
Lab 06 – Querying, Inserting, Updating, and Deleting Last Modified May 15, 2018

Page 1 of 18

Data Admin Concepts & Database Management

Table of Contents
Data Admin Concepts & Database Management ... 1

Lab 06 – Querying, Inserting, Updating, and Deleting .. 1

Overview ... 1

Learning Objectives ... 1

Lab Goals ... 2

What You Will Need to Begin .. 2

Part 1 – Filling our Tables with Data ... 2

Setup ... 2

Inserting Data – The INSERT Statement .. 3

Querying Data – The SELECT Statement ... 8

Updating Data – the UPDATE statement .. 12

Deleting Data – The DELETE Statement .. 12

Part 2 – Putting All Together ... 13

What to Submit ... 16

Appendix A – VidCast Logical Model Diagram .. 17

Lab 06 – Querying, Inserting, Updating, and Deleting

Overview
This lab is the sixth of ten labs in which we will build a database using the systematic approach covered

in the asynchronous material. Each successive lab will build upon the one before and can be a useful

guide for building your own database projects.

In this lab, we will use structured query language (SQL) data manipulation commands to populate the

database tables created in Lab 05.

Read this lab document once through before beginning.

Learning Objectives

In this lab you will

• Demonstrate data manipulation language (DML) proficiency

Lab 06 – Querying, Inserting, Updating, and Deleting Last Modified May 15, 2018

Page 2 of 18

Lab Goals

This lab consists of two sections. The first section is a walkthrough of inserting, updating, querying, and

deleting data. In the second part of the lab, you will code your own DML queries to solve the problems

presented.

TIP: If you are new to SQL or programming in general, you may benefit from run through of

the SQL Tutorial at https://www.w3schools.com/sql/ . While not required reading, it can be a

helpful resource for new programmers to get some coding in.

What You Will Need to Begin

• This document

• An active Internet connection (if using iSchool Remote lab)

• A blank Word (or similar) document into which you can place your answers. Please include your

name, the current date, and the lab number on this document. Please also number your

responses, indicating which part and question of the lab to which the answer pertains. Word

docx format is preferred. If using another word processing application, please convert the

document to pdf before submitting your work to ensure your instructor can open the file.

• To have completed Lab 05 – Physical Design and DDL

• Understanding of database tables and have reviewed the asynchronous material for Week 6

• One of the following means of accessing a SQL Server installation

o A connection to the iSchool Remote Lab (https://remotelab.ischool.syr.edu)

o A local installation of SQL Server (see Developer edition here

https://www.microsoft.com/en-us/sql-server/sql-server-downloads-free-trial)

o Regardless of how you access SQL Server, you will need to use SQL Server Management

Studio to do so.

Part 1 – Filling our Tables with Data

Setup

The action is heating up as we now have a fully-made database and now need to start adding data. Our

application developers haven’t yet written the front-end software. We will need to write some code to

add the initial data and to work out what SQL our app devs will have to use to populate and retrieve the

data.

We will have to use each of the CRUD commands to manipulate the data in our tables.

https://www.w3schools.com/sql/
https://remotelab.ischool.syr.edu/
https://www.microsoft.com/en-us/sql-server/sql-server-downloads-free-trial

Lab 06 – Querying, Inserting, Updating, and Deleting Last Modified May 15, 2018

Page 3 of 18

Formatting Note

Look for the “To Do” icon to point out sections of the lab you will need to do to complete the

tasks.

Inserting Data – The INSERT Statement

To “create” data, we use the SQL INSERT statement. We saw a brief example of that in Lab 05 when we

added three rows to our user table. Let’s add some more.

Insert One Row at a Time

The basic format of an INSERT statement is:

INSERT INTO table_name (columnn1, column2, …, columnN)
VALUES (value1, value2, …, valueN)

This will add a row to some table (represented by table_name) providing values for each column in the

column list. These values will populate the columns in the same order shown in the column list.

To add a row to our vc_Status table, we would use the following code:

Code and execute the SQL in the preceding image to add a row to the vc_Status. Remember

you can highlight lines of code in SSMS and when you click “Execute” it will only execute

the highlighted code.

