Lab 08 — Database Programming Last Modified June 12, 2018

Data Admin Concepts & Database
Management

Lab 08 — Database Programming

Table of Contents

Data Admin Concepts & Database ManagemMENTc.uuieiiciieieeiiiee et ectre e ecre e e e stre e e e saar e e s esasaeeeesnneeeeens 1

Lab 08 — Database PrOgrammMiNgcccueiiieciiieiieiieeeeeieee e eeite e e eetee e e eeteee e eeabeee e esabaeeeeenseeeeesnbasesennseeeeennsenas 1

OVEBIVIBW ..ttt ettt ettt ettt e e sttt e e sttt e e sttt e e s bt e e e s a b e e e e s nbaee s s nbe e e s s nbe e e s snbeeesenbeeesenreeeseanneneeennnenas 1

[T g a1 o= @ o] =T ot A =PRIt 2

1] o CTo -1 OO OO PO PP RUPIPPRUPRUPONt 2

What YOU Will NEEA 10 BEZIN......uiiieeiiiieeceee ettt ettt ettt e e e eeaae e e e e ate e e e e atae e s enbeeeeenraeeeennsenas 2

Part 1 — Introducing Functions, Views, and Stored Proceduresccovveeeeeeiiiciiirreeeeeeeeeecrreeeeee e e 3

=3 (U]« P PPTPTPUPTPTPPPPIRt 3

U1 ot o] o TP PSP P PSP PPPPPOPRPRRE 3

VIBWS ettt ettt s et e e s e e s e e e s e b e e e s e b e et e s e b e e e e s e b et e e s e bee e e e s nrneessnee 10

STOIrEA PrOCEAUIES.eiiiiieeee ettt ettt e sttt e st e e s b e e sab e e sabe e e neeesaneesnees 11

Part 2 — PULtiING All TOGETNETcoi e sbee e e e e e e e sareeas 14

Coding YOUIr OWN FUNCLIONSuviiiiiiiiieeccitee ettt et e e e sae e e st e e e s stba e e e s abae e esnbaeeeennseeesennsenas 14

COAING YOUF OWN VIBWS ..ciiiiiiiiiieiee e e ettt e e e e e e et tee e e e e s e e sanbateeeeeaesesannsttaeeeeaesesannssnsnnaeessessnnsenns 16

Coding Your OWN StOred ProCEAUIES..........uuiiieeieiicciiiteeee e e e eecirrree e e e e e esrtrrr e e e e s e e ssanbsaseeeseseeesnnsenns 18

WAt £0 SUBMIE ..ttt et ettt b e b e s bt e s it e st e et e e beesbeesbeesaeeeas 20

Appendix A — VidCast Logical Model Diagramccoccuiiieiiiiieeeiiieeecieeeesree e esvee e e sivre e e saveee e s saveeas 21
Overview

This lab is the eighth of ten labs in which we will build a database using the systematic approach covered
in the asynchronous material. Each successive lab will build upon the one before and can be a useful
guide for building your own database projects.

Page 1 0of 21

Lab 08 — Database Programming Last Modified June 12, 2018

In this lab, we will combine structured query language (SQL) DDL and DML to construct some helpful
programming objects for our VidCast database.

Read this lab document once through before beginning.

Learning Objectives

In this lab you will

e Demonstrate proficiency in coding and using SQL Server database objects such as Functions,
Views, and Stored Procedures

Lab Goals

This lab consists of two sections. The first section is a walkthrough of creating programming objects. In
the second part of the lab, you will code your own view, functions, and stored procedures to solve the
problems presented.

~ ' » TP If you are new to SQL or programming in general, you may benefit from run through
™~ “" of the SQL Tutorial at https://www.w3schools.com/sql/ . While not required reading, it
can be a helpful resource for new programmers to get some coding in.

What You Will Need to Begin

e This document

e An active Internet connection (if using iSchool Remote lab)

e A blank Word (or similar) document into which you can place your answers. Please include your
name, the current date, and the lab number on this document. Please also number your
responses, indicating which part and question of the lab to which the answer pertains. Word
docx format is preferred. If using another word processing application, please convert the
document to pdf before submitting your work to ensure your instructor can open the file.

e To have completed Lab 07 — Advanced Querying

e Understanding of database tables and have reviewed the asynchronous material through Week
8

e One of the following means of accessing a SQL Server installation

o A connection to the iSchool Remote Lab (https://remotelab.ischool.syr.edu)

o Alocal installation of SQL Server (see Developer edition here
https://www.microsoft.com/en-us/sql-server/sql-server-downloads-free-trial)

o Regardless of how you access SQL Server, you will need to use SQL Server Management
Studio to do so.

Page 2 of 21

https://www.w3schools.com/sql/
https://remotelab.ischool.syr.edu/
https://www.microsoft.com/en-us/sql-server/sql-server-downloads-free-trial

Lab 08 — Database Programming Last Modified June 12, 2018

Part 1 — Introducing Functions, Views, and Stored
Procedures
Setup

While we can leave the basic SQL coding up to our application developers, we would like to create some

programming objects to help them and us out. This is useful in properly securing our database as well as
making it user-friendly.

