format(bigram[0], bigram[1])] = (bigram in

 document_bigrams)
#go through document words in order

 for i in range(0, len(document)):
word = document[i]
if((i + 1) < len(document)) and ((word in negationwords) or

 (word.endswith("n't"))):
 i += 1
 features['V_NOT{}'.format(document[i])] = (document[i] in word_features)

else:
 features['V_{}'.format(word)] = (word in word_features)
 return features

IN ENGLISH

The code above is a combination of the code that was used in the negation experiment
and the bigram experiment. The code is combined in the Not_features function, which is
comprised of multiple loops.

CODE

NOT_featuresets = [(Not_features(d, word_features, ​bigram_features,
negationwords), c) for (d, c) in docs]

IN ENGLISH

This calls the NOT_featuresets function defined above, that includes word_features,
bigram_features and negationwords. The function creates an array that includes the
word_features, bigram_features, negationwords, and the sentiment for each review.

REASON

Initially, we believed that combining negation with bigrams might prove fruitful. However,
after running the bigrams and seeing little if no improvement, we are not sure if the
combination will offer higher results than negation alone.

NEW ACCURACY

The combination of bigrams with a raw frequency measure and negation increased the
overall accuracy. However, when compared to the cross evaluation, confusion matrix and
overall accuracy from the negation attempt, the accuracy score only increased by one
one-thousandth from .634 to .635. We were able to successfully classify a review that was
wrongly classified as negative and correctly classify it as neutral. Also, one negative
review was previously classified as positive, but in this attempt was classified as neutral.
This means that the classifier is getting closer to correctly classifying it. The Micro
averages did not change at all for precision, recall and F1 from the initial negation
accuracy levels.

STARTING POINT ACCURACY - NO NEUTRAL

WHAT WAS IMPLEMENTED

Bigrams with negation for the file with neutral removed.

NEW ACCURACY

When comparing the combination of bigrams and negation to the baseline, it appears
that it helped with precision, recall, F1 and overall accuracy, however, this was mainly due
to negation and not bigrams.

STARTING POINT ACCURACY

WHAT WAS IMPLEMENTED

This attempt combined negation and removed stopwords.

CODE

def Not_features(document, word_features, negationwords):
 features = {}
 for word in word_features:

features['contains(V_{})'.format(word)] = False
features['contains(V_NOT{})'.format(word)] = False
#go through document words in order

 for i in range(0, len(document)):
word = document[i]
if((i + 1) < len(document)) and ((word in negationwords) or (word.endswith("n't"))):

 i += 1
 features['V_NOT{}'.format(document[i])] = (document[i] in word_features)

else:
 features['V_{}'.format(word)] = (word in word_features)
 return features

IN ENGLISH

This is the same code from the negation experiment. In fact, no new code was
implemented. The only difference is that the stopwords were removed from the
all_words_list prior to running the Not_features function on the data.

NEW ACCURACY

This experiment had an adverse effect on the overall accuracy. However, it was able to
correctly classify more positive and negative movie reviews. It incorrectly classified
neutral reviews mainly as positive or negative. Neutral has a low precision, but the
precision for negative and positive greatly increased. Which for movie reviews, we believe
that precision is more important than recall, since false negatives are not as serious.
Which would be different for spam detection.

STARTING POINT ACCURACY - NO NEUTRAL

WHAT WAS IMPLEMENTED

Negation with stopwords removed for the file with neutral removed.

NEW ACCURACY

At first glance, it appears as if the negation with stopwords removed benefited our
accuracy levels. We lost precision with negative reviews, but were able to successfully
classify 53 more negative reviews than the baseline. However, when compared to the
attempt with only negation a different story is told. Our precision for positive decreased,
but our precision for negative increased. We successfully classified 24 less positive
reviews, but correctly classified 23 more negative reviews with stopwords removed, than
by negation alone. This model does a better job classifying negative reviews and a slightly
worse job classifying positive reviews than the model with negation only.

ALL TOGETHER NOW

STARTING POINT ACCURACY

WHAT WAS IMPLEMENTED

A COMBINATION OF ​ALL THE FEATURE FUNCTIONS!!

