
Lab 08 – Database Programming Last Modified June 12, 2018

Page 1 of 21

Data Admin Concepts & Database

Management

Lab 08 – Database Programming

Table of Contents
Data Admin Concepts & Database Management ... 1

Lab 08 – Database Programming .. 1

Overview ... 1

Learning Objectives ... 2

Lab Goals ... 2

What You Will Need to Begin .. 2

Part 1 – Introducing Functions, Views, and Stored Procedures ... 3

Setup ... 3

Functions ... 3

Views ... 10

Stored Procedures... 11

Part 2 – Putting All Together ... 14

Coding Your Own Functions .. 14

Coding Your Own Views .. 16

Coding Your Own Stored Procedures.. 18

What to Submit ... 20

Appendix A – VidCast Logical Model Diagram .. 21

Overview
This lab is the eighth of ten labs in which we will build a database using the systematic approach covered

in the asynchronous material. Each successive lab will build upon the one before and can be a useful

guide for building your own database projects.

Lab 08 – Database Programming Last Modified June 12, 2018

Page 2 of 21

In this lab, we will combine structured query language (SQL) DDL and DML to construct some helpful

programming objects for our VidCast database.

Read this lab document once through before beginning.

Learning Objectives
In this lab you will

• Demonstrate proficiency in coding and using SQL Server database objects such as Functions,

Views, and Stored Procedures

Lab Goals
This lab consists of two sections. The first section is a walkthrough of creating programming objects. In

the second part of the lab, you will code your own view, functions, and stored procedures to solve the

problems presented.

TIP: If you are new to SQL or programming in general, you may benefit from run through
of the SQL Tutorial at https://www.w3schools.com/sql/ . While not required reading, it
can be a helpful resource for new programmers to get some coding in.

What You Will Need to Begin
• This document

• An active Internet connection (if using iSchool Remote lab)

• A blank Word (or similar) document into which you can place your answers. Please include your

name, the current date, and the lab number on this document. Please also number your

responses, indicating which part and question of the lab to which the answer pertains. Word

docx format is preferred. If using another word processing application, please convert the

document to pdf before submitting your work to ensure your instructor can open the file.

• To have completed Lab 07 – Advanced Querying

• Understanding of database tables and have reviewed the asynchronous material through Week

8

• One of the following means of accessing a SQL Server installation

o A connection to the iSchool Remote Lab (https://remotelab.ischool.syr.edu)

o A local installation of SQL Server (see Developer edition here

https://www.microsoft.com/en-us/sql-server/sql-server-downloads-free-trial)

o Regardless of how you access SQL Server, you will need to use SQL Server Management

Studio to do so.

https://www.w3schools.com/sql/
https://remotelab.ischool.syr.edu/
https://www.microsoft.com/en-us/sql-server/sql-server-downloads-free-trial

Lab 08 – Database Programming Last Modified June 12, 2018

Page 3 of 21

Part 1 – Introducing Functions, Views, and Stored

Procedures

Setup
While we can leave the basic SQL coding up to our application developers, we would like to create some

programming objects to help them and us out. This is useful in properly securing our database as well as

making it user-friendly.

Formatting Note
Look for the “To Do” icon to point out sections of the lab you will need to do to complete the

tasks.

Functions
A function is a block of predefined code that (often) accepts inputs as a list of parameters, runs some

process, and (often) returns a value. We have already used some functions throughout this course.

GetDate() for example, asks for no input parameters, but has some internal mechanic that figures out

what the date and time are currently, and responds with that value. We don’t need to know what those

internal mechanics are; we just need to know that they work and can just let the function do its thing.

The ISNULL function, defined as ISNULL(expression, result_if_null), accepts an expression,

perhaps a column name, the result of some mathematical operation, or even another function call, and,

if that expression IS NULL, it will substitute the value sent by way of result_if_null.

Take it for a spin:

Copy and paste the following code into a blank query editor window. You do not need to
be connected to a specific database for this. Be sure to execute all these lines together!

-- Declare a variable (we’ll talk about variables in a minute)
declare @isThisNull varchar(30) -- Starts out as NULL
SELECT @isThisNull, ISNULL(@isThisNull, 'Yep, it is null') -- See?