Formatting Note

«Q Look for the “To Do” icon to point out sections of the lab you will need to do to complete the
|10 DOI tasks.

Functions

A function is a block of predefined code that (often) accepts inputs as a list of parameters, runs some
process, and (often) returns a value. We have already used some functions throughout this course.

GetDate() for example, asks for no input parameters, but has some internal mechanic that figures out
what the date and time are currently, and responds with that value. We don’t need to know what those
internal mechanics are; we just need to know that they work and can just let the function do its thing.

The ISNULL function, defined as ISNULL (expression, result _if null), accepts an expression,
perhaps a column name, the result of some mathematical operation, or even another function call, and,
if that expression IS NULL, it will substitute the value sent by way of result_if_null.

Take it for a spin:

«Q Copy and paste the following code into a blank query editor window. You do not need to
1090 be connected to a specific database for this. Be sure to execute all these lines together!

-- Declare a variable (we’ll talk about variables in a minute)
declare @isThisNull varchar(30) -- Starts out as NULL
SELECT @isThisNull, ISNULL(@isThisNull, 'Yep, it is null') -- See?

-- Set the variable to something other than NULL

SET @isThisNull = 'Nope. It is not NULL'
SELECT @isThisNull, ISNULL(@isThisNull, 'Yep, it is null') -- How about now?

Your results should look like the following. Copy a screenshot of your results to your
answers doc.

Page 3 of 21

Lab 08 — Database Programming Last Modified June 12, 2018

EE Results E® Messages
(Mo column name) (Mo column name)
1 P NULL : Yep, it is nul

(Mo column name) (Mo column name)
1 Mope. &t is not NULL Mope. It is not NLILL

We used the aggregate functions, AVG(), SUM(), MIN(), MAX(), and COUNT(), to perform some math for
us that would have been more difficult to do if we had to perform that work on our own. The
parameters to these functions were expressions that the DBMS will use to calculate the aggregate.

These are all examples of built-in functions; functions made available to us by SQL Server for use in our
SELECT statements. We can code our own functions to do many different things for us. Some of the
most common uses for user-defined functions are to abstract the calculation of derived attributes and
to provide lookups for values based on provided parameters.

~ \ , TIP:sqL Server provides for the creation and use of two types of user-defined functions:
~ “" Scalar and Table-valued. This lab only deals with the former. Table-valued functions differ
from scalar-valued in that table-valued return tables as results, whereas scalar-valued
return single values as results.

Our First User-Defined Function

«Q Code and execute the following code against your IST659 database. The comments are
10 0] optional, but they’re here to outline some basic ideas about how functions are built.

11 [=ICREATE FUNCTION dbo.AddTwoInts(@firstNumber int, @secondNumber int)
12 RETURNS int AS

13 BEGIN

14 -- First, declare the variable to temporarily hold the result
15 = DECLARE @returnvValue int -- the data type matches the "RETURNS" clause
16

17 -- Do whatever needs to be done to set that variable to the
18 -- correct value

19 SET @returnvalue = @firstNumber + @secondNumber

20

21 -- Return the value to the calling statement

22 RETURN @returnValue

23 END

24 GO

Page 4 of 21

Lab 08 — Database Programming Last Modified June 12, 2018

=3
10 ®O

After running the code above, code and execute the following SQL SELECT statement
against your database.

SELECT dbo.AddTwoInts(5, 10)

Your results should look like this:
EH Resuts 2 Messages

(No column name)
1 15 :

Let’s break that function into its lines to see what each does. First, the code again.

11 [=ICREATE FUNCTION dbo.AddTwoInts(@firstNumber int, @secondNumber int)
12 RETURNS int AS
13 BEGIN
14 -- First, declare the variable to temporarily hold the result
15 = DECLARE @returnvValue int -- the data type matches the "RETURNS" clause
16
17 -- Do whatever needs to be done to set that variable to the
18 -- correct value
19 SET @returnvalue = @firstNumber + @secondNumber
20
21 -- Return the value to the calling statement
22 RETURN @returnValue
23 END
24 GO
Line # | Purpose

11 | CREATE FUNCTION is the DDL starting point for creating functions.

dbo.AddTwoInts is what we’re naming this function. Technically, we’re creating a
function called AddTwolnts in the dbo schema. We don’t need the schema for other
objects, but we do for functions.

(@firstNumber int, @secondNumber int) After we provide the function name, we
provide a list of parameters in parentheses, each separated by a comma. To declare a
parameter, you give it a name, beginning with the at sign (@) and a data type.

12

Page 5 of 21

Lab 08 —

Database Programming Last Modified June 12, 2018

RETURNS int tells SQL Server that this function will be processing information to derive a
result of the int data type. This can be whatever data type is appropriate for the task at
hand. In our case, we are adding two ints together to create another int, so we set the
return data type to int.

AS is the keyword that ends the CREATE FUNCTION clause and tells SQL Server that the
line(s) to follow represent the code to be executed when this function is called.