CODE

def​ ​combined_document_features​(document, word_features, SL, SL2,
bigram_features, negationwords):

 document_words = set(document)

 document_bigrams = nltk.bigrams(document)

 features = {}

 ​# SUBJECTIVITY: Getting strength and polarity from readSubjectivity
 ​# (this function gives an object that includes polarity AND strength,
much more useful)

 ​# Adds ['positiveStrengthCount'] & ['negativeStrengthCount'] to our
features object

 weakPos = ​0

 strongPos = ​0
 weakNeg = ​0
 strongNeg = ​0
 ​for​ word ​in​ document_words:
 ​if​ word ​in​ SL2:
 strength, posTag, isStemmed, polarity = SL2[word]

 ​if​ strength == ​'weaksubj'​ ​and​ polarity == ​'positive'​:
 weakPos += ​1
 ​if​ strength == ​'strongsubj'​ ​and​ polarity == ​'positive'​:
 strongPos += ​1
 ​if​ strength == ​'weaksubj'​ ​and​ polarity == ​'negative'​:
 weakNeg += ​1
 ​if​ strength == ​'strongsubj'​ ​and​ polarity == ​'negative'​:
 strongNeg += ​1
 features[​'positiveStrengthCount'​] = (​2​ * weakPos) + (​5​ * strongPos)
 features[​'negativeStrengthCount'​] = (​2​ * weakNeg) + (​5​ * strongNeg)
 ​# SUBJECTIVITY: Getting word counts from read_subjectivity_three_types
 ​# (this function gives an array, significantly less useful)
 ​# Adds ['positivecount'] & ['negativecount'] & ['neutralcount'] to our
features object

 posword = ​0
 neutword = ​0
 negword = ​0
 ​for​ word ​in​ document_words:
 ​if​ word ​in​ SL[​0​]:
 posword += ​1
 ​if​ word ​in​ SL[​1​]:
 neutword += ​1
 ​if​ word ​in​ SL[​2​]:
 negword += ​1
 features[​'positivecount'​] = posword
 features[​'neutralcount'​] = neutword
 features[​'negativecount'​] = negword
 ​# NEGATION WORDS: This is a combination of the original
"document_features" function

 ​# And an if/else to deal with negation words.
 ​# Adds V_ and V_NOT to our features
 ​for​ word ​in​ word_features:
 features[​'V_{}'​.format(word)] = ​False
 features[​'V_NOT{}'​.format(word)] = ​False
 ​for​ word ​in​ word_features:
 ​for​ i ​in​ range(​0​, len(document)):

 word = document[i]

 ​if​ ((i + ​1​) < len(document)) ​and​ ((word ​in​ negationwords) ​or
(word.endswith(​"n't"​))):
 i += ​1
 features[​'V_NOT{}'​.format(document[i])] = (document[i] ​in
word_features)

 ​else​:
 features[​'V_{}'​.format(word)] = (word ​in​ word_features)
 ​# BIGRAMS: this gets the bigrams
 ​# Adds B_ to our features
 ​for​ bigram ​in​ bigram_features:
 features[​'B_{}_{}'​.format(bigram[​0​], bigram[​1​])] = (bigram ​in
document_bigrams)

 ​return​ features

IN ENGLISH

 We piled everything we learned from our previous experiments into one giant function.
See comments above.

NEW ACCURACY

STARTING POINT ACCURACY - NO NEUTRAL

WHAT WAS IMPLEMENTED

All the feature functions with neutral removed.

NEW ACCURACY

Combining all of the features greatly improved our accuracy. We were able to correctly
classify 94 additional negative movie reviews and 29 additional positive movie reviews.
Our accuracies for precision, recall, and F1 all increased as did our overall accuracy.

STARTING POINT ACCURACY

WHAT WAS IMPLEMENTED

Everything was compiled as stated above, but this time we experimented with sample
size and dropped our random sample down to 500 instead of 10,000

NEW ACCURACY

When running with a sample of 500, we were able to achieve an overall accuracy of 84%.
The classifier successfully classified 10 out of 12 negative reviews, 10 out of 11 positive
reviews, and 22 out of 27 neutral reviews. When the classifier misclassified negative and
positive reviews it classified them as neutral. Decreasing our sample size proved to be
extremely effective for this experiment.

