Lab 07 — Advanced Querying Last Modified May 22, 2018

Data Admin Concepts & Database
Management

Lab 07 — Advanced Querying

Table of Contents

Data Admin Concepts & Database ManagemMENTc.uuieiiciieieeiiiee et ectre e ecre e e e stre e e e saar e e s esasaeeeesnneeeeens 1

Y O WA 1Yo V7 [g Tol=Ye I @ LU T=T V] 1o Y- USSR 1

OVEBIVIBW ..ttt ettt ettt ettt e e sttt e e sttt e e sttt e e s bt e e e s a b e e e e s nbaee s s nbe e e s s nbe e e s snbeeesenbeeesenreeeseanneneeennnenas 1

[T g a1 o= @ o] =T ot A =PRIt 2

1] o CTo -1 OO OO PO PP RUPIPPRUPRUPONt 2

What YOU Will NEEA 10 BEZIN......uiiieeiiieeeeee ettt ertte e e e eeaae e e e e ate e e e e arae e s enbaeeeenbaeeeennnenas 2

Part 1 — EXploratory Data ANalySiS......iucuieiieiiiieiiiiieeeesiiee e esree s esree e e st e e s sre e e e s abee e s snbeaeesnreeeesnnneens 3

=3 (U]« P PPTPTPUPTPTPPPPIRt 3

Setting Up OUIr DAtabaseciiiuiiiiiiiiiie ettt ettt e e s e e s s bee e e s sbe e e s e eabaeeeenareeas 3

Basic Summaries — Getting the Detailscueieieiiiee ittt e e e s e e e eanes 4

Basic Summaries — Aggregating the RESUILScc.uiiiiiiiiii ittt 6

Advanced Summaries — SQL Judo to Answer Tough QUESLIONSccccuvveiiiciiiiiiiiiee e 12

Part 2 — PUttiING All TOGETNETcoi e et ebee e e e e e e e e nareeas 14

WAt £0 SUBMIE ..ttt ettt b e b e s bt e sae e et e et e e beesbeesbeesaeeeas 14

Appendix A — VidCast Logical Model DIagramcccccuueeeeciieeeeciee e et ectee e eetvee e e earee e e esaraee e e eareeas 15

Appendix B — Part 2 RESUILS (LArZEI SIZE)uuuiieieiiee e ettt ettt e e tee e et e e e et e e e e ntae e e enreeas 16
Overview

This lab is the seventh of ten labs in which we will build a database using the systematic approach
covered in the asynchronous material. Each successive lab will build upon the one before and can be a
useful guide for building your own database projects.

Page 1 of 16

Lab 07 — Advanced Querying Last Modified May 22, 2018

In this lab, we will use structured query language (SQL) data manipulation commands to query and
modify data in the VidCast database.

Read this lab document once through before beginning.

Learning Objectives

In this lab you will

e Demonstrate data manipulation language (DML) proficiency
e Perform basic data analysis using descriptive statistics provided by SQL aggregate functions

Lab Goals

This lab consists of two sections. The first section is a walkthrough of inserting, updating, querying, and
deleting data. In the second part of the lab, you will code your own DML queries to solve the problems
presented.

L7 TP If you are new to SQL or programming in general, you may benefit from run through of
"“Q “ the SQL Tutorial at https://www.w3schools.com/sgl/ . While not required reading, it can be a
helpful resource for new programmers to get some coding in.

What You Will Need to Begin

e This document

e An active Internet connection (if using iSchool Remote lab)

e A blank Word (or similar) document into which you can place your answers. Please include your
name, the current date, and the lab number on this document. Please also number your
responses, indicating which part and question of the lab to which the answer pertains. Word
docx format is preferred. If using another word processing application, please convert the
document to pdf before submitting your work to ensure your instructor can open the file.