13

BEGIN tells SQL Server we are about to start a block of code, all of which belong together. If
we didn’t have the BEGIN and the subsequent END (see line 23), SQL Server would not
know to group this code together and would only take the first line following the AS as the
whole function.

15

DECLARE @returnValue int tells SQL Server to create an int-sized area in memory that
we’re calling @returnValue to temporarily hold a value. In this case, we’re creating a
variable that will hold the result of our math. The @ is mandatory at the beginning of the
variable name in SQL Server.

You can create many variables for many reasons. In most cases, you’ll want at least one in a
function to hold the value you’d like to return to the calling code. You can name them just
about anything you’d like, but it is best for your own sake and for the sake of others who
may have to read your code to give them a name that has some meaning.

We have named our variable @returnValue because it is the value to be returned to the
calling code. We could just as easily have named it @phil, but, while I'm sure Phil is an
alright person, it doesn’t make for a very informative variable name.

19

This does the operation that the function is designed to do and assigns the result to the
@returnValue variable.

22

After setting @returnValue to the appropriate result, we need to RETURN it to the calling
code.

23

This END corresponds to the BEGIN on line 13 and signals to SQL Server that we are done
with this block of code.

24

The GO keyword signals to SQL Server to end the current batch of commands to process and
begin anew. This is not required in most cases, but if you don’t isolate CREATE FUNCTION,
CREATE VIEW, or CREATE PROCEDURE statements by ensuring they are between GO
statements, SSMS will interpret the statement as an error stating the CREATE statement
must be the only statement in the batch.

Page 6 of 21

Lab 08 — Database Programming Last Modified June 12, 2018

If you see an error like the one in the following screenshot, simply add a GO to the line
before the CREATE statement.

28 CREATE FUNCTION dbo.NoGoHere() RETURNS INT AS

S v rwY. L W Y,

29 BEGIN ncorrect syntax: "CREATE FUNCTION' must be the only statement in the batch,

Functions That Are More... well... Functional

Among the many helpful tasks that functions can perform are abstracting the calculation of
organizational metrics and performing lookups to other data based on inputs.

Abstracting Routine Calculation

Organizations rely on data to make both tactical and strategic decisions. These metrics are often
calculated based on events that have happened that impact performance. Because these metrics are
based on an organizations rules, they are subject to change with some frequency. Catalysts for those
changes can include new management, changes within the organization that require new calculations,
or changes in the organization’s industry that require us to rethink how we calculate these metrics.

Instead of hand-coding the calculation in every instance it is needed (printed reports, management
dashboards, displays mounted throughout the organization’s work space, intranets and extranets, etc),
we can code the calculation once in a function. Whenever we need to show the metric, we can call the
function, passing the appropriate parameters and the output will be the result of the current math.

Our VidCast service is interested in the number of VidCasts created by VidCast users. Let’s code a
function that counts the number of VidCasts made by a given user and returns the count to the calling
code.

Q Code and execute the following SQL against your database. You should be using the
10 ©0] same database built using the code from Lab 6.

Page 7 of 21

Lab 08 — Database Programming Last Modified June 12, 2018

29 -- Function to count the VvidCasts made by a given User

30 [ZICREATE FUNCTION dbo.vc_VidCastCount(@userID int)

31 | RETURNS int AS -- COUNT() is an integer value, so return it as an int
32 BEGIN

33 = DECLARE @returnValue int -- matches the function's return type
34

35 /*

36 Get the count of the vidCasts for the provided userID and
37 assign that value to @returnvalue. Note that we use the

38 @userID parameter in the WHERE clause to limit our count
39 to that user's VidCast records.

40 */

41 SELECT @returnValue = COUNT(vc_UserID) FROM vc_VidCast

42 WHERE vc_VidCast.vc_UserID = @userID

43

44 -- Return @returnvalue to the calling code.

45 RETURN @returnValue

46 END

a7 GO

After you execute that statement, code and execute the following SQL code against your

database:

49 [=|SELECT TOP 1@

1%) *

51 , dbo.vc_VidCastCount(vc_UserID) as VidCastCount
52 FROM vc_User

53 ORDER BY VidCastCount DESC

Your results should look like this:

ve_UserlD

1
2
3
4
5 26
6
8
9
1

BB Resuts ¥ Messages

UserName EmailAddress UserDescription WebSite URL UserRegisteredDate: VidCastCount
ecstatic blandit enim.consequat@oremutaliguam.couk Bandwidth series Afinancing niche market. NULL 2017-11-16 00:00:00.000 22
principle ac.uma@miac.com Businessto-business ecosystem ramen social media http://principle vidcast659 site 2017-11-01 12:14:24000 1§

metacapal et magna.Praesent@placerataugue Sed.ong Research & development startup long tail strategy ... http://metacarpal vidcast659.ste 2017-05-30 11:31:12.000 18
canadian Curabitur dictum Phasellus@eleffendnec com Agile development ownership businessto-consumer. http://canadian vidcast653 ste 2017-06-27 05:16:43000 18