STARTING POINT ACCURACY - NEUTRAL REMOVED

WHAT WAS IMPLEMENTED

Everything was compiled as stated above, but this time we experimented with sample
size and dropped our random sample down to 500 instead of 10,000

NEW ACCURACY

When running with a sample of 500, we were able to achieve an overall accuracy of 94%.
The classifier successfully classified all 29 positive reviews and 18 out of 21 negative
reviews. While our overall accuracy greatly increased, our average precision, recall and F1
decreased.

EXPERIMENTS: Part Two
Testing multiple features in a combined file

MovieReviews_1.py -- our baseline

STARTING POINT ACCURACY -- 0.504

Average Precision Recall F1 Per Label
2 0.950 0.538 0.687

0 0.004 0.150 0.008
1 0.032 0.267 0.057
3 0.103 0.273 0.146
4 0.000 0.000 0.000

Macro Average Precision Recall F1 Over All Labels

 0.218 0.246 0.179

Label Counts {'2': 5086, '0': 469, '1': 1767, '3': 2095, '4': 583}
Micro Average Precision Recall F1 Over All Labels

 0.510 0.385 0.390
 | 2 3 1 4 0 |
--+---------------------+
2 |<465> 38 1 . . |
3 | 178 <34> 5 . . |
1 | 144 40 <5> . . |
4 | 35 13 2 <.> 1 |
0 | 28 7 4 . <.>|
--+---------------------+
(row = reference; col = test)

Overall Accuracy 0.504

WHAT WAS IMPLEMENTED

The only thing in this “feature set” is a count of the words in each document.

CODE

moviereviews_1.py

def generateFeatureSets(document):
 document_words = set(document)
 features = {}
 features['length'] = len(document_words)
 return features

IN ENGLISH

Seeing if document length can predict sentiment

NEW ACCURACY -- 0.504 (SAME)

Average Precision Recall F1 Per Label
2 0.950 0.538 0.687

0 0.004 0.150 0.008
1 0.032 0.267 0.057
3 0.103 0.273 0.146
4 0.000 0.000 0.000

Macro Average Precision Recall F1 Over All Labels

 0.218 0.246 0.179

Label Counts {'2': 5086, '0': 469, '1': 1767, '3': 2095, '4': 583}
Micro Average Precision Recall F1 Over All Labels

 0.510 0.385 0.390
 | 2 3 1 4 0 |
--+---------------------+
2 |<465> 38 1 . . |
3 | 178 <34> 5 . . |
1 | 144 40 <5> . . |
4 | 35 13 2 <.> 1 |
0 | 28 7 4 . <.>|
--+---------------------+
(row = reference; col = test)

Overall Accuracy 0.504

Document length alone cannot predict sentiment.

MovieReviews_2.py -- binning

STARTING POINT ACCURACY -- 0.504

Average Precision Recall F1 Per Label
2 0.950 0.538 0.687
0 0.004 0.150 0.008
1 0.032 0.267 0.057
3 0.103 0.273 0.146
4 0.000 0.000 0.000

Macro Average Precision Recall F1 Over All Labels

 0.218 0.246 0.179

Label Counts {'2': 5086, '0': 469, '1': 1767, '3': 2095, '4': 583}
Micro Average Precision Recall F1 Over All Labels

 0.510 0.385 0.390
 | 2 3 1 4 0 |

--+---------------------+
2 |<465> 38 1 . . |
3 | 178 <34> 5 . . |
1 | 144 40 <5> . . |
4 | 35 13 2 <.> 1 |
0 | 28 7 4 . <.>|
--+---------------------+
(row = reference; col = test)

Overall Accuracy 0.504

WHAT WAS IMPLEMENTED

Binning

CODE

 phrasedocs = []

 ​for​ phrase ​in​ phraselist:
 tokens = nltk.word_tokenize(phrase[​0​])
 sentiment = int(phrase[​1​])
 ​if​ (sentiment == ​2​):
 phrasedocs.append((tokens, ​'neutral'​))
 ​if​ ((sentiment == ​0​) ​or​ (sentiment == ​1​)):
 phrasedocs.append((tokens, ​'negative'​))
 ​if​ ((sentiment == ​3​) ​or​ (sentiment == ​4​)):
 phrasedocs.append((tokens, ​'positive'​))

