
Lab 07 – Advanced Querying Last Modified May 22, 2018

Page 1 of 16

Data Admin Concepts & Database

Management

Lab 07 – Advanced Querying

Table of Contents
Data Admin Concepts & Database Management ... 1

Lab 07 – Advanced Querying .. 1

Overview ... 1

Learning Objectives ... 2

Lab Goals ... 2

What You Will Need to Begin .. 2

Part 1 – Exploratory Data Analysis .. 3

Setup ... 3

Setting Up Our Database .. 3

Basic Summaries – Getting the Details ... 4

Basic Summaries – Aggregating the Results ... 6

Advanced Summaries – SQL Judo to Answer Tough Questions ... 12

Part 2 – Putting All Together ... 14

What to Submit ... 14

Appendix A – VidCast Logical Model Diagram .. 15

Appendix B – Part 2 Results (Larger Size) ... 16

Overview
This lab is the seventh of ten labs in which we will build a database using the systematic approach

covered in the asynchronous material. Each successive lab will build upon the one before and can be a

useful guide for building your own database projects.

Lab 07 – Advanced Querying Last Modified May 22, 2018

Page 2 of 16

In this lab, we will use structured query language (SQL) data manipulation commands to query and

modify data in the VidCast database.

Read this lab document once through before beginning.

Learning Objectives
In this lab you will

• Demonstrate data manipulation language (DML) proficiency

• Perform basic data analysis using descriptive statistics provided by SQL aggregate functions

Lab Goals
This lab consists of two sections. The first section is a walkthrough of inserting, updating, querying, and

deleting data. In the second part of the lab, you will code your own DML queries to solve the problems

presented.

TIP: If you are new to SQL or programming in general, you may benefit from run through of

the SQL Tutorial at https://www.w3schools.com/sql/ . While not required reading, it can be a

helpful resource for new programmers to get some coding in.

What You Will Need to Begin
• This document

• An active Internet connection (if using iSchool Remote lab)

• A blank Word (or similar) document into which you can place your answers. Please include your

name, the current date, and the lab number on this document. Please also number your

responses, indicating which part and question of the lab to which the answer pertains. Word

docx format is preferred. If using another word processing application, please convert the

document to pdf before submitting your work to ensure your instructor can open the file.

• To have completed Lab 06 – Querying, Inserting, Updating and Deleting

• Understanding of database tables and have reviewed the asynchronous material through Week

7

• One of the following means of accessing a SQL Server installation

o A connection to the iSchool Remote Lab (https://remotelab.ischool.syr.edu)

o A local installation of SQL Server (see Developer edition here

https://www.microsoft.com/en-us/sql-server/sql-server-downloads-free-trial)

o Regardless of how you access SQL Server, you will need to use SQL Server Management

Studio to do so.

• The Lab 07 Initialization Script located at https://github.com/chadondata/659Files

https://www.w3schools.com/sql/
https://remotelab.ischool.syr.edu/
https://www.microsoft.com/en-us/sql-server/sql-server-downloads-free-trial
https://github.com/chadondata/659Files

Lab 07 – Advanced Querying Last Modified May 22, 2018

Page 3 of 16

Part 1 – Exploratory Data Analysis

Setup
Our database is alive and it’s time to start mining the data for some insights. We will use SQL SELECT

statements to get some descriptive statistics from our data.

Formatting Note
Look for the “To Do” icon to point out sections of the lab you will need to do to complete the

tasks.

Setting Up Our Database
To get all the data needed for this lab, we will have to run a script against your database to reset all the

tables and populate them with data.

Perform the following steps to download and run the script that populates your database.

1. Visit https://github.com/chadondata/659Files

2. Download the file “Lab 07 Initialization Script.sql”

3. Open the downloaded file in SQL Server Management Studio (SSMS)

4. Ensure the correct database is selected in the Available Databases box in the toolbar.

5. Execute the script in its entirety (do not select parts of the script to run individually).

6. Close this file. You will not need it again. If something should happen and you need to set your

database back to normal, you can run it again, but you’re otherwise done with this script.

To ensure the database is properly set up, code and execute the following SQL SELECT statement in a

New Query Window:

https://github.com/chadondata/659Files
https://github.com/chadondata/659Files/raw/master/Lab%2007%20Initialization%20Script.sql

Lab 07 – Advanced Querying Last Modified May 22, 2018

Page 4 of 16

Your results should look like this:

Not all output rows are shown in the preceding screenshot. To confirm you have everything, look in the

lower right-hand corner of SSMS. You should see a status bar entry that looks like this:

Now, on with the show.