przewalski amet@Maurismolestie.org MNULL hitp://przewalski vidcast659.ste 2017-02-11 08:52:48.000 17
silly accumsan@gravidasagitis Duis net Stock founders eary adopters low hanging fruit A/B. http://silly vidcast659 site 2017-05-25 14:38:24000 17
wood turpis egestas Fusce @massanonante net Technology investor marketing alpha. http://wood vidcast659 ste 2017-06-21 15:36:00.000 16
doughnut ipsum primis @Cumsociis com Assets sales incubator user experience ecosystem http://doughnut vidcast659 ste 2017-01-3101:12:00.000 16
grogay omare.Infaucibus@egestas.ca Sales niche market user experience investor social .. http://grogay vidcast659.site 2017-04-20 09:50:24.000 16
these parturient montes @ipsum ca Entrepreneur virality freemium crowdsource long tail http:/Ahese vidcastb59 site 2017-12407 03:50:24000 16

In your own words, in your answers document, describe what lines 49 through 53 above
actually do. Also, how is it that this code knows that the vc_User record with vc_UserID

=20 has

Performing Data Look
Often, we have one p

22 vc_VidCast records?

ups
iece of data and we would like to look up another piece of data in a table. This is a

common task when using surrogate keys. A table where a surrogate primary key is used may have

Page 8 of 21

Lab 08 — Database Programming Last Modified June 12, 2018

another column that serves as the natural key. A value that identifies the real-world object in real-world
terms that may not be a suitable primary key candidate.

For example, our vc_Tag table has a surrogate primary key, vc_TaglD, but our users do not care and may
not even know about this column. Instead, they will use the values in the column, TagText, to specify or
search for tags. This makes TagText a natural key. We can code a function that accepts the tag text as a
parameter and looks up the vc_TaglID for the vc_Tag record for that TagText.

«Q Code and execute the following SQL against your database. You should be using the
1090} same database built using the code from Lab 6.

55 GO

56 --Function to retrieve the vc_TagID for a given tag's text
57 [EICREATE FUNCTION dbo.vc_TagIDLookup(@tagText varchar(2e))
58 | RETURNS int AS -- vc_TagID is an int, so we'll match that

59 BEGIN

60 [DECLARE @returnValue int -- Matches the function's return type
61

62 /*

63 Get the vc_TagID of the vc_Tag record whose TagText

64 matches the parameter and assign that value to @returnvalue.
65 */

66 SELECT @returnValue = vc_TagID FROM vc_Tag

67 WHERE TagText = @tagText

68

69 -- Send the vc_TagID back to the caller

70 RETURN @returnvalue

71 END

72 GO

After you execute that statement, code and execute the following SQL code against your
database:

75 [ZISELECT dbo.vc_TagIDLookup('Music')

76 | SELECT dbo.vc_TagIDLookup('Tunes')

Your results should look like this:
BH Resuts 2l Messages

{No column name)

Page 9 of 21

Lab 08 — Database Programming Last Modified June 12, 2018

In your own words, in your answers document, describe what lines 75 and 76 above
actually do. Also, when line 76 executed, we received a NULL from SQL Server. How
come?

Views

Views are another programming object we can use to secure and simplify access to the data. As we’ll
see in a future lab, we can lock down access to certain data points to specific database users using a
view. We can also use views to predefine complex SQL SELECT statements and allow programmers
(including ourselves) to simply access the views instead of writing queries that might include esoteric
JOINs or aggregate functions.

A view is, simply put, a prepackaged SQL SELECT statement. Most of the time, these are read-only
structures meant to abstract the intricacies of building complex SELECT statements to make our
database easier to use by applications.

«Q Code and execute the following SQL against your database. You should be using the
1000 same database built using the code from Lab 6.

79 [=]-- Create a view to retrieve the top 10 vc_Users and their
80 | -- VvidCast counts

81 [-JCREATE VIEW vc_MostProlificUsers AS

82 SELECT TOP 1@

83 *

84 , dbo.vc_VidCastCount(vc_UserID) as VidCastCount
85 FROM vc_User

86 ORDER BY VidCastCount DESC

87 GO

After you execute that statement, code and execute the following SQL code against your
database:
88 [-ISELECT * FROM vc_MostProlificUsers

Your results should look like this:

Page 10 of 21

Lab 08 — Database Programming Last Modified June 12, 2018

FH Resuts g Messages

UserName EmailAddress UserDescription ‘WebSite URL UserRegisteredDate VidCastCount
static blandit.enim. consequat@oremutaliquam.co.uk Bandwidth series A financing niche market. NULL 20171116 00:00:00.000 22