e To have completed Lab 06 — Querying, Inserting, Updating and Deleting

e Understanding of database tables and have reviewed the asynchronous material through Week
7

e One of the following means of accessing a SQL Server installation

o A connection to the iSchool Remote Lab (https://remotelab.ischool.syr.edu)
o Alocal installation of SQL Server (see Developer edition here
https://www.microsoft.com/en-us/sql-server/sql-server-downloads-free-trial)
o Regardless of how you access SQL Server, you will need to use SQL Server Management
Studio to do so.
e The Lab 07 Initialization Script located at https://github.com/chadondata/659Files

Page 2 of 16

https://www.w3schools.com/sql/
https://remotelab.ischool.syr.edu/
https://www.microsoft.com/en-us/sql-server/sql-server-downloads-free-trial
https://github.com/chadondata/659Files

Lab 07 — Advanced Querying Last Modified May 22, 2018

Part 1 — Exploratory Data Analysis
Setup

Our database is alive and it’s time to start mining the data for some insights. We will use SQL SELECT
statements to get some descriptive statistics from our data.

Formatting Note

«Q Look for the “To Do” icon to point out sections of the lab you will need to do to complete the
|10 DOI tasks.

Setting Up Our Database

To get all the data needed for this lab, we will have to run a script against your database to reset all the
tables and populate them with data.

[j Perform the following steps to download and run the script that populates your database.
70 90

Visit https://github.com/chadondata/659Files

Download the file “Lab 07 Initialization Script.sql”

Open the downloaded file in SQL Server Management Studio (SSMS)

Ensure the correct database is selected in the Available Databases box in the toolbar.

Execute the script in its entirety (do not select parts of the script to run individually).

Close this file. You will not need it again. If something should happen and you need to set your
database back to normal, you can run it again, but you’re otherwise done with this script.

ok wnN PR

To ensure the database is properly set up, code and execute the following SQL SELECT statement in a
New Query Window:

1/ =SELECT

2 vc_User.UserName

3 , vc_User.EmailAddress

4 , vc_VidCast.vc_VidCastID

5! ' FROM vc_VidCast

6 | JOIN vc_User ON vc_User.vc_UserID = vc_VidCast.vc_UserID
7! |ORDER BY vc_User.UserName

Page 3 of 16

https://github.com/chadondata/659Files
https://github.com/chadondata/659Files/raw/master/Lab%2007%20Initialization%20Script.sql

Lab 07 — Advanced Querying Last Modified May 22, 2018

Your results should look like this:

EH Resuts ¥ Messages
EmailAddress vo_MidCast|D

1 In@faciisiseget couk 14
2 accurate In@faciisiseget.couk 113
3 accurate Ini@facilisiseget couk 149
4 accurate In@facilisiseget couk 376
47 accurate Ini@facilisiseget couk 433
G accurate Ini@facilisiseqget couk 459
7 accurate Ini@facilisiseget couk 540
a accurate Ini@facilisiseget couk 574
9 accurate InE@facilisiseqet couk 651
10 albite nisil@vitaemauris.org 738
11 albite nisi@vitaemaurs.org 655

Not all output rows are shown in the preceding screenshot. To confirm you have everything, look in the
lower right-hand corner of SSMS. You should see a status bar entry that looks like this:

834 rows

Now, on with the show.

Basic Summaries — Getting the Details

Our stakeholders would like to know some things about how the users are using the system. To start,
they would like to know how many videos each user has made. We could, if we want, take the query
from above and hand count the number of videos for each user.

There are a couple problems with that. The first is it’s not very sustainable. Each time we want to know
these numbers, we must recreate that count by hand. Second, we don’t have that kind of time. Let’s
make the computer earn its money.

When performing exploratory analysis using SQL, it is a common strategy to start with a query like the
first one we ran. We can then ensure we have all the data points lined up before we start aggregating
them.

There is a problem with our first query... See if you can spot it. Here it is again:

Page 4 of 16

Lab 07 — Advanced Querying Last Modified May 22, 2018

-SELECT
vc_User.UserName
, vc_User.EmailAddress
, vc_VidCast.vc_VidCastID
FROM vc_VidCast
JOIN vc_User ON vc_User.vc_UserID = vc_VidCast.vc_UserID
ORDER BY vc_User.UserName

Sl O RBw M

Not seeing it? It’s hard to tell from the SQL, but we are missing some data.