-- Set the variable to something other than NULL
SET @isThisNull = 'Nope. It is not NULL'
SELECT @isThisNull, ISNULL(@isThisNull, 'Yep, it is null') -- How about now?

Your results should look like the following. Copy a screenshot of your results to your
answers doc.

Lab 08 – Database Programming Last Modified June 12, 2018

Page 4 of 21

We used the aggregate functions, AVG(), SUM(), MIN(), MAX(), and COUNT(), to perform some math for

us that would have been more difficult to do if we had to perform that work on our own. The

parameters to these functions were expressions that the DBMS will use to calculate the aggregate.

These are all examples of built-in functions; functions made available to us by SQL Server for use in our

SELECT statements. We can code our own functions to do many different things for us. Some of the

most common uses for user-defined functions are to abstract the calculation of derived attributes and

to provide lookups for values based on provided parameters.

TIP: SQL Server provides for the creation and use of two types of user-defined functions:
Scalar and Table-valued. This lab only deals with the former. Table-valued functions differ
from scalar-valued in that table-valued return tables as results, whereas scalar-valued
return single values as results.

Our First User-Defined Function

Code and execute the following code against your IST659 database. The comments are
optional, but they’re here to outline some basic ideas about how functions are built.

Lab 08 – Database Programming Last Modified June 12, 2018

Page 5 of 21

After running the code above, code and execute the following SQL SELECT statement
against your database.

SELECT dbo.AddTwoInts(5, 10)

Your results should look like this:

Let’s break that function into its lines to see what each does. First, the code again.

Line # Purpose

11

CREATE FUNCTION is the DDL starting point for creating functions.

dbo.AddTwoInts is what we’re naming this function. Technically, we’re creating a
function called AddTwoInts in the dbo schema. We don’t need the schema for other
objects, but we do for functions.

(@firstNumber int, @secondNumber int) After we provide the function name, we
provide a list of parameters in parentheses, each separated by a comma. To declare a
parameter, you give it a name, beginning with the at sign (@) and a data type.

12

Lab 08 – Database Programming Last Modified June 12, 2018

Page 6 of 21

RETURNS int tells SQL Server that this function will be processing information to derive a
result of the int data type. This can be whatever data type is appropriate for the task at
hand. In our case, we are adding two ints together to create another int, so we set the
return data type to int.

AS is the keyword that ends the CREATE FUNCTION clause and tells SQL Server that the
line(s) to follow represent the code to be executed when this function is called.

13

BEGIN tells SQL Server we are about to start a block of code, all of which belong together. If
we didn’t have the BEGIN and the subsequent END (see line 23), SQL Server would not
know to group this code together and would only take the first line following the AS as the
whole function.

15

DECLARE @returnValue int tells SQL Server to create an int-sized area in memory that
we’re calling @returnValue to temporarily hold a value. In this case, we’re creating a
variable that will hold the result of our math. The @ is mandatory at the beginning of the
variable name in SQL Server.

You can create many variables for many reasons. In most cases, you’ll want at least one in a
function to hold the value you’d like to return to the calling code. You can name them just
about anything you’d like, but it is best for your own sake and for the sake of others who
may have to read your code to give them a name that has some meaning.

We have named our variable @returnValue because it is the value to be returned to the
calling code. We could just as easily have named it @phil, but, while I’m sure Phil is an
alright person, it doesn’t make for a very informative variable name.

19

This does the operation that the function is designed to do and assigns the result to the
@returnValue variable.

22

After setting @returnValue to the appropriate result, we need to RETURN it to the calling
code.

23

This END corresponds to the BEGIN on line 13 and signals to SQL Server that we are done
with this block of code.

24

The GO keyword signals to SQL Server to end the current batch of commands to process and
begin anew. This is not required in most cases, but if you don’t isolate CREATE FUNCTION,
CREATE VIEW, or CREATE PROCEDURE statements by ensuring they are between GO
statements, SSMS will interpret the statement as an error stating the CREATE statement
must be the only statement in the batch.

Lab 08 – Database Programming Last Modified June 12, 2018

Page 7 of 21

If you see an error like the one in the following screenshot, simply add a GO to the line
before the CREATE statement.

Functions That Are More… well… Functional
Among the many helpful tasks that functions can perform are abstracting the calculation of

organizational metrics and performing lookups to other data based on inputs.