You should see this result:

Lab 06 – Querying, Inserting, Updating, and Deleting Last Modified May 15, 2018

Page 4 of 18

Only execute this code once! After you’ve INSERTed the data, it is there. Running the code again will try

to add another row to the vc_Status table with the same data. We don’t want this! Luckily, we coded a

unique constraint to disallow duplicate status texts. If this constraint was properly coded, you will get an

error message if you try to INSERT ‘Scheduled’ into vc_Status a second time.

To see your inserted data, code and execute the following statement:

Your results should look like:

TIP: As you code these INSERTs, you won’t provide a value for the primary key columns
that have the identity property specified. You also won’t include it in your column list. This
means the system is going to provide that number for us, guaranteeing it will always be
unique. Because of this, the server will not reclaim used numbers, so it’s possible that your
ID columns will differ from the example images. This is OK!

Inserting Multiple Rows with One Statement

If you have multiple rows to add, you can use a single INSERT statement to do so. The following example

adds three more rows to the vc_Status table:

Code and execute the SQL in the preceding image to add three rows to the vc_Status.

Remember you can highlight lines of code in SSMS and when you click “Execute” it will only

execute the highlighted code.

Lab 06 – Querying, Inserting, Updating, and Deleting Last Modified May 15, 2018

Page 5 of 18

Now highlight and execute the select statement from before:

Now your results show

TIP: Your rows may show in a different sort order. This is okay for now if you have four
rows with the shown values in StatusText. We’ll see how to change how they’re sorted
later!

Inserting Data into Tables with Foreign Keys

Adding rows to tables with foreign keys is precisely the same as inserting in any other table, but the

values to provide for the foreign key columns can sometimes be confusing to new coders.

If we add a row to the vc_VidCast table, we will need to provide a value for the two columns that have

foreign key constraints on them, vc_UserID and vc_StatusID. Both columns have data type int and

reference the primary key columns of the vc_User and vc_Status tables respectively.

For our first vc_VidCast, the user with UserName SaulHudson recorded a 30-minute video titled

“December Snow”. Its details are below:

Table Column Name Value?

VidCastTitle ‘December Snow’

StartDateTime ‘3/1/2018 14:00’

EndDateTime ‘3/1/2018 14:30’

ScheduledDurationMinutes 30

Lab 06 – Querying, Inserting, Updating, and Deleting Last Modified May 15, 2018

Page 6 of 18

RecordingURL ‘/XVF1234’

vc_UserID ‘SaulHudson’

vc_Status ‘Finished’

The eagle-eyed viewer will notice that ‘SaulHudson’ and ‘Finished’ are not integers, not even a little bit.

This code will absolutely not work (DON’T TRY IT. Just take our word for it.)

TIP: Don’t be thrown off by the number of lines used. Remember that SQL Server doesn’t
care about new lines in a single statement. Lines 12 through 17 above are one statement
made into several lines for readability on this page

Instead, we must find the value of vc_UserID for the vc_User with UserName SaulHudson and the

vc_StatusID for the vc_Status with a StatusText of Finished.

Code and execute the following SQL in SSMS. Remember you can highlight lines of code in

SSMS and when you click “Execute” it will only execute the highlighted code. We will

unpack how to build each of these statements later.

When you execute both of those SELECT statements, SQL Server will return two separate result sets.

Lab 06 – Querying, Inserting, Updating, and Deleting Last Modified May 15, 2018

Page 7 of 18

Take note of the values in vc_UserID and vc_StatusID. In our sample database they are 2 and 3,

respectively. Yours may be different. That’s okay. Just make sure to use the integers for your database

even if they differ from the sample.

Revisiting the data we need to enter into the table, we can replace ‘SaulHudson’ with 2 and ‘Finished’

with 3.

Table Column Name Value

VidCastTitle ‘December Snow’

StartDateTime ‘3/1/2018 14:00’

EndDateTime ‘3/1/2018 14:30’

ScheduledDurationMinutes 30

RecordingURL ‘/XVF1234’

vc_UserID 2

vc_Status 3

Now we can code our INSERT statement using the proper values.

Code and execute the following SQL in SSMS. Remember you can highlight lines of code in

SSMS and when you click “Execute” it will only execute the highlighted code. Remember to

use the vc_UserID and vc_StatusID from your database which may differ from the sample.