Basic Summaries – Getting the Details
Our stakeholders would like to know some things about how the users are using the system. To start,

they would like to know how many videos each user has made. We could, if we want, take the query

from above and hand count the number of videos for each user.

There are a couple problems with that. The first is it’s not very sustainable. Each time we want to know

these numbers, we must recreate that count by hand. Second, we don’t have that kind of time. Let’s

make the computer earn its money.

When performing exploratory analysis using SQL, it is a common strategy to start with a query like the

first one we ran. We can then ensure we have all the data points lined up before we start aggregating

them.

There is a problem with our first query… See if you can spot it. Here it is again:

Lab 07 – Advanced Querying Last Modified May 22, 2018

Page 5 of 16

Not seeing it? It’s hard to tell from the SQL, but we are missing some data.

Line 6 is the JOIN clause that brings the vc_VidCast and vc_User tables together. Syntactically, it is

perfect. However, when we use a JOIN as shown on Line 6, it only returns rows from both tables that

have perfect matches in one another.

For vc_VidCast, this is not a problem because:

1. We have made the vc_VidCast.vc_UserID column required so a value must exist

2. We have added a Foreign Key constraint to vc_VidCast.vc_UserID that ensures when we enter a

value in that column, it exists in the vc_UserID of table vc_User.

This ensures that there is always a perfect match in vc_User for every row in vc_VidCast.

The reverse is not true, however. There is nothing in our database that says we can’t add users to the

vc_User table if they have no corresponding record in vc_VidCast. For this reason, we are likely to have

users who have not made any vidcasts.

Code and execute the following SQL SELECT statement in SSMS.

Your results should look like this:

Lab 07 – Advanced Querying Last Modified May 22, 2018

Page 6 of 16

These two users have not made any videos and are omitted from the first SELECT statement we ran. (If

you’d like, run lines 1 through 7 again and scroll down the results. You won’t find these two users in the

list!).

We need to tell SQL Server to include all users, even if they have no VidCasts in the database. We can do

this using the RIGHT keyword before the JOIN on line 6.

Code and execute the following SQL SELECT statement in SSMS.

If you scroll your results window down, you will see the users who have not yet made videos are now

included.

Since there is no value to put in the vc_VidCastID column for these rows, SQL Server sends a NULL. This

will be useful knowledge later.

We now have all the detail records we need to build our summary.

Basic Summaries – Aggregating the Results
Aggregate Functions
There are several built-in SQL aggregate functions we can use to show some descriptive statistics. We

will use the following.

Function Purpose

COUNT(column_name)

Counts the non-null instances of column_name grouped by the specified
GROUP BY columns. Column_name can be * to count the existence of a
row, but this is inadvisable in most cases.

Lab 07 – Advanced Querying Last Modified May 22, 2018

Page 7 of 16

SUM(expression)

Totals the non-null values in the expression. The expression may be a single
column name or the result of a mathematical expression

MIN(expression)

Shows the lowest value for the the non-null values in the expression. The
expression may be a single column name or the result of a mathematical
expression

AVG(expression)

Shows the average of the non-null values in the expression. The expression
may be a single column name or the result of a mathematical expression

MAX(expression)

Shows the highest value for the non-null values in the expression. The
expression may be a single column name or the result of a mathematical
expression

Let’s try them out.

Code and execute the following SQL SELECT statement in SSMS.

Your results should look like this:

Lab 07 – Advanced Querying Last Modified May 22, 2018

Page 8 of 16

GROUP BY clause
Whenever you add an aggregate function to a query, you must also include a GROUP BY clause in your

statement. This tells SQL Server the levels at which you would like to aggregate the values used in the

aggregate functions and in which order.

If you omit the GROUP BY clause or have not properly coded it, you will get an error message.

Code and execute the following SQL SELECT statement in SSMS.

TIP: This query is a line for line copy of the previous query, lines 14 through 20 with a
modification to line 34. Feel free to copy/paste if you’d like or re-type the entire query if
you are a glutton for punishment.

You will get this error message:

Msg 8120, Level 16, State 1, Line 32
Column 'vc_User.UserName' is invalid in the select list
because it is not contained in either an aggregate function
or the GROUP BY clause.