Line 6 is the JOIN clause that brings the vc_VidCast and vc_User tables together. Syntactically, it is
perfect. However, when we use a JOIN as shown on Line 6, it only returns rows from both tables that
have perfect matches in one another.

For vc_VidCast, this is not a problem because:

1. We have made the vc_VidCast.vc_UserlID column required so a value must exist
2. We have added a Foreign Key constraint to vc_VidCast.vc_UserlD that ensures when we enter a
value in that column, it exists in the vc_UserID of table vc_User.

This ensures that there is always a perfect match in vc_User for every row in vc_VidCast.

The reverse is not true, however. There is nothing in our database that says we can’t add users to the
vc_User table if they have no corresponding record in vc_VidCast. For this reason, we are likely to have
users who have not made any vidcasts.

[D Code and execute the following SQL SELECT statement in SSMS.
70 0

9 | -- Look for users who have not yet made any VidCasts
19 [-JSELECT * FROM vc_User
11 | WHERE vc_UserID NOT IN (SELECT vc_UserID FROM vc_VidCast)

Your results should look like this:

FR Results Eﬁ Messages

vo_lserlD UserMame EmailAddress UserDescrption WebSitelURL UserReaqisteredDate
1 L prune enim sit.amet @aliquet .edu MULL MULL 2017-06-09 10:04:48.000
2 28 embamrass Mamligula@atfringlla.couk NULL MULL 2018-01-15 05:16:48.000

Page 5 of 16

Lab 07 — Advanced Querying Last Modified May 22, 2018

These two users have not made any videos and are omitted from the first SELECT statement we ran. (If
you’d like, run lines 1 through 7 again and scroll down the results. You won’t find these two users in the
list!).

We need to tell SQL Server to include all users, even if they have no VidCasts in the database. We can do
this using the RIGHT keyword before the JOIN on line 6.

[j Code and execute the following SQL SELECT statement in SSMS.
100

13 | -- Be sure to include all vc_User records
14 [-ISELECT

15 vc_User.UserName

16 , vc_User.EmailAddress

17 , vc_VidCast.vc_VvidCastID

18 | FROM vc_VvidCast
19 | RIGHT JOIN vc_User ON vc_User.vc_UserID = vc_VidCast.vc_UserID
20 | ORDER BY vc_User.UserName

If you scroll your results window down, you will see the users who have not yet made videos are now
included.

— - - — — e n mmE s mmr EEE R R e o w - -

260 embarass MNamligula@atfringill... MNULL

e =1 1 ™ L —_—.-

Since there is no value to put in the vc_VidCastID column for these rows, SQL Server sends a NULL. This
will be useful knowledge later.

We now have all the detail records we need to build our summary.

Basic Summaries — Aggregating the Results

Aggregate Functions

There are several built-in SQL aggregate functions we can use to show some descriptive statistics. We
will use the following.

Function Purpose

COUNT(column_name) | Counts the non-null instances of column_name grouped by the specified
GROUP BY columns. Column_name can be * to count the existence of a
row, but this is inadvisable in most cases.

Page 6 of 16

Lab 07 — Advanced Querying Last Modified May 22, 2018

SUM(expression) Totals the non-null values in the expression. The expression may be a single
column name or the result of a mathematical expression

MIN(expression) Shows the lowest value for the the non-null values in the expression. The
expression may be a single column name or the result of a mathematical
expression

AVG(expression) Shows the average of the non-null values in the expression. The expression

may be a single column name or the result of a mathematical expression

MAX(expression) Shows the highest value for the non-null values in the expression. The
expression may be a single column name or the result of a mathematical
expression

Let’s try them out.