1

2 i principle ac.uma@miac.com Businesso-business ecosystem ramen social media... http.//principle vidcast659 ste 2017-11-0112:14:24000 19
3 metacapal et magna.Praesent @placerataugue Sed.org Research & development startup long tai strategy g hitp://metacapal vidcast659 ste 2017-05-30 11:31:12.000 18
4 43 canadian Curabitur dictum Phaselus @eleffendnec com Agile development ownership business-+o-consumer. http://canadian vidcast653 site 2017-06-27 05:16:48.000 18
5 26 przewalski amet@Maurismolestie.org NULL http://przewalski vidcast659.ste 2017-02-1108:52.48.000 17
6 36 silly accumsan@gravidasagittis Duis.net Stock founders early adopters low hanging fruit A/B... http//sily vidcast659.site 20170525 14:38:24.000 17
7 7 wood turpis egestas Fusce @massanonante net Technology investor marketing alpha hitp://wood vidcast659 site 20170621 15:36:00000 16
a n doughnut ipsum primis @Cumsociis com Assets sales incubator user experience ecosystem hitp://doughnut vidcast659.ste 2017.01-3101:12:00.000 16
9 4 groagy omare In faucibus @egestas ca Sales niche market user experience investor social .. hitp://grogay vidcast659 st 2017-04-20 0950:24.000 16
0 47 these parturient. montes@ipsum .ca Entrepreneur viralty freemium crowdsource longtail ... http://these vidcast659 site 20171207 03:50:24.000 16

In your own words, in your answers document, describe what lines 79 through 87 above
are doing.

~ \ , TIP: Notice that lines 82 through 85 above are the same as what we previously ran when
- " we tested our user-defined function from before. A good strategy for authoring views is to
first get the SELECT statement correct and then just put the CREATE VIEW line before it,
execute the whole thing, and your view is done!

Stored Procedures

Stored procedures are like functions in that they perform operations based on provided parameter
values, but they are different in that they can perform more complex database activities. For instance,
whereas a user-defined function can make no changes to the database in any way, a stored procedure
can be used to encapsulate and abstract statements such as INSERT, UPDATE, and DELETE.

For example, we can prohibit a database user from running a SQL UPDATE statement for fear of running
an UPDATE without a WHERE clause and causing untold havoc on our data. We can then author a stored
procedure to require the necessary criteria be provided and we can code the UPDATE statement within
that procedure using that criteria.

«Q Code and execute the following SQL against your database. You should be using the
10 0] same database built using the code from Lab 6.

91 [-]-- Create a procedure to update a vc_User's email address

92 | -- The first parameter is the user name for the user to change

93 | -- The second is the new email address

94 [-ICREATE PROCEDURE vc_ChangeUserEmail(@userName varchar(2e), @newEmail varchar(5@))
95 AS

96 [-|BEGIN

97 [UPDATE vc_User SET EmailAddress = @newEmail

98 WHERE UserName = @userName

99 END

lee GO

After you execute that statement, code and execute the following SQL code against your
database:
102 [-JEXEC vc_ChangeUserEmail 'tardy', 'kmstudent@syr.edu'

Page 11 of 21

Lab 08 — Database Programming Last Modified June 12, 2018

Your results should look like this:

Ef Messages

(1 row affected)

To see the effect, code and execute the following statement against your database:
184 | SELECT * FROM vc_User WHERE UserName = ‘tardy’

Your Results should look like this:

EH Resuts 2 Messages
Userhame Email Address UserDescription WebSite URL UserRegistered Date
tardy kmstudent@syredu Startup leverage growth hacking bootstrapping sc... hitp:/Aardy vidcast659.site 2017-03-12 15:36:00.000

In your own words, in your answers document, describe what lines 91 through 104
above are doing.

Stored procedures are also helpful in locking down access to INSERTing data in a table. With practice,
you should be able to accept many parameters and insert into more than one table, perform lookups
using functions, views, or basic select statements.

For now, we will focus on the mechanical elements of using stored procedures to add data to our tables.

@ @identity

There are several global variables maintained by SQL Server. @ @identity is a particularly helpful
variable we can use to keep track of data we’ve added. Whenever the identity property of a column is
triggered, SQL Server puts the value assigned to the column in the variable @ @identity. This value is
changed every time data are added to a table and the identity property is used.

Q Code and execute the following SQL against your database. You should be using the
10 ©0| same database built using the code from Lab 6.

106 INSERT INTO vc_Tag (TagText) VALUES ('Cat Videos')
107 | SELECT * FROM vc_Tag WHERE vc_TagID = @@identity

Your result should look like this:

FR Results Eﬁ Messages
vo_TaglD TagText TagDescription

1 {18 | Cat Videos NULL

Your vc_TaglID might be different, but the result is still correct if you only retrieved the
Cat Videos tag.

Page 12 of 21

Lab 08 — Database Programming Last Modified June 12, 2018

If we use a stored procedure to return the @ @identity property after we have performed an INSERT
statement, we can use the newly added surrogate primary key value to do other things.

Q Code and execute the following SQL against your database. You should be using the
10 ©0] same database built using the code from Lab 6.

11@ [|/* Create a procedure that adds a row to the UserLogin table

111 This procedure is run when a user logs in and we need

112 to record who they are and from where they're logging in.