This is because we have included unaggregated columns (UserName and EmailAddress) in our SELECT

list along with a column that has been aggregated. Because of this, SQL Server needs to know which

grouping levels are required and in what order.

TIP: This lab provides documentation on how to resolve this error. If you get this error in
your own projects, follow these steps to resolve it. Emails about this may go unanswered.

Lab 07 – Advanced Querying Last Modified May 22, 2018

Page 9 of 16

Amend your previous query to look like the following and execute it again.

Your results should look like this:

For brevity, not all rows have been shown here. You should see a total of 68 rows in your results.

We can now use the aggregated column as something to sort on. To do so, we simply add it to the

ORDER BY clause.

Amend your previous query to look like the following and execute it again. Only line 40 has

changed from the previous query.

Lab 07 – Advanced Querying Last Modified May 22, 2018

Page 10 of 16

Your results now look like this:

It’s still 68 records, but now the users with the highest count of VidCasts appear at the top. Because we

also have UserName in the ORDER BY clause, in the case of a tie for VidCast count between users, SQL

Server will sort within that count by UserName. See rows 3 and 4 above.

HAVING Clause
Sometimes we want to filter our result set by the result of one or more aggregate functions. By the time

SQL Server begins processing the WHERE clause, we cannot add our conditional to the WHERE clause.

Instead, conditionals based on aggregate functions must be contained within a HAVING clause.

The HAVING clause immediately follows the GROUP BY clause in a SQL SELECT statement.

Lab 07 – Advanced Querying Last Modified May 22, 2018

Page 11 of 16

In our example, out stake holders would like to know who our least prolific users are. They would like to

know which users have less than 10 vidcasts in the database.

Amend your previous query to look like the following and execute it again. We have added

a comment to line 42 and the HAVING clause on line 52. All else is the same as before, so

feel free to save some time by copying and pasting!

Your results should look like this:

Lab 07 – Advanced Querying Last Modified May 22, 2018

Page 12 of 16

This time, all 12 rows fit on the screen, so they are all shown here.

TIP: The conditional for the HAVING clause requires us to repeat the execution of the
function. We cannot use the alias here as we did in the ORDER BY clause.

Why? Reasons, I guess.

Advanced Summaries – SQL Judo to Answer Tough

Questions

Now we want to do some descriptive statistics on the actual duration of finished VidCasts. If we wanted

to, we could store the duration, calculating it whenever a VidCast finishes. That may be a design decision

we make later, but for now, we’ll calculate it at run time.

In SQL Server, we can quickly calculate the amount of time elapsed between two dates. In our case, we

want the number of minutes between StartDateTime and EndDateTime for all VidCasts with a Finished

status.

Lab 07 – Advanced Querying Last Modified May 22, 2018

Page 13 of 16

Code and execute the following SQL SELECT statement in SSMS.

Your results should look like this:

Again, not all results are shown. You should have 66 total rows.

Lab 07 – Advanced Querying Last Modified May 22, 2018

Page 14 of 16

TIP: Because we’re only interested in VidCasts that are Finished, we do not need to worry
about including vc_User records with no VidCasts, so we do not need a LEFT or RIGHT JOIN
in our FROM clause.

Part 2 – Putting All Together
In this part, you’ll amend the previous query to show some more descriptive statistics for the VidCast

actual duration.

Amend the query from the end of part one, adding the count of VidCasts, minimum,

average, and maximum actual durations for each vc_User record. Sort the results in

descending order by the count of videos, then by the UserName.

Your results should look like this:

A larger-sized screenshot of the results is shown in Appendix B, below.

Again, your results should have 66 rows.

What to Submit
After completing Part 2, copy and paste the text of your SQL query file at the end of your

answers document. Save this document and submit it to the appropriate section on the

LMS.

Lab 07 – Advanced Querying Last Modified May 22, 2018

Page 15 of 16

Appendix A – VidCast Logical Model Diagram

For the full diagram, see https://drive.google.com/file/d/1KRqkSvQABuTMXqYAzojTCt9etTSR8Vea/view?usp=sharing

https://drive.google.com/file/d/1KRqkSvQABuTMXqYAzojTCt9etTSR8Vea/view?usp=sharing

Lab 07 – Advanced Querying Last Modified May 22, 2018

Page 16 of 16

Appendix B – Part 2 Results (Larger Size)