[D Code and execute the following SQL SELECT statement in SSMS.
10 ©0

22 | -- High-level descriptive statistics for vc_VidCast

23 [-ISELECT

24 COUNT(vc_VidCastID) as NumberOfVidCasts

25 , SUM(ScheduleDurationMinutes) as TotalScheduledMinutes
26 , MIN(ScheduleDurationMinutes) as MinScheduledMinutes
27 , AVG(ScheduleDurationMinutes) as AvgScheduledMinutes
28 , MAX(ScheduleDurationMinutes) as MaxScheduledMinutes

29 | FROM vc_VidCast

Your results should look like this:

EE Resuts Pl Messages
Mumberf\idCasts TotalScheduledMinutes MinScheduledMinutes AwvgScheduledMinutes MaxScheduledMinutes
1 i8M | 43782 15 52 90

Page 7 of 16

Lab 07 — Advanced Querying Last Modified May 22, 2018

GROUP BY clause

Whenever you add an aggregate function to a query, you must also include a GROUP BY clause in your
statement. This tells SQL Server the levels at which you would like to aggregate the values used in the
aggregate functions and in which order.

If you omit the GROUP BY clause or have not properly coded it, you will get an error message.

[D Code and execute the following SQL SELECT statement in SSMS.
70 ©0

31 [-ISELECT

32 vc_User.UserName

33 , vc_User.EmailAddress

34 , COUNT(vc_vidCast.vc_VvidCastID) CountOfvidCasts

35 | FROM vc_VidCast

36 | RIGHT JOIN vc_User ON vc_User.vc_UserID = vc_VidCast.vc_UserID
37 ORDER BY vc_User.UserName

~ \ » TIP: This query is a line for line copy of the previous query, lines 14 through 20 with a
™~ “"modification to line 34. Feel free to copy/paste if you’d like or re-type the entire query if
you are a glutton for punishment.

You will get this error message:

Msg 8120, Level 16, State 1, Line 32
Column 'vc_User.UserName' is invalid in the select 1list

because it is not contained in either an aggregate function
or the GROUP BY clause.

This is because we have included unaggregated columns (UserName and EmailAddress) in our SELECT
list along with a column that has been aggregated. Because of this, SQL Server needs to know which
grouping levels are required and in what order.

~ \ 7 TIP: Thislab provides documentation on how to resolve this error. If you get this error in
e~ “" your own projects, follow these steps to resolve it. Emails about this may go unanswered.

Page 8 of 16

Lab 07 — Advanced Querying Last Modified May 22, 2018

[D Amend your previous query to look like the following and execute it again.
10 ©0

31 [-ISELECT

32 vc_User.UserName

33 , vc_User.EmailAddress

34 , COUNT(vc_VidCast.vc_VvidCastID) CountOfvidCasts

35 | FROM vc_VidCast

36 | RIGHT JOIN vc_User ON vc_User.vc_UserID = vc_VidCast.vc_UserID
37 GROUP BY

38 vc_User.UserName

39 , vc_User.EmailAddress

40 ORDER BY vc_User.UserName

Your results should look like this:

FH Results E]i Messages
UserMame EmailAddress CourtOf\VidCasts

1 a::::urate In@facilisiseget.co.uk 9
5 a":ll‘tE.' I 1
3 architect a.dui Cras@mi.edu 12
4 archives ullamcorper velit @interdumfeugiat Sed .com 16
4] bedtime enim. Btiam @egetmallislectus .edu 11
& bewidered Daonec porttitor tellus@odioAliqguamvulputate edu 10
7 bicycle Quisque porttitor eros @mi.net)
) bid sed turpis@hymenaeos Maurisut .co uk 15
o it crr Y I ——— 14

For brevity, not all rows have been shown here. You should see a total of 68 rows in your results.

We can now use the aggregated column as something to sort on. To do so, we simply add it to the
ORDER BY clause.

«Q Amend your previous query to look like the following and execute it again. Only line 40 has
|10 D°| changed from the previous query.