 Abstracting Routine Calculation

Organizations rely on data to make both tactical and strategic decisions. These metrics are often

calculated based on events that have happened that impact performance. Because these metrics are

based on an organizations rules, they are subject to change with some frequency. Catalysts for those

changes can include new management, changes within the organization that require new calculations,

or changes in the organization’s industry that require us to rethink how we calculate these metrics.

Instead of hand-coding the calculation in every instance it is needed (printed reports, management

dashboards, displays mounted throughout the organization’s work space, intranets and extranets, etc),

we can code the calculation once in a function. Whenever we need to show the metric, we can call the

function, passing the appropriate parameters and the output will be the result of the current math.

Our VidCast service is interested in the number of VidCasts created by VidCast users. Let’s code a

function that counts the number of VidCasts made by a given user and returns the count to the calling

code.

Code and execute the following SQL against your database. You should be using the
same database built using the code from Lab 6.

Lab 08 – Database Programming Last Modified June 12, 2018

Page 8 of 21

After you execute that statement, code and execute the following SQL code against your
database:

Your results should look like this:

In your own words, in your answers document, describe what lines 49 through 53 above
actually do. Also, how is it that this code knows that the vc_User record with vc_UserID
= 20 has 22 vc_VidCast records?

Performing Data Lookups

Often, we have one piece of data and we would like to look up another piece of data in a table. This is a

common task when using surrogate keys. A table where a surrogate primary key is used may have

Lab 08 – Database Programming Last Modified June 12, 2018

Page 9 of 21

another column that serves as the natural key. A value that identifies the real-world object in real-world

terms that may not be a suitable primary key candidate.

For example, our vc_Tag table has a surrogate primary key, vc_TagID, but our users do not care and may

not even know about this column. Instead, they will use the values in the column, TagText, to specify or

search for tags. This makes TagText a natural key. We can code a function that accepts the tag text as a

parameter and looks up the vc_TagID for the vc_Tag record for that TagText.

Code and execute the following SQL against your database. You should be using the
same database built using the code from Lab 6.

After you execute that statement, code and execute the following SQL code against your
database:

Your results should look like this:

Lab 08 – Database Programming Last Modified June 12, 2018

Page 10 of 21

In your own words, in your answers document, describe what lines 75 and 76 above
actually do. Also, when line 76 executed, we received a NULL from SQL Server. How
come?

Views
Views are another programming object we can use to secure and simplify access to the data. As we’ll

see in a future lab, we can lock down access to certain data points to specific database users using a

view. We can also use views to predefine complex SQL SELECT statements and allow programmers

(including ourselves) to simply access the views instead of writing queries that might include esoteric

JOINs or aggregate functions.

A view is, simply put, a prepackaged SQL SELECT statement. Most of the time, these are read-only

structures meant to abstract the intricacies of building complex SELECT statements to make our

database easier to use by applications.

Code and execute the following SQL against your database. You should be using the
same database built using the code from Lab 6.

After you execute that statement, code and execute the following SQL code against your
database:

Your results should look like this:

Lab 08 – Database Programming Last Modified June 12, 2018

Page 11 of 21

In your own words, in your answers document, describe what lines 79 through 87 above
are doing.

TIP: Notice that lines 82 through 85 above are the same as what we previously ran when
we tested our user-defined function from before. A good strategy for authoring views is to
first get the SELECT statement correct and then just put the CREATE VIEW line before it,
execute the whole thing, and your view is done!

Stored Procedures
Stored procedures are like functions in that they perform operations based on provided parameter

values, but they are different in that they can perform more complex database activities. For instance,

whereas a user-defined function can make no changes to the database in any way, a stored procedure

can be used to encapsulate and abstract statements such as INSERT, UPDATE, and DELETE.

For example, we can prohibit a database user from running a SQL UPDATE statement for fear of running

an UPDATE without a WHERE clause and causing untold havoc on our data. We can then author a stored

procedure to require the necessary criteria be provided and we can code the UPDATE statement within

that procedure using that criteria.

Code and execute the following SQL against your database. You should be using the
same database built using the code from Lab 6.