IN ENGLISH

We went from 5 sentiment rankings to 3 sentiment rankings

NEW ACCURACY -- 0.511

Average Precision Recall F1 Per Label

neutral 0.876 0.576 0.695

positive 0.178 0.365 0.237

negative 0.151 0.358 0.208

Macro Average Precision Recall F1 Over All Labels

 0.402 0.433 0.380

Label Counts {'neutral': 5086, 'positive': 2678, 'negative': 2236}

Micro Average Precision Recall F1 Over All Labels

 0.527 0.471 0.464

 | p n |

 | n o e |

 | e s g |

 | u i a |

 | t t t |

 | r i i |

 | a v v |

 | l e e |

---------+-------------+

 neutral |<432> 35 37 |

positive | 173 <30> 65 |

negative | 153 26 <49>|

---------+-------------+

(row = reference; col = test)

Overall Accuracy 0.511

MovieReviews_2b.py -- binning, removing neutrals
STARTING POINT ACCURACY

0.511 (see above)

WHAT WAS IMPLEMENTED

Put neutral phrases into their own array

CODE

 phrasedocs = []

 neutraldocs = []

 ​for​ phrase ​in​ phraselist:
 tokens = nltk.word_tokenize(phrase[​0​])
 sentiment = int(phrase[​1​])
 ​if​ (sentiment == ​2​):
 ​# phrasedocs.append((tokens, 'neutral'))
 neutraldocs.append((tokens, ​'neutral'​))
 ​if​ ((sentiment == ​0​) ​or​ (sentiment == ​1​)):
 phrasedocs.append((tokens, ​'negative'​))

 ​if​ ((sentiment == ​3​) ​or​ (sentiment == ​4​)):
 phrasedocs.append((tokens, ​'positive'​))

IN ENGLISH

Since we only want to see if we can predict negative or positive, neutrals -- often partial
phrases or single words, in this particular dataset -- created a lot of noise.

NEW ACCURACY

Average Precision Recall F1 Per Label

negative 0.199 0.500 0.282

positive 0.833 0.555 0.666

Macro Average Precision Recall F1 Over All Labels

 0.516 0.527 0.474

Label Counts {'negative': 2236, 'positive': 2678}

Micro Average Precision Recall F1 Over All Labels

 0.545 0.530 0.491

 | p n |

 | o e |

 | s g |

 | i a |

 | t t |

 | i i |

 | v v |

 | e e |

---------+---------+

positive |<435>100 |

negative | 366 <99>|

---------+---------+

(row = reference; col = test)

Overall Accuracy 0.534

MovieReviews_3.py -- Adding sentiment detection
To satisfy the requirement of step 3 part B, we implemented sentiment math -- ​sentiMaths​, if
you will -- functions to calculate the percentages of different sentiments within each document.

STARTING POINT ACCURACY

0.511 (see above)
0.534 ​no neutrals ​(see above)

WHAT WAS IMPLEMENTED

Preliminary Sentiment analysis, utilizing ​subjclueslen1-HLTEMNLP05.tff

CODE

def​ ​readSubjectivity​(path):
 flexicon = open(path, ​'r'​)
 sldict = { }

 ​for​ line ​in​ flexicon:
 fields = line.split()

 strength = fields[​0​].split(​"="​)[​1​]
 word = fields[​2​].split(​"="​)[​1​]
 posTag = fields[​3​].split(​"="​)[​1​]
 stemmed = fields[​4​].split(​"="​)[​1​]
 polarity = fields[​5​].split(​"="​)[​1​]
 ​if​ (stemmed == ​'y'​):
 isStemmed = ​True
 ​else​:
 isStemmed = ​False
 sldict[word] = [strength, posTag, isStemmed, polarity]

 ​return​ sldict

SLpath = ​"./SentimentLexicons/subjclueslen1-HLTEMNLP05.tff"
SL = readSubjectivity(SLpath)

negationwords = [​'no'​, ​'not'​, ​'never'​, ​'none'​, ​'nowhere'​, ​'nothing'​,
'noone'​, ​'rather'​, ​'hardly'​, ​'scarcely'​, ​'rarely'​, ​'seldom'​, ​'neither'​,
'nor'​]
def​ ​generateFeatureSets​(document, SL, negationwords):
 document_words = set(document)