Page 9 of 16

Lab 07 — Advanced Querying Last Modified May 22, 2018

31 [=ISELECT

32 vc_User.UserName

33 , vc_User.EmailAddress

34 , COUNT(vc_VidCast.vc_VidCastID) CountOfVidCasts

35 | FROM vc_VidCast

36 | RIGHT JOIN vc_User ON vc_User.vc_UserID = vc_VidCast.vc_UserID
37 GROUP BY

38 vc_User.UserName

39 , vc_User.EmailAddress

40 | ORDER BY CountOfVidCasts DESC, vc_User.UserName

Your results now look like this:

EE Results B Messages
UserMame EmailAddress CourtOf\VidCasts

1 ecstatlc blandit.enim.consequat @oremutaliguam couk 22
2 pnnmple ac.umal@miac.com 19
3 canadian Curabitur dictum . Phasellus @elefendnec.com 18
4 metacarpal et magna.Praesent @placerataugueSed.ong 13
4] przewalski amet@Maurismolestie org 17
& silly accumsan@gravidasagittis Duis net 17
7 archives ullamcorper velt @interdumfeuagiat Sed .com 16
g doughnut ipsum primis@Cumsociis.com 16
) grogagy omare. In faucibus @egestas.ca 16
10 sines dui nec tempus @sitametrisus .co.uk 16
11 these parturient. mortes@ipsum.ca 16

It’s still 68 records, but now the users with the highest count of VidCasts appear at the top. Because we
also have UserName in the ORDER BY clause, in the case of a tie for VidCast count between users, SQL
Server will sort within that count by UserName. See rows 3 and 4 above.

HAVING Clause

Sometimes we want to filter our result set by the result of one or more aggregate functions. By the time
SQL Server begins processing the WHERE clause, we cannot add our conditional to the WHERE clause.
Instead, conditionals based on aggregate functions must be contained within a HAVING clause.

The HAVING clause immediately follows the GROUP BY clause in a SQL SELECT statement.

Page 10 of 16

Lab 07 — Advanced Querying Last Modified May 22, 2018

In our example, out stake holders would like to know who our least prolific users are. They would like to
know which users have less than 10 vidcasts in the database.

a comment to line 42 and the HAVING clause on line 52. All else is the same as before, so
feel free to save some time by copying and pasting!

D Amend your previous query to look like the following and execute it again. We have added
70 ¥0

42 | -- Our least prolific users

43 [-ISELECT

44 vc_User.UserName

45 , vc_User.EmailAddress

46 , COUNT(vec_VidCast.vc_VidCastID) CountOfvidCasts

47 | FROM vc_VidCast

48 | RIGHT JOIN vc_User ON vc_User.vc_UserID = vc_VidCast.vc_UserID
49 GROUP BY

50 vc_User.UserName

51 , vc_User.EmailAddress

52 | HAVING COUNT(vc_VidCast.vc_VvidCastID) < 1@

53 | ORDER BY CountOfvidCasts DESC, vc_User.UserName

Your results should look like this:

Page 11 of 16

Lab 07 — Advanced Querying

EH Results Bl Messages

UserMame EmailAddress
1 | accurate IniE¥ acilisiseget .co.uk
5 dam? s justo @orci ed
3 gum ut @pharetralluisqueac.com
4 spilling ullamcorper@Mauris net
5 bicycle Quisque portitor eros @mi.net
& dispatcher quam@aptenttacitisociosqu.ca
7 hygienist magna. t@necumasuscipit.ca
g stay et magnis@nonmagnaMam.co.uk
) console tristique@justoeuarcu.com
10 winter accumsan(@ascelensque net
11 embamass MNam ligula@atfringilla.co.uk
12 prune enim st amet @aliquet .edu

This time, all 12 rows fit on the screen, so they are all shown here.

Ao

.

-

Last Modified May 22, 2018

CountOf\VidCasts

B R B == R == R = = R - =

L3 =3 & &

TIP: The conditional for the HAVING clause requires us to repeat the execution of the
function. We cannot use the alias here as we did in the ORDER BY clause.

Why? Reasons, | guess.

Advanced Summaries — SQL Judo to Answer Tough
Questions

Now we want to do some descriptive statistics on the actual duration of finished VidCasts. If we wanted
to, we could store the duration, calculating it whenever a VidCast finishes. That may be a design decision
we make later, but for now, we’ll calculate it at run time.