After you execute that statement, code and execute the following SQL code against your
database:

Lab 08 – Database Programming Last Modified June 12, 2018

Page 12 of 21

Your results should look like this:

To see the effect, code and execute the following statement against your database:

Your Results should look like this:

In your own words, in your answers document, describe what lines 91 through 104
above are doing.

Stored procedures are also helpful in locking down access to INSERTing data in a table. With practice,

you should be able to accept many parameters and insert into more than one table, perform lookups

using functions, views, or basic select statements.

For now, we will focus on the mechanical elements of using stored procedures to add data to our tables.

@@identity
There are several global variables maintained by SQL Server. @@identity is a particularly helpful

variable we can use to keep track of data we’ve added. Whenever the identity property of a column is

triggered, SQL Server puts the value assigned to the column in the variable @@identity. This value is

changed every time data are added to a table and the identity property is used.

Code and execute the following SQL against your database. You should be using the
same database built using the code from Lab 6.

Your result should look like this:

Your vc_TagID might be different, but the result is still correct if you only retrieved the
Cat Videos tag.

Lab 08 – Database Programming Last Modified June 12, 2018

Page 13 of 21

If we use a stored procedure to return the @@identity property after we have performed an INSERT

statement, we can use the newly added surrogate primary key value to do other things.

Code and execute the following SQL against your database. You should be using the
same database built using the code from Lab 6.

After successfully running the previous code, code and execute the following code
against your database (note: code all of it and execute all of it at the same time or you
will get an error).

Your results should look like this:

Lab 08 – Database Programming Last Modified June 12, 2018

Page 14 of 21

Your UserLoginTimestamp value will be different than the one shown. On your answers
doc, explain why this is.

On your answers doc, also identify one way we could simplify the code in the stored
procedure above. (Hint: Look back at how we did a lookup with the vc_Tag table)

Part 2 – Putting All Together
In this part, you’ll create functions, views, and stored procedures to round out the external model of the

VidCast database.

Coding Your Own Functions
In this section, you’ll code new user-defined functions to perform specific tasks. In most cases, you’ve

already coded something similar in part 1, so refer to your previous work to see how to solve the

problems below.

The code below is the beginning of a function intended to retrieve a vc_UserID from the
vc_User table given a specified @userName. Complete the code to assign the correct
vc_UserID to @returnValue

Lab 08 – Database Programming Last Modified June 12, 2018

Page 15 of 21

After creating the vc_UserIDLookup function, run the following SELECT statement
against your database:
SELECT 'Trying the vc_UserIDLookup function.', dbo.vc_UserIDLookup('tardy')

Paste a screenshot of your results in your answers document. You’ll paste your SQL
later.

Author a function called dbo.vc_TagVidCastCount that calculates the count of
vc_VidCastIDs for a given vc_TagID. Consult the diagram at the end of this document as
a reference for the tables involved.

After you’ve authored the function and successfully created it, execute the following
code against your database:
SELECT
 vc_Tag.TagText
 , dbo.vc_TagVidCastCount(vc_Tag.vc_TagID) as VidCasts
FROM vc_Tag

Your results should look like this:

Paste a screenshot of your results in your answers document. You will paste your SQL
later.

Code a function called vc_VidCastDuration that SUMs the total number of minutes of
actual duration for VidCasts with a Finished status given a vc_UserID as a parameter.
This function should return the SUM as an int.

Lab 08 – Database Programming Last Modified June 12, 2018

Page 16 of 21

The easiest way to calculate the VidCast duration as a number of minutes for each
individual vc_VidCast record is using the built-in DateDiff function:

DATEDIFF(n, StartDateTime, EndDateTime)

You will need to incorporate the DATEDIFF function into your function to get the correct
value. (Hint: Use the dbo.vc_VidCastCount function you created earlier as a starting
point.)

Once you’ve created the function, execute the following SELECT statement against your
database:

SELECT
 *
 , dbo.vc_VidCastDuration(vc_UserID) as TotalMinutes
FROM vc_User

Your results should look like this (not every row is shown):

Paste a screenshot of your results in your answers document. You don’t need to ensure
every row is in the screenshot, just the first ten to fifteen rows will be fine. You will
paste your SQL later.

Coding Your Own Views
In this section, you’ll code new views and alter existing views to perform specific tasks. In most cases,

you’ve already coded something similar in part 1, so refer to your previous work to see how to solve the

problems below.