 ​# print('LENGTH', len(document_words))
 features = {}

 features[​'length'​] = len(document_words)
 weakPos = ​0
 strongPos = ​0
 weakNeg = ​0
 strongNeg = ​0

 negationWords = ​0
 psc = ​0
 nsc = ​0
 ​for​ word ​in​ document_words:
 ​if​ word ​in​ negationwords:
 negationWords +=​1
 features[​'negationwords'​] = negationWords
 ​if​ word ​in​ SL:
 strength, posTag, isStemmed, polarity = SL[word]

 ​if​ strength == ​'weaksubj'​ ​and​ polarity == ​'positive'​:
 weakPos += ​1
 ​if​ strength == ​'strongsubj'​ ​and​ polarity == ​'positive'​:
 strongPos += ​1
 ​if​ strength == ​'weaksubj'​ ​and​ polarity == ​'negative'​:
 weakNeg += ​1
 ​if​ strength == ​'strongsubj'​ ​and​ polarity == ​'negative'​:
 strongNeg += ​1
 psc = (weakPos) + (strongPos)

 nsc = (weakNeg) + (strongNeg)

 features[​'positiveStrengthCount'​] = (​2​ * weakPos) + (​5​ * strongPos)
 features[​'negativeStrengthCount'​] = (​2​ * weakNeg) + (​5​ * strongNeg)
 length = len(document_words)

 ​if​ length > ​10​:
 features[​'percpositive'​] = round(psc/length*​100​,​2​)
 features[​'percnegative'​] = round(nsc/length*​100​,​2​)
 print(features)

 ​return​ features

IN ENGLISH

Added a function that utilized an external human-made document categorizing words as
strong/weak positive/negative. Stored these values as well as percentages in our features
object.

NEW ACCURACY

Average Precision Recall F1 Per Label

negative 0.485 0.445 0.464

neutral 0.631 0.716 0.671

positive 0.586 0.510 0.545

Macro Average Precision Recall F1 Over All Labels

 0.568 0.557 0.560

Label Counts {'negative': 2236, 'neutral': 5086, 'positive': 2678}

Micro Average Precision Recall F1 Over All Labels

 0.587 0.600 0.591

 | p n |

 | n o e |

 | e s g |

 | u i a |

 | t t t |

 | r i i |

 | a v v |

 | l e e |

---------+-------------+

 neutral |<310> 88 106 |

positive | 53<148> 67 |

negative | 73 47<108>|

---------+-------------+

(row = reference; col = test)

Overall Accuracy 0.566

MovieReviews_3b.py -- Adding sentiment detection
& Removing Neutrals

STARTING POINT ACCURACY

0.566

WHAT WAS IMPLEMENTED

Removed neutrals

CODE

 phrasedocs = []

 neutraldocs = []

 ​for​ phrase ​in​ phraselist:
 tokens = nltk.word_tokenize(phrase[​0​])

 sentiment = int(phrase[​1​])
 ​if​ (sentiment == ​2​):
 ​# phrasedocs.append((tokens, 'neutral'))
 neutraldocs.append((tokens, ​'neutral'​))
 ​if​ ((sentiment == ​0​) ​or​ (sentiment == ​1​)):
 phrasedocs.append((tokens, ​'negative'​))
 ​if​ ((sentiment == ​3​) ​or​ (sentiment == ​4​)):
 phrasedocs.append((tokens, ​'positive'​))

IN ENGLISH

Since we only want to see if we can predict negative or positive, neutrals -- often partial
phrases or single words, in this particular dataset -- created a lot of noise.

NEW ACCURACY

Average Precision Recall F1 Per Label

negative 0.591 0.698 0.639

positive 0.785 0.697 0.738

Macro Average Precision Recall F1 Over All Labels

 0.688 0.697 0.689

Label Counts {'negative': 2236, 'positive': 2678}

Micro Average Precision Recall F1 Over All Labels

 0.697 0.697 0.693

 | p n |

 | o e |

 | s g |

 | i a |

 | t t |

 | i i |

 | v v |

 | e e |

---------+---------+

positive |<395>140 |

negative | 175<290>|

---------+---------+

(row = reference; col = test)

Overall Accuracy 0.685

MovieReviews_4.py -- Adding BOW sparse matrix

STARTING POINT ACCURACY

0.566 (see above)
0.685 ​no neutrals ​(see above)