113 */

114 [-ICREATE PROCEDURE vc_AddUserLogin(@userName varchar(20), @loginFrom varchar(5e))
115 AS

116 [-IBEGIN

117 = -- We have the user name, but we need the ID for the login table
118 -- First, declare a variable to hold the ID

119 DECLARE (@userID int

120

121 -- Get the vc_UserID for the UserName provided and store it in @userID
122 = SELECT @userID = vc_UserID FROM vc_User

123 WHERE UserName = @userName

124

125 -- Now we can add the row using an INSERT statement

126 = INSERT INTO vc_UserLogin (vc_UserID, LoginLocation)

127 VALUES (@userID, @loginFrom)

128

129 = -- Now return the @@identity so the calling code knows where

13e -- the data ended up

131 RETURN (@@identity

132 END

133 GO

After successfully running the previous code, code and execute the following code
against your database (note: code all of it and execute all of it at the same time or you
will get an error).

135 [-IDECLARE (@addedValue int

136 | EXEC @addedValue = vc_AddUserlLogin 'tardy', 'localhost'’

137 [ZISELECT

138 vc_User.vc_UserID

139 , vc_User.UserName

140 , vc_UserLogin.UserLoginTimestamp
141 , vc_UserLogin.LoginLocation

142 FROM vc_User
143 | JOIN vc_UserLogin on vc_User.vc_UserID = vc_UserLogin.vc_UserID
144 | WHERE vc_UserLoginID = @addedValue

Your results should look like this:

Page 13 of 21

Lab 08 — Database Programming Last Modified June 12, 2018

EE Resutts E Messages
ve_lserlD UserMame UserlLoginTimestamp LoginLocation

1 i6 : tardy 20180527 21:15:13.240 localhost

Your UserLoginTimestamp value will be different than the one shown. On your answers
doc, explain why this is.

On your answers doc, also identify one way we could simplify the code in the stored
procedure above. (Hint: Look back at how we did a lookup with the vc_Tag table)

Part 2 — Putting All Together

In this part, you’ll create functions, views, and stored procedures to round out the external model of the
VidCast database.

Coding Your Own Functions

In this section, you’ll code new user-defined functions to perform specific tasks. In most cases, you’ve
already coded something similar in part 1, so refer to your previous work to see how to solve the
problems below.

vc_User table given a specified @userName. Complete the code to assign the correct

@, The code below is the beginning of a function intended to retrieve a vc_UserID from the
10 ©0
vc_UserlD to @returnValue

147 [E1/*
148 Create a function to retrieve a vc_UserID for a given user name
149 | */

156 [FICREATE FUNCTION dbo.vc_UserIDLookup(@userName varchar(20))
151 RETURNS int AS

152 BEGIN

153 DECLARE @returnValue int

154

155 |- -- TODO: Write the code to assign the correct vc_UserID
156 -- to @returnvalue

157

158 RETURN @returnvalue

159 END

160 GO

Page 14 of 21

Lab 08 — Database Programming Last Modified June 12, 2018

10 ©0

1o ©0

After creating the vc_UserlDLookup function, run the following SELECT statement

against your database:
SELECT 'Trying the vc_UserIDLookup function.', dbo.vc_UserIDLookup('tardy")

Paste a screenshot of your results in your answers document. You’ll paste your SQL
later.

Author a function called dbo.vc_TagVidCastCount that calculates the count of
vc_VidCastlIDs for a given vc_TaglD. Consult the diagram at the end of this document as
a reference for the tables involved.

After you’ve authored the function and successfully created it, execute the following
code against your database:

SELECT

vc_Tag.TagText

, dbo.vc_TagVidCastCount(vc_Tag.vc_TagID) as VidCasts
FROM vc_Tag

Your results should look like this:

FH Results B Messages
T: VidCasts

2 mAudio Recording

3 Baszeball 242
4 Basketball 236
5 Cat Videos 0

& Collectibles 258
7 Consoles 260
8 Fashion 240
9 Foatball 259
10 Games 254
" Matars 0
12 Music 237
13 Personal 263
14 Professional 264
15 Sports - General 235

Paste a screenshot of your results in your answers document. You will paste your SQL
later.

Code a function called vc_VidCastDuration that SUMs the total number of minutes of
actual duration for VidCasts with a Finished status given a vc_UserID as a parameter.
This function should return the SUM as an int.

Page 15 of 21

Lab 08 — Database Programming

Last Modified June 12, 2018

The easiest way to calculate the VidCast duration as a number of minutes for each
individual vc_VidCast record is using the built-in DateDiff function:

DATEDIFF(n, StartDateTime, EndDateTime)

You will need to incorporate the DATEDIFF function into your function to get the correct

value. (Hint: Use the dbo.vc_VidCastCount function you created earlier as a starting

point.)