Create a view called vc_TagReport that executes the SELECT statement:

SELECT
 vc_Tag.TagText
 , dbo.vc_TagVidCastCount(vc_Tag.vc_TagID) as VidCasts
FROM vc_Tag

Lab 08 – Database Programming Last Modified June 12, 2018

Page 17 of 21

Code a SELECT statement that returns all rows from this view in descending order of
VidCasts.

Your results should look like this:

Paste a screenshot of your results in your answers document. You will paste your SQL
later.

Alter the view called vc_MostProlificUsers, adding a column called TotalMinutes that
calls the vc_VidCastDuration function we created earlier in part 2.

Hint: to alter a view, copy and the original code you wrote for part 1 to the end of your
SQL file, change the word CREATE to ALTER, code in the new column, and execute the
entire ALTER VIEW statement (be sure to execute everything from the ALTER VIEW
line through the end of the SELECT statement!

After you have coded and executed the ALTER VIEW, execute the following SQL against
your database:

SELECT UserName, VidCastCount, TotalMinutes FROM vc_MostProlificUsers

Your results should look like this:

Lab 08 – Database Programming Last Modified June 12, 2018

Page 18 of 21

Paste a screenshot of your results in your answers document. You will paste your SQL
later.

Coding Your Own Stored Procedures
In this section, you’ll code new stored procedures to perform specific tasks. In most cases, you’ve

already coded something similar in part 1, so refer to your previous work to see how to solve the

problems below.

The following is the beginning of a stored procedure to use in adding a row to the vc_Tag
table. All but the INSERT statement has been provided for you. Finish this procedure by
coding the INSERT statement. Then execute the entire CREATE PROCEDURE block.

After you have coded and executed the completed procedure, execute the following SQL
against your database:

DECLARE @newTagID int

Lab 08 – Database Programming Last Modified June 12, 2018

Page 19 of 21

EXEC @newTagID = vc_AddTag 'SQL', 'Finally, a SQL Tag'
SELECT * FROM vc_Tag where vc_TagID = @newTagID

Your results should look like this:

Paste a screenshot of your results in your answers document. You will paste your SQL
later.

Code a stored procedure called vc_FinishVidCast that accepts an int as a parameter that
will be a vc_VidCastID that we will need to mark as finished. The act of finishing a
VidCast means we must change its EndDateTime to be the current Date and Time (think
GetDate()) and change the vc_StatusID to the vc_StatusID for the ‘Finished’ status.

All the work can be done in a single UPDATE statement inside the stored procedure. Be
sure to code the WHERE clause!

After you have coded and executed the completed procedure, execute the following SQL
against your database:

DECLARE @newVC int
INSERT INTO vc_VidCast
 (VidCastTitle, StartDateTime, ScheduleDurationMinutes, vc_UserID,
vc_StatusID)
VALUES (
 'Finally done with sprocs'
 , DATEADD(n, -45, GETDATE())
 , 45
 , (SELECT vc_UserID FROM vc_User WHERE UserName = 'tardy')
 , (SELECT vc_StatusID FROM vc_Status WHERE StatusText='Started')
)

SET @newVC = @@identity
SELECT * FROM vc_VidCast WHERE vc_VidCastID = @newVC
EXEC vc_FinishVidCast @newVC
SELECT * FROM vc_VidCast WHERE vc_VidCastID = @newVC

TIP: Execute all the code from DECLARE @newVC int until the last SELECT
statement all at once.

Lab 08 – Database Programming Last Modified June 12, 2018

Page 20 of 21

Your results should look like this (your dates, times and IDs may differ):

Paste a screenshot of your results in your answers document. You will paste your SQL
later.

What to Submit
After completing Part 2, copy and paste the text of your SQL query file at the end of your

answers document. Save this document and submit it to the appropriate section on the

LMS.

Lab 08 – Database Programming Last Modified June 12, 2018

Page 21 of 21

Appendix A – VidCast Logical Model Diagram

For the full diagram, see https://drive.google.com/file/d/1KRqkSvQABuTMXqYAzojTCt9etTSR8Vea/view?usp=sharing

https://drive.google.com/file/d/1KRqkSvQABuTMXqYAzojTCt9etTSR8Vea/view?usp=sharing