WHAT WAS IMPLEMENTED

Frequency Distributions

CODE

 all_words_list = [word for (sent,cat) in docs for word in sent]

 all_words = nltk.FreqDist(all_words_list)

 word_items = all_words.most_common(1500)

 word_features = [word for (word,count) in word_items]

 featuresets = [(generateFeatureSets(d, SL, word_features), c) for (d, c)

in docs]

IN ENGLISH

Created a sparse matrix of the most common words

NEW ACCURACY

Average Precision Recall F1 Per Label

negative 0.489 0.509 0.498

positive 0.528 0.617 0.569

neutral 0.739 0.676 0.706

Macro Average Precision Recall F1 Over All Labels

 0.585 0.601 0.591

Label Counts {'negative': 2236, 'positive': 2678, 'neutral': 5086}

Micro Average Precision Recall F1 Over All Labels

 0.627 0.623 0.623

 | p n |

 | n o e |

 | e s g |

 | u i a |

 | t t t |

 | r i i |

 | a v v |

 | l e e |

---------+-------------+

 neutral |<366> 53 85 |

positive | 85<139> 44 |

negative | 94 24<110>|

---------+-------------+

(row = reference; col = test)

Overall Accuracy 0.615

MovieReviews_4b.py -- Adding BOW sparse matrix
& Removing Neutrals

STARTING POINT ACCURACY

0.615

WHAT WAS IMPLEMENTED

Removed neutrals

CODE

 phrasedocs = []

 neutraldocs = []

 ​for​ phrase ​in​ phraselist:
 tokens = nltk.word_tokenize(phrase[​0​])
 sentiment = int(phrase[​1​])
 ​if​ (sentiment == ​2​):
 ​# phrasedocs.append((tokens, 'neutral'))
 neutraldocs.append((tokens, ​'neutral'​))
 ​if​ ((sentiment == ​0​) ​or​ (sentiment == ​1​)):
 phrasedocs.append((tokens, ​'negative'​))

 ​if​ ((sentiment == ​3​) ​or​ (sentiment == ​4​)):
 phrasedocs.append((tokens, ​'positive'​))

IN ENGLISH

Since we only want to see if we can predict negative or positive, neutrals -- often partial
phrases or single words, in this particular dataset -- created a lot of noise.

NEW ACCURACY

Average Precision Recall F1 Per Label

negative 0.723 0.775 0.748

positive 0.825 0.781 0.802

Macro Average Precision Recall F1 Over All Labels

 0.774 0.778 0.775

Label Counts {'negative': 2236, 'positive': 2678}

Micro Average Precision Recall F1 Over All Labels

 0.779 0.779 0.778

 | p n |

 | o e |

 | s g |

 | i a |

 | t t |

 | i i |

 | v v |

 | e e |

---------+---------+

positive |<423>112 |

negative | 114<351>|

---------+---------+

(row = reference; col = test)

Overall Accuracy 0.774

MovieReviews_5.py -- Removing Stopwords

STARTING POINT ACCURACY

0.545 (see above)
0.698 ​no neutrals ​(see above)

WHAT WAS IMPLEMENTED

Removed Stopwords

CODE

 stop_words = set(stopwords.words('english'))

 all_words_list = [word for (sent,cat) in docs for word in sent]

 all_words_list_ns = [word for (sent,cat) in docs for word in sent if not

word in stop_words]

 print(len(all_words_list_ns))

 all_words = nltk.FreqDist(all_words_list)

 all_words_ns = nltk.FreqDist(all_words_list_ns)

 word_items = all_words.most_common(2000)

 word_items_ns = all_words_ns.most_common(2000)

 word_features = [word for (word,count) in word_items]

 word_features_ns = [word for (word,count) in word_items_ns]

 featuresets = [(generateFeatureSets(d, SL, negationwords,

word_features_ns), c) for (d, c) in docs]