You should see the following result in SSMS:

Lab 06 – Querying, Inserting, Updating, and Deleting Last Modified May 15, 2018

Page 8 of 18

Code and execute the following SQL in SSMS. Remember you can highlight lines of code in

SSMS and when you click “Execute” it will only execute the highlighted code. This will show

you your record in the table

Take a screenshot of your results grid and paste it into your answers document labeled

‘First VidCast’

TIP: Now that we have the INSERT statement for a vc_VidCast, you can copy paste this
and replace values for adding new rows. In fact, if you want to add more than one
vc_VidCast at a time, simply add a comma to the end of line shown on 23 and repeat the
lines 22 and 23 for each subsequent record! (We’ll do this later)

Querying Data – The SELECT Statement

In this section, we will read the data back from the database. All the data we’ve inserted into our tables

are currently sitting on disk somewhere. For it to be useful, we need a way to read it. We will use the

SELECT statement to do so.

Because it’s the statement we use so much, we’ll spend more time unpacking the SQL SELECT

statement here. Each SELECT statement can be broken into the following clauses:

Clause Required? Description

SELECT list Yes

The list of columns to be returned and shown in the results

FROM clause Yes

The table or tables in which the data are stored. Required only
when the SELECT list contains column names.

Lab 06 – Querying, Inserting, Updating, and Deleting Last Modified May 15, 2018

Page 9 of 18

WHERE clause No

Optionally limits what data are retrieved by the statement. Is also
used in SQL UPDATE and DELETE statements. If omitted, every row
from the tables designated in the FROM clause are affected.

GROUP BY clause No

Sets grouping levels when dealing with aggregates. If SQL Aggregate
functions are used in the SELECT list and this clause is omitted or
improperly coded, you will receive an error message. *

HAVING clause No

Optionally limits the data retrieved by the statement. Differs from
the WHERE clause in that it specifies conditionals for the results of
aggregate functions. If omitted, all rows will be shown in the results
*

ORDER BY clause No

A comma-separated list of columns, taken from either the SELECT
list or in any of the tables in the FROM clause that instructs the
server to sort the results according to the needs of the user. If
omitted, results are shown in the order they are stored on disk.

* - The GROUP BY and HAVING clauses are used when writing queries with aggregate functions. This
lab does not cover these. We will revisit them in a future lab.

The following narrative will help us build a SQL SELECT statement that shows us the following results:

SELECT List

The SELECT list is a comma-separated list of all the columns you want to see in the results. As a

shorthand, you can use the * character to return all columns that are in the tables in the from clause.

You’ve already written SELECT statements with * in the SELECT list:

When reading line 26 aloud, we can read it as “Select all columns from the table called vc_VidCast”.

Lab 06 – Querying, Inserting, Updating, and Deleting Last Modified May 15, 2018

Page 10 of 18

Although it can take a little more time to code, it is often better form to be specific about which columns

we want to see in the results. Perhaps we don’t care to see the surrogate primary keys, or we want the

columns to show in a specific horizontal order.

For our query, we will need columns from many tables. In addition, we’ll need to do some math to come

up with the ScheduledHours column. That isn’t even a column anywhere in our database. Instead we’ll

derive it from another column.

Our SELECT list looks like this:

Take special note of line 34. We have calculated the number of hours by dividing the

ScheduledDurationMinutes by 60.0. The decimal is important here as it implicitly instructs SQL Server to

allow for decimal places in an otherwise integer data point.

We’ve also aliased the column, giving it a new name so the column name in the results reflects what the

data represent.

FROM Clause

The columns we need to show or derive other data points come from three different tables, vc_User,

vc_VidCast, and vc_Status, so we will need them all in our FROM clause. We can’t just list them out,

though. SQL Server needs advice on how to match up the data points. For this, we will use the JOIN

keyword and rely on our foreign key references to know what to link.