In SQL Server, we can quickly calculate the amount of time elapsed between two dates. In our case, we
want the number of minutes between StartDateTime and EndDateTime for all VidCasts with a Finished

status.

Page 12 of 16

Lab 07 — Advanced Querying Last Modified May 22, 2018

Q Code and execute the following SQL SELECT statement in SSMS.

70 0

56 [SELECT

57 vc_User.UserName

58 , vc_User.EmailAddress

59 , SUM(DateDiff(n, StartDateTime, EndDateTime)) as SumActualDurationMinutes

60 | FROM vc_VidCast

61 JOIN vc_User ON vc_User.vc_UserID = vc_VidCast.vc_UserID

62 JOIN vc_Status on vc_Status.vc_StatusID = vc_VidCast.vc_StatusID
63 | WHERE vc_Status.StatusText = 'Finished'

64 | GROUP BY

65 vc_User.UserName

66 , vc_User.EmailAddress

67 | ORDER BY vc¢_User.UserName

Your results should look like this:

ER Results Eﬁ Messages
UzerMlame Email Address SumActual Duration Minutes
1 EInEﬁacmshegeLcuuk 1555
2 [albite nisi@vitaemauris.org 1571
3 architect a.dui Craz@mi.edu 1913
4 archives ullamcorper velit @interdumfeugiat Sed .com 2374
5 bedtime enim . Btiam@egetmaolislectus edu 16599
& bewildered Donec portitor tellus @odioAliguamvulputate edu 1544
7 bicycle Quisque porttitor eros@mi net 1152
g bid sed turpis@hymenaeos Maurisut oo uk 2752
5 bittem in.consequat @oremsemper.edu 2303
10 camel mauris@masszanon.edu 1859
11 canadian Curabitur dictum. Phasellus@eleffendnec com 1523
12 camal In faucibus. Morbi@Mauris.ca 1641
13 chef ultricies sem@estMauriz edu 1902
14 console tristique@justoeuarcu.com 1022
15 damcy uma justo@arci edu 1482
16 dispatcher quam@aptenttactisociosqu.ca 1368
@) Cuery executed successfully.

Again, not all results are shown. You should have 66 total rows.

Page 13 of 16

Lab 07 — Advanced Querying Last Modified May 22, 2018

~ \ / TIP: Because we’re only interested in VidCasts that are Finished, we do not need to worry
™~ “" about including vc_User records with no VidCasts, so we do not need a LEFT or RIGHT JOIN
in our FROM clause.

Part 2 — Putting All Together

In this part, you’ll amend the previous query to show some more descriptive statistics for the VidCast
actual duration.

«Q Amend the query from the end of part one, adding the count of VidCasts, minimum,
10 PO} average, and maximum actual durations for each vc_User record. Sort the results in
descending order by the count of videos, then by the UserName.

Your results should look like this:

B Resutis B8 Messages
UserMame EmailAddress SumActuaDurationMinutes CourtOfVidCasts MinActualDurationMinutes AvgActualDurationMinutes MaxActual DurationMinutes

1 blandit.enim.consequat @oremutaliguam couk 2682 22 29 121 21
2 principle ac.uma@miac.com M3 15 29 179 274
3 canadian Curabitur dictum. Phasellus @eleffendnec com 1528 18 14 107 238
4 metacarpal et magna.Praesent@placerataugueSed.org 3053 18 29 165 274
5 silly accumsan@gravidasagitisDuis net 2851 17 15 167 288
6 grogay omare.In faucibus @egestas.ca 2464 16 14 154 260
7 przewalski amet@Maurismolestie.org 2664 16 14 166 288
3 sines dui.nec tempus @stametrisus.co.uk 2316 16 14 144 288
9 archives ullamcorper velit@interdumfeugiat Sed com 2374 15 14 158 259
10 doughnut ipsum primis @Cumsociis.com 1830 15 29 122 216
b fervent sollicitudin adipiscing @egestasrhoncus net 203 15 15 135 260
12 these parturient montes@ipsum.ca 21 15 14 140 288
13 bid sed tumpis @hymenasosMaurisut .co uk 2792 14 58 199 288
14 bittem in consequat @loremsemper.edu 2303 14 43 164 288
15 chef ultricies sem @est Mauris edu 1302 14 25 135 259

@) Query executed successfully.