IN ENGLISH

Removed stopwords

NEW ACCURACY

Average Precision Recall F1 Per Label

neutral 0.720 0.691 0.705

negative 0.511 0.538 0.524

positive 0.580 0.603 0.592

Macro Average Precision Recall F1 Over All Labels

 0.604 0.611 0.607

Label Counts {'neutral': 5086, 'negative': 2236, 'positive': 2678}

Micro Average Precision Recall F1 Over All Labels

 0.636 0.633 0.634

 | p n |

 | n o e |

 | e s g |

 | u i a |

 | t t t |

 | r i i |

 | a v v |

 | l e e |

---------+-------------+

 neutral |<348> 70 86 |

positive | 72<162> 34 |

negative | 78 28<122>|

---------+-------------+

(row = reference; col = test)

Overall Accuracy 0.632

MovieReviews_5b.py -- Removing Stopwords &
Removing Neutrals

STARTING POINT ACCURACY

0.632

WHAT WAS IMPLEMENTED

Removed neutrals

CODE

 phrasedocs = []

 neutraldocs = []

 ​for​ phrase ​in​ phraselist:
 tokens = nltk.word_tokenize(phrase[​0​])
 sentiment = int(phrase[​1​])
 ​if​ (sentiment == ​2​):
 ​# phrasedocs.append((tokens, 'neutral'))
 neutraldocs.append((tokens, ​'neutral'​))

 ​if​ ((sentiment == ​0​) ​or​ (sentiment == ​1​)):
 phrasedocs.append((tokens, ​'negative'​))
 ​if​ ((sentiment == ​3​) ​or​ (sentiment == ​4​)):
 phrasedocs.append((tokens, ​'positive'​))

IN ENGLISH

Since we only want to see if we can predict negative or positive, neutrals -- often partial
phrases or single words, in this particular dataset -- created a lot of noise.

NEW ACCURACY -- ACCURACY DROPPED

Average Precision Recall F1 Per Label

negative 0.729 0.793 0.759

positive 0.841 0.788 0.813

Macro Average Precision Recall F1 Over All Labels

 0.785 0.791 0.786

Label Counts {'negative': 2236, 'positive': 2678}

Micro Average Precision Recall F1 Over All Labels

 0.790 0.790 0.789

 | p n |

 | o e |

 | s g |

 | i a |

 | t t |

 | i i |

 | v v |

 | e e |

---------+---------+

positive |<434>101 |

negative | 114<351>|

---------+---------+

(row = reference; col = test)

Overall Accuracy 0.785

MovieReviews_6.py -- Bigrams

STARTING POINT ACCURACY

0.632 (see above)
0.785 ​no neutrals ​(see above)

WHAT WAS IMPLEMENTED

Added bigrams

CODE

 finder = BigramCollocationFinder.from_words(all_words_list)

 bigram_features = finder.nbest(bigram_measures.pmi, 500)

 featuresets = [(generateFeatureSets(d, SL, negationwords,

word_features_ns, bigram_features), c) for (d, c) in docs]

IN ENGLISH

Added bigrams

NEW ACCURACY

Average Precision Recall F1 Per Label

neutral 0.720 0.691 0.705

negative 0.511 0.538 0.524

positive 0.580 0.603 0.591

Macro Average Precision Recall F1 Over All Labels

 0.604 0.611 0.607

Label Counts {'neutral': 5086, 'negative': 2236, 'positive': 2678}

Micro Average Precision Recall F1 Over All Labels

 0.636 0.633 0.634

 | p n |

 | n o e |

 | e s g |

 | u i a |

 | t t t |

 | r i i |

 | a v v |

 | l e e |

---------+-------------+

 neutral |<348> 70 86 |

positive | 72<162> 34 |

negative | 78 28<122>|

---------+-------------+

(row = reference; col = test)

Overall Accuracy 0.632

Unfortunately, literally nothing changed

MovieReviews_6b.py -- Bigrams & Removing
Neutrals

STARTING POINT ACCURACY

0.632

WHAT WAS IMPLEMENTED

Removed neutrals

CODE

 phrasedocs = []

 neutraldocs = []

 ​for​ phrase ​in​ phraselist:
 tokens = nltk.word_tokenize(phrase[​0​])
 sentiment = int(phrase[​1​])
 ​if​ (sentiment == ​2​):
 ​# phrasedocs.append((tokens, 'neutral'))
 neutraldocs.append((tokens, ​'neutral'​))
 ​if​ ((sentiment == ​0​) ​or​ (sentiment == ​1​)):
 phrasedocs.append((tokens, ​'negative'​))
 ​if​ ((sentiment == ​3​) ​or​ (sentiment == ​4​)):
 phrasedocs.append((tokens, ​'positive'​))

IN ENGLISH

Since we only want to see if we can predict negative or positive, neutrals -- often partial

phrases or single words, in this particular dataset -- created a lot of noise.