The FROM clause for our query is as follows:

WHERE Clause

If we had fifty-million rows and we ran lines 28 through 38 as is, we would get all fifty-million records

back in the result set. We can filter those results, if we would like, by using a WHERE clause. Although

not necessary in this instance, we can use the following WHERE clause in our query:

Lab 06 – Querying, Inserting, Updating, and Deleting Last Modified May 15, 2018

Page 11 of 18

This will ensure that this query only ever retrieves vc_VidCasts for the vc_User with UserName

‘SaulHudson’.

ORDER BY Clause

If we don’t instruct SQL Server how to sort our results, it will use its own indexes to sort the results. Let’s

add an ORDER BY clause to sort by that start date and time of the VidCast record like this:

The Complete Query

The full query to show the results is as follows:

Code and execute the preceding SQL in SSMS. Remember you can highlight lines of code in

SSMS and when you click “Execute” it will only execute the highlighted code. Paste a

screenshot of your results into your answer document labeled as ‘Saul’s First VidCast’

Lab 06 – Querying, Inserting, Updating, and Deleting Last Modified May 15, 2018

Page 12 of 18

Updating Data – the UPDATE statement

The only constant is change, and our data change constantly. We will use SQL UPDATE statements to

change the data in our tables.

We need to change vc_User SaulHudson’s UserRegisteredDate to March 1, 2018. We can use the

following UPDATE statement to do so:

Code and execute the preceding SQL in SSMS. Remember you can highlight lines of code in

SSMS and when you click “Execute” it will only execute the highlighted code. Paste a

screenshot of your results into your answer document labeled as ‘Update a User’

TIP: When writing update and delete statements, never forget the WHERE clause. It is
advisable to write the WHERE clause first, even if you wish to affect all rows in the table.
Woe unto those who run a DELETE statement against a production table without a
WHERE clause…

Deleting Data – The DELETE Statement

The design team has decided that there will no longer be a vc_Status with StatusText ‘On time’ so we

must delete it from the database.

When we write a DELETE statement, we simply provide the table name and a conditional telling SQL

Server which rows to remove. Line 51 of the following code is the DELETE statement in action. By

executing this line of code, we will remove all rows from vc_Status that have a StatusText equal to ‘On

time’

Lab 06 – Querying, Inserting, Updating, and Deleting Last Modified May 15, 2018

Page 13 of 18

You don’t always need to SELECT before and after. We’re just doing so here as an illustrative exercise.

Code and execute the preceding SQL in SSMS. Remember you can highlight lines of code in

SSMS and when you click “Execute” it will only execute the highlighted code. Paste a

screenshot of your results into your answer document labeled as ‘No more on time’

Part 2 – Putting All Together
In this part, you’ll add some more data to the VidCast tables and write some queries to read the new

data.

First, we’ll add some Tags to the vc_Tag table.

The Tags we want to add are as follows:

TagText TagDescription

Personal

About people

Professional

Business, business, business

Sports

All manner of sports

Music

Music analysis, news, and thoughts

Games

Live streaming our favorite games

Lab 06 – Querying, Inserting, Updating, and Deleting Last Modified May 15, 2018

Page 14 of 18

Code and execute the SQL INSERT statement(s) to add the preceding values to the vc_Tag

table. When finished, write a SELECT statement that retrieves all rows from vc_Tag. Paste a

copy of your code and a screenshot of the results to your answer doc labeled ‘Tags’

Your vc_Tag table results should look like this:

We also need a few more users for our database. They are as follows:

UserName EmailAddress UserDescription

TheDoctor

tomBaker@nodomain.xyz

The definite article

HairCut

S.todd@nodomain.xyz

Fleet Street barber shop

DnDGal

dnd@nodomain.xyz

NULL

Code and execute the SQL INSERT statement(s) to add the preceding values to the vc_User

table. When finished, write a SELECT statement that retrieves all rows from vc_User. Paste

a copy of your code and a screenshot of the results to your answer doc labeled ‘Users’

Your vc_User table results should look like this (your dates and IDs may be different):

mailto:tomBaker@nodomain.xyz
mailto:S.todd@nodomain.xyz
mailto:dnd@nodomain.xyz

Lab 06 – Querying, Inserting, Updating, and Deleting Last Modified May 15, 2018

Page 15 of 18

Each user may elect to add tags to their user account. Some have already done so. The code to INSERT

these tags into the vc_UserTagList is in Appendix B at the end of this document.