A larger-sized screenshot of the results is shown in Appendix B, below.

Again, your results should have 66 rows.

What to Submit

«Q After completing Part 2, copy and paste the text of your SQL query file at the end of your
10 PO} answers document. Save this document and submit it to the appropriate section on the
LMS.

Page 14 of 16

Lab 07 — Advanced Querying

Appendix A — VidCast Logical Model Diagram

vc_UserTagList

PK

vec_UserTaglListlD int identity

Frz

ve_StatusID int

vC_User

vc_UserlD int identity

Last Modified May 22, 2018

vc_FollowerList

FK | vc_FollowerListlD int identity

UserName varchar{20)
EmailAddress varchar{50)
UserDescription varchar(200)
‘WebSiteURL varchar(50)

UserRegisteredDate datetime

7| ve_TaglD int
7 | ve_UserlD int e
vc_Tag HH PK
PK | vc_TaglD int identity H i
U1 | TagText varchar(20) vC_VidCastTagList uz
TagDescription varchar(100) PK | vc_VidCastTagListlD int identity
J: ve_TaglD int
7 | ve_VidCastiD int
vc_VidCast
vc_Status - o -
m— PK | vc_VidCastlD int identity
PK | vc_StatusID int identity H
VidCastTitle varchar{50)
U1 | StatusText varchar(20)
StartDateTime datetime
EndDateTime datetime
ScheduledDurationMinutes int
RecordingURL varchar(50)
Fi1 | we_UserlD int BO—

3.

K1

FollowerlD int

J: FollowedID int

FollowerSince datetime

vc_UserLogin

vc_UserLoginlD int identity

FK1

vc_UserlD int
UserLoginTimestamp datetime

LoginLocation varchar{50)

For the full diagram, see https://drive.google.com/file/d/1KRgkSvQABUTMXqgYAzo|TCt9etTSR8Vea/view?usp=sharing

Page 15 of 16

https://drive.google.com/file/d/1KRqkSvQABuTMXqYAzojTCt9etTSR8Vea/view?usp=sharing

Lab 07 — Advanced Querying

Appendix B — Part 2 Results (Larger Size)

EE Resuts Bl Messages
UserMame EmailAddress

1 blandit.enim consequat @oremutaliquam.co.uk
2 principle 1 ac.umal@miac.com

3 canadian Curabitur dictum.Phasellus @eleffendnec.com
4 metacampal et magna Pragsent @placerataugueSed org
5 silly accumsan@aravidasagittis Duis net

[groggy omare.In faucibus @egestas ca

7 przewalski amet@Maurismolestie.org

8 sines dui.nec tempus @sitametrisus.co.uk

5 archives ullamcomer velit@interdumfeugiat Sed .com
10 doughnut ipsum primis @Cumsociis.com

11 fervent sollicitudin.adipiscing @egestasrhoncus . net
12 these parturient montes @ipsum.ca

13 bid sed turpis@hymenaesosMaurisut .co .uk

14 bittem in.consequat @ oremsemper.edu

15 chef ultricies. sem @estMauris.edu

@) Query executed successfully.

SumActualDurationMinutes CountOf\idCasts
2682 22
413 19
1528 18
3053 18
2851 17
2464 16
2664 16
2118 16
2374 15
1830 15
20 15
21 15
2752 14
2303 14
1502 14

MinActual Duration Minutes
29
25
14
25
15
14
14
14
14

BEhSE sl

121
175
107
165
167

Last Modified May 22, 2018

AvgActualDurationMinutes MaxActual DurationMinutes

23
274
288
274
238
260
288
288
255
216
260
238
288
238
259

Page 16 of 16