Once you’ve created the function, execute the following SELECT statement against your

database:

SELECT

*

, dbo.vc_VidCastDuration(vc_UserID) as TotalMinutes

FROM vc_User

Your results should look like this (not every row is shown):

EH Resuits B Messages

vc_UserlD UserName EmailAddress UserDescription ‘Web SteURL UserRegisteredDate TotalMinutes
1 ethanal Donec tempus @penatibusetmagnis couk Agile development non-disclosure agreement equity http://ethanal vidcast659 ste 2017-12-30 22:19:12.000 1859
FI " dispaicher quam@aptertiacitisaciosqu.ca A/Blesting handshake disnuptive seed money infogr... hitp://dispatchervidcast659.ste 20171208 03:36.00.000 1268
3 3 camel mauris @massanon edu User experience founders branding entreprensur iter. http://camel vidcast 659 site 201708-1403:21:36.000 1859
4 4 infatuated molis@Nam.org Lean startup launch party angel investor branding b... hitp://infatuated vidcastE59 st 2017-06-07 17:.02:24.000 1426
5 5 hygierist magna Lk@necumasuscipit ca Business model canvas accelerator pivot network ef . hitp://hygienist vidcastB39.ste 2017-0317 23:16:48.000 1138
6 6 tardy kmstudert @syr.edu Startup leverage growth hacking bootstrapping seru... hitp:/Aardy vidcast659.site 20170312 15:36:00.000 2303
707 wood turpis sgestas Fusce@massanorante net Technology investor marketing alpha hitp://wood videastB53 ste 2017-06-21 15:36.00.000 2292
8 8 mallard vel lectus. Cum @veliteget edu Assets sales success bandwidth business model ca... http://mallard.vidcast659 site 20170815 19:55:12.000 1828
9 9 Iifted eu@elitsed net MNULL http:/Afted vidcast659 ste 20170415 20:24.00.000 1828
o 10 qum ut@pharetraQuisqueac.com Infographic incubator hypotheses client conversion http://gum vidcast659 site 20170224 09:0712.000 1238
n n doughnut ipsum primis@Cumsociis.com Assets sales incubator user experience ecosystem a... http.//doughnut.vidcast659.ste 2017-01-31 01:12:00.000 1830
12z 12 bewildered Donec porttitor tellus @odioAliquamyulp Infrastructure research & development venture bum http://bewidered vidcast653 s 20171229 09:0712.000 1344
13 13 albite nisi@vitaemauris.org Leaming curve partnership buzz value proposition re... http://albite vidcast659.site 2017-07-25 00:00:00.000 1971
14 14 arogay omare In faucibus @egestas ca Sales niche market user experience investor social http://grogay vidcast659 site 2017-04-20 09:50.24.000 2464
15 15 bicycle Quisque porttitor eros @mi.net Success network effects focus monetization iPhone... http://bicycle.vidcast653 ste 2017-01-17 12:00:00.000 1152
16 1R hills: vitas nngnene At@vestibulummassa couk Anoel investor technalony ramen leamina corve non NI 2M7A0NT 124312000 1240

Paste a screenshot of your results in your answers document. You don’t need to ensure
every row is in the screenshot, just the first ten to fifteen rows will be fine. You will
paste your SQL later.

Coding Your Own Views

In this section, you’ll code new views and alter existing views to perform specific tasks. In most cases,
you’ve already coded something similar in part 1, so refer to your previous work to see how to solve the
problems below.

@

10 0

Create a view called vc_TagReport that executes the SELECT statement:

SELECT

vc_Tag.TagText

, dbo.vc_TagVidCastCount(vc_Tag.vc_TagID) as VidCasts
FROM vc_Tag

Page 16 of 21

Lab 08 — Database Programming Last Modified June 12, 2018

Code a SELECT statement that returns all rows from this view in descending order of
VidCasts.

Your results should look like this:

EE Resuts il Messages
TagText VidCasts

2 i Professional 264
3 Personal 263
4 Consoles 260
5 Football 259
6 Collectibles 258
7 At 256
8 Games 254
:] Baseball 242
10 Fashion 240
1 Music 237
12 Basketbal 236
13 Spors-General 235
14 Motors 0

15 Cat Videos 0

Paste a screenshot of your results in your answers document. You will paste your SQL
later.

«Q Alter the view called vc_MostProlificUsers, adding a column called TotalMinutes that
1090} calls the vc_VidCastDuration function we created earlier in part 2.

Hint: to alter a view, copy and the original code you wrote for part 1 to the end of your
SQL file, change the word CREATE to ALTER, code in the new column, and execute the
entire ALTER VIEW statement (be sure to execute everything from the ALTER VIEW
line through the end of the SELECT statement!

After you have coded and executed the ALTER VIEW, execute the following SQL against
your database:

SELECT UserName, VidCastCount, TotalMinutes FROM vc_MostProlificUsers

Your results should look like this:

Page 17 of 21

Lab 08 — Database Programming Last Modified June 12, 2018

B - TS T S PER T

— 0 2

FR Results E]i Messages

UserMame VidCastCourt TotalMinutes

: {22 2682
pinciple 13 1413
canadian 12 1522
metacarpal 18 3053
przewalski 17 2664
gilly 17 2851
archives 16 2374
doughnut 16 1830
groggy 16 2464
sines 16 2316

Paste a screenshot of your results in your answers document. You will paste your SQL
later.

Coding Your Own Stored Procedures

In this section, you’ll code new stored procedures to perform specific tasks. In most cases, you’ve
already coded something similar in part 1, so refer to your previous work to see how to solve the

problems below.

table. All but the INSERT statement has been provided for you. Finish this procedure by

[j The following is the beginning of a stored procedure to use in adding a row to the vc_Tag
10 ©0

coding the INSERT statement. Then execute the entire CREATE PROCEDURE block.