Copy and paste the complete code from Appendix B into your SQL script file and execute

it against your database. After you have inserted those 14 rows, Code and execute a

SELECT statement to retrieve all vc_UserTagList records and paste a screenshot of your

results to your answer doc labeled ‘User Tag List’.

Code and execute a SQL SELECT statement that retrieves the vc_User’s UserName and

EmailAddress and the vc_Tag TagText for all vc_User records, ordered by user name then

tag. Your output should look like the following screenshot. Copy and paste your SQL and

a results screenshot to your answers doc labeled ‘User Tags Report’

Lab 06 – Querying, Inserting, Updating, and Deleting Last Modified May 15, 2018

Page 16 of 18

TIP: Look back at the SELECT statement we built in part one and use it as a model for
building this query. You will need to JOIN three tables together here and will need to sort
by two columns.

What to Submit
After completing Part 2, copy and paste the text of your SQL query file at the end of your

answers document. Save this document and submit it to the appropriate section on the

LMS.

Lab 06 – Querying, Inserting, Updating, and Deleting Last Modified May 15, 2018

Page 17 of 18

Appendix A – VidCast Logical Model Diagram

For the full diagram, see https://drive.google.com/file/d/1KRqkSvQABuTMXqYAzojTCt9etTSR8Vea/view?usp=sharing

https://drive.google.com/file/d/1KRqkSvQABuTMXqYAzojTCt9etTSR8Vea/view?usp=sharing

Lab 06 – Querying, Inserting, Updating, and Deleting Last Modified May 15, 2018

Page 18 of 18

Appendix B – User Tags INSERT Statement

INSERT INTO vc_UserTagList (vc_UserID, vc_TagID)
VALUES
 ((SELECT vc_UserID FROM vc_User WHERE UserName='DnDGal'),
 (SELECT vc_TagID FROM vc_Tag WHERE TagText='Sports')),
 ((SELECT vc_UserID FROM vc_User WHERE UserName='DnDGal'),
 (SELECT vc_TagID FROM vc_Tag WHERE TagText='Professional')),
 ((SELECT vc_UserID FROM vc_User WHERE UserName='RDwight'),
 (SELECT vc_TagID FROM vc_Tag WHERE TagText='Professional')),
 ((SELECT vc_UserID FROM vc_User WHERE UserName='SaulHudson'),
 (SELECT vc_TagID FROM vc_Tag WHERE TagText='Sports')),
 ((SELECT vc_UserID FROM vc_User WHERE UserName='Gordon'),
 (SELECT vc_TagID FROM vc_Tag WHERE TagText='Personal')),
 ((SELECT vc_UserID FROM vc_User WHERE UserName='DnDGal'),
 (SELECT vc_TagID FROM vc_Tag WHERE TagText='Personal')),
 ((SELECT vc_UserID FROM vc_User WHERE UserName='Gordon'),
 (SELECT vc_TagID FROM vc_Tag WHERE TagText='Games')),
 ((SELECT vc_UserID FROM vc_User WHERE UserName='HairCut'),
 (SELECT vc_TagID FROM vc_Tag WHERE TagText='Professional')),
 ((SELECT vc_UserID FROM vc_User WHERE UserName='TheDoctor'),
 (SELECT vc_TagID FROM vc_Tag WHERE TagText='Music')),
 ((SELECT vc_UserID FROM vc_User WHERE UserName='DnDGal'),
 (SELECT vc_TagID FROM vc_Tag WHERE TagText='Games')),
 ((SELECT vc_UserID FROM vc_User WHERE UserName='SaulHudson'),
 (SELECT vc_TagID FROM vc_Tag WHERE TagText='Games')),
 ((SELECT vc_UserID FROM vc_User WHERE UserName='Gordon'),
 (SELECT vc_TagID FROM vc_Tag WHERE TagText='Professional')),
 ((SELECT vc_UserID FROM vc_User WHERE UserName='HairCut'),
 (SELECT vc_TagID FROM vc_Tag WHERE TagText='Music')),
 ((SELECT vc_UserID FROM vc_User WHERE UserName='TheDoctor'),
 (SELECT vc_TagID FROM vc_Tag WHERE TagText='Personal'))