NEW ACCURACY

Average Precision Recall F1 Per Label

negative 0.729 0.793 0.759

positive 0.841 0.788 0.813

Macro Average Precision Recall F1 Over All Labels

 0.785 0.791 0.786

Label Counts {'negative': 2236, 'positive': 2678}

Micro Average Precision Recall F1 Over All Labels

 0.790 0.790 0.789

 | p n |

 | o e |

 | s g |

 | i a |

 | t t |

 | i i |

 | v v |

 | e e |

---------+---------+

positive |<434>101 |

negative | 114<351>|

---------+---------+

(row = reference; col = test)

Overall Accuracy 0.785

Unfortunately, literally nothing changed again.

MovieReviews_7.py -- POS

STARTING POINT ACCURACY

0.632 (see above)
0.785 ​no neutrals ​(see above)

WHAT WAS IMPLEMENTED

Added POS count via nltk.pos_tag

CODE

 finder = BigramCollocationFinder.from_words(all_words_list)

 bigram_features = finder.nbest(bigram_measures.pmi, 500)

 featuresets = [(generateFeatureSets(d, SL, negationwords,

word_features_ns, bigram_features), c) for (d, c) in docs]

IN ENGLISH

Tallied the number of different parts of speech

NEW ACCURACY -- Accuracy went down

46044

Average Precision Recall F1 Per Label

positive 0.549 0.613 0.579

neutral 0.740 0.684 0.711

negative 0.503 0.537 0.519

Macro Average Precision Recall F1 Over All Labels

 0.597 0.611 0.603

Label Counts {'positive': 2678, 'neutral': 5086, 'negative': 2236}

Micro Average Precision Recall F1 Over All Labels

 0.636 0.632 0.633

 | p n |

 | n o e |

 | e s g |

 | u i a |

 | t t t |

 | r i i |

 | a v v |

 | l e e |

---------+-------------+

 neutral |<357> 61 86 |

positive | 82<150> 36 |

negative | 86 25<117>|

---------+-------------+

(row = reference; col = test)

Overall Accuracy 0.624

Unfortunately, overall accuracy decreased.

MovieReviews_7b.py -- POS & Removing Neutrals

STARTING POINT ACCURACY

0.632 (best) 0.624 (previous)

WHAT WAS IMPLEMENTED

Removed neutrals

CODE

 phrasedocs = []

 neutraldocs = []

 ​for​ phrase ​in​ phraselist:
 tokens = nltk.word_tokenize(phrase[​0​])
 sentiment = int(phrase[​1​])
 ​if​ (sentiment == ​2​):
 ​# phrasedocs.append((tokens, 'neutral'))
 neutraldocs.append((tokens, ​'neutral'​))
 ​if​ ((sentiment == ​0​) ​or​ (sentiment == ​1​)):
 phrasedocs.append((tokens, ​'negative'​))
 ​if​ ((sentiment == ​3​) ​or​ (sentiment == ​4​)):
 phrasedocs.append((tokens, ​'positive'​))

IN ENGLISH

Since we only want to see if we can predict negative or positive, neutrals -- often partial
phrases or single words, in this particular dataset -- created a lot of noise.

NEW ACCURACY

Average Precision Recall F1 Per Label

positive 0.843 0.789 0.815

negative 0.729 0.795 0.761

Macro Average Precision Recall F1 Over All Labels

 0.786 0.792 0.788

Label Counts {'positive': 2678, 'negative': 2236}

Micro Average Precision Recall F1 Over All Labels

 0.791 0.792 0.790

 | p n |

 | o e |

 | s g |

 | i a |

 | t t |

 | i i |

 | v v |

 | e e |

---------+---------+

positive |<435>100 |

negative | 113<352>|

---------+---------+

(row = reference; col = test)

Overall Accuracy 0.787

Further study on Experiments Part Two is ongoing!
*For a sample of 500, with neutral removed :D