225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240

_/*

Create a stored procedure to add a new Tag to the database
Inputs:
@tagText : the text of the new tag
@description : a brief description of the tag (nullable)
Returns:
@@identity with the value inserted
=/

-CREATE PROCEDURE vc_AddTag(@tagText varchar(2@), @description varchar(1ee)=NULL) AS
=BEGIN

-- Code the procedure here!

RETURN @@identity
END
GO

After you have coded and executed the completed procedure, execute the following SQL
against your database:

DECLARE @newTagID int

Page 18 of 21

Lab 08 — Database Programming Last Modified June 12, 2018

=3
10 ©0

EXEC @newTagID = vc_AddTag 'SQL', 'Finally, a SQL Tag'
SELECT * FROM vc_Tag where vc_TagID = @newTagID

Your results should look like this:

FR Results E]i Messages
vo_TaglD TagTest TagDescription

1 {16 {50l Finally, a SQL Tag

Paste a screenshot of your results in your answers document. You will paste your SQL
later.

Code a stored procedure called vc_FinishVidCast that accepts an int as a parameter that
will be a vc_VidCastID that we will need to mark as finished. The act of finishing a
VidCast means we must change its EndDateTime to be the current Date and Time (think
GetDate()) and change the vc_StatusID to the vc_StatusID for the ‘Finished’ status.

All the work can be done in a single UPDATE statement inside the stored procedure. Be
sure to code the WHERE clause!

After you have coded and executed the completed procedure, execute the following SQL
against your database:

DECLARE @newVC int
INSERT INTO vc_VidCast
(VidCastTitle, StartDateTime, ScheduleDurationMinutes, vc_UserlID,
vc_StatusID)
VALUES (
'Finally done with sprocs’
, DATEADD(n, -45, GETDATE())
, 45
, (SELECT vc_UserID FROM vc_User WHERE UserName = 'tardy')
, (SELECT vc_StatusID FROM vc_Status WHERE StatusText='Started')

)

SET @newVC = @@identity

SELECT * FROM vc_VidCast WHERE vc_VidCastID = @newVC
EXEC vc_FinishVidCast @newVC

SELECT * FROM vc_VidCast WHERE vc_VidCastID = @newVC

1. 7 TIP: Execute all the code from DECLARE @newV/C int until the last SELECT
~ “~ statement all at once.

Page 19 of 21

Lab 08 — Database Programming Last Modified June 12, 2018

Your results should look like this (your dates, times and IDs may differ):
FH Resuts W Messages

ve_VidCastlD VidCast Title StartDate Time EndDateTime ScheduleDurstionMinutes RecordingURL ve_UserlD vc_StatusID
Finally done with sprocs ~ 2018-05-27 22.50:28.257 MULL 45 MNULL 3 2

1

ve_WidCastlD VidCastTitle StartDate Time EndDateTime ScheduleDurationMinutes ~ RecordingURL ve_UserlD ve_StatusID
1859 ! Finally done with sprocs ~ 2018-05-27 22:50:28.257 2018-05-27 23:35:28.427 45 NULL 6 3

Paste a screenshot of your results in your answers document. You will paste your SQL
later.

What to Submit

«Q After completing Part 2, copy and paste the text of your SQL query file at the end of your

10 9] answers document. Save this document and submit it to the appropriate section on the
LMS.

Page 20 of 21

Lab 08 — Database Programming

Appendix A — VidCast Logical Model Diagram

vc_UserTagList

PK

vec_UserTaglListlD int identity

Frz

ve_StatusID int

vC_User

vc_UserlD int identity

Last Modified June 12, 2018

vc_FollowerList

FK | vc_FollowerListlD int identity

UserName varchar{20)
EmailAddress varchar{50)
UserDescription varchar(200)
‘WebSiteURL varchar(50)

UserRegisteredDate datetime

7| ve_TaglD int
7 | ve_UserlD int e
vc_Tag HH PK
PK | vc_TaglD int identity H i
U1 | TagText varchar(20) vC_VidCastTagList uz
TagDescription varchar(100) PK | vc_VidCastTagListlD int identity
J: ve_TaglD int
7 | ve_VidCastiD int
vc_VidCast
vc_Status - o -
m— PK | vc_VidCastlD int identity
PK | vc_StatusID int identity H
VidCastTitle varchar{50)
U1 | StatusText varchar(20)
StartDateTime datetime
EndDateTime datetime
ScheduledDurationMinutes int
RecordingURL varchar(50)
Fi1 | we_UserlD int BO—

3.

K1

FollowerlD int

J: FollowedID int

FollowerSince datetime

vc_UserLogin

vc_UserLoginlD int identity

FK1

vc_UserlD int
UserLoginTimestamp datetime

LoginLocation varchar{50)

For the full diagram, see https://drive.google.com/file/d/1KRgkSvQABUTMXqgYAzo|TCt9etTSR8Vea/view?usp=sharing

Page 21 of 21

https://drive.google.com/file/d/1KRqkSvQABuTMXqYAzojTCt9etTSR8Vea/view?usp=sharing

