
Lab 03 – Logical Modeling Last Modified July 24, 2018

Page 1 of 23

Data Admin Concepts & Database Management

Table of Contents
Data Admin Concepts & Database Management ... 1

Lab 03 – Logical Modeling ... 1

Overview ... 1

Learning Objectives ... 2

Lab Goals ... 2

What You Will Need to Begin .. 2

Part 1 – Logical Modeling Case Studies... 2

Setup ... 2

Case Study 1 – Obligatory College Classes Modeling .. 3

Case Study 2 – Project Management .. 21

Case Study 3 – Book Publishing Database .. 22

Part 2 – VidCast Logical Model ... 23

Setup ... 23

To-do ... 23

Lab 03 – Logical Modeling

Overview
This lab is the third of ten labs in which we will build a database using the systematic approach covered

in the asynchronous material. Each successive lab will build upon the one before and can be a useful

guide for building your own database projects in a systematic way.

In this lab, we will convert conceptual entity relationship diagrams (ERDs) into more fully dressed logical

model diagrams, also known as enhanced ERDs. Part 1 of this lab explores three independent case

studies and asks you to model the logical design with an increasing level of independent work required

to identify the logical model components in the conceptual designs. Part 2 returns to our VidCast

database and asks you to convert a version of the conceptual model to a logical model diagram.

For this lab, we will continue our work in Draw.io. There are other software tools that can accomplish

this task (Visio, Vertabelo, and Lucidchart to name a few). If you would prefer to use these other tools,

consult with your course section lead.

Read this lab document once through before beginning.

Lab 03 – Logical Modeling Last Modified July 24, 2018

Page 2 of 23

Learning Objectives

In this lab you will

• Demonstrate understanding of the logical model

• Demonstrate ability to convert conceptual ERDs to logical model diagrams (E-ERDs)

• Identify the appropriate cardinality and degree of relationships

• Identify data types using narrative elements and prior domain knowledge

Lab Goals

This lab consists of two sections. The first section presents three case studies for building logical model

diagrams. Each consecutive case study will present less and less technical information. By the end of this

section, you should be able to convert an ERD into a logical model fit for coding a database. In the

second section, you will apply your ability to build a logical model for our ongoing database project,

VidCast.

What You Will Need to Begin

• This document

• An active Internet connection

• Visit draw.io (https://www.draw.io/) and ensure you can create a blank diagram. Ideally,

connect draw.io to your Google Account, OneDrive, or local disk. If you are new to using online

software tools, the recommendation is to connect draw.io to your Google Drive. If you do not

have a drive, visit drive.google.com (https://drive.google.com) to create one for free before

beginning the second part of this lab.

• A blank Word (or similar) document into which you can place your answers. Please include your

name, the current date, and the lab number on this document. Please also number your

responses, indicating which part and question of the lab to which the answer pertains. Word

docx format is preferred. If using another word processing application, please convert the

document to pdf before submitting your work to ensure your instructor can open the file.

• To have completed Lab 02 – Conceptual Modeling

• To be proficient with ERD drawing tools available in Draw.io.

• Understanding of primary keys, surrogate keys, and foreign keys

• A basic understanding of data types and when to select which data type

Part 1 – Logical Modeling Case Studies

Setup

The following case studies have been adapted to allow you to build and demonstrate aptitude in

translating ERDs to logical model enhanced ERDs (E-ERDs). The first case study walks you through step-

by-step instructions for identifying facts, or business rules, in the narrative to be modeled. By the third

https://www.draw.io/
https://drive.google.com/

Lab 03 – Logical Modeling Last Modified July 24, 2018

Page 3 of 23

case study, you should be able to apply these principles on your own to design the solution. Each time

you complete a case study, export the diagram as an image file (PNG or similar) and insert it into your

answer doc.

Case Study 1 – Obligatory College Classes Modeling

We’ve elaborated on our college courses example from last time. From the diagram below, we will

create a logical model diagram, or E-ERD that could potentially be used to code a database. This first

example will provide a step-by-step guide for how to do this.

Mapping from a conceptual ERD to a logical model E-ERD can be broadly broken down into three main

steps:

1. Map any existing entities into tables

2. Map any attributes into columns

3. Map any relationships between entities as relationships between tables

Step 1 – Map any entities into existing tables

Starting with a blank Draw.io diagram (or a new page in the existing diagram, if you’d like to keep

everything together), create an “ER Table 1” shape and change each shape’s title to correspond to the

entity it represents.

A note on naming:

It’s at this stage that we need a little forethought of how these tables and columns will look in our

database. Since databases and the applications that use them are not particularly fond of spaces, from

here on out, we’ll remove spaces and rely on a convention that helps us visually separate words in our

table and column names. This lab, and the rest of the course, uses an underscore, _ , to separate words

instead of a space, making “College Course” into “college_course”. Another convention you may see is

Lab 03 – Logical Modeling Last Modified July 24, 2018

Page 4 of 23

to use “camel Case” in which the first letter of each word is capitalized to distinguish itself from the

other words in the name, making “College Course” into “CollegeCourse”. Still other, arguably more

anarchist, conventions eschew such helpful tips and just smash the words together, making “College

Course” into “collegecourse”. Whichever method you choose is up to the database programmer but

note that if you deviate from the conventions used in the lab you’ll also have to make the change for all

instances of that object in this and subsequent labs. The most important aspect of this decision is to be

consistent. Try to not mix naming styles.

Additionally, most RDBMSs are case insensitive when it comes to object names. This means that the

software will see College_Course and college_course as indistinguishable from one another. This lab

uses all lower-case letters, but feel free to use whichever style looks best to you.

Lastly, we’re also going to try to avoid using table and column names that correspond to reserved words

in our RDBMS. Usually, this can be done by putting the table name in front of the column name when

defining a column. For instance, “Name” is a SQL Server reserved word: it has a specific meaning and use

in SQL Server, so we’re going to avoid using it as a column name as is. As such, instead of the Course

table having a Name column, we’re going to call that column course_name to avoid conflict with that

reserved word. At this point, you may not know what all those words are, but where applicable within

this lab, we’ll point them out.

After creating and renaming your shapes, your diagram should look like this (note that your

arrangement may differ. It’s the presence of these shapes that matters, not their precise location on the

page):

That’s it for step 1!

Step 2 – Map any attributes into columns

The mapping of attributes to columns can be broken down into four (4) distinct steps:

1. Add primary keys to tables

2. Create new tables for multivalue attributes (we’ll link them back up later)

3. Decompose any composite attributes into their constituent parts

Lab 03 – Logical Modeling Last Modified July 24, 2018

Page 5 of 23

4. Map the rest of the attributes to columns

Step 2.1 – Add primary keys to tables

It is possible that we have already identified primary keys for each table. If this is the case, then we just

map that attribute into the uniqueid entry in the new diagram’s table. If we haven’t identified a primary

key yet, and if there is no sufficient attribute or set of attributes that would qualify as a primary key (see

rules about primary keys elsewhere), you can use a surrogate key. Our ERD already has surrogate keys

on the Section and Room entities. If we didn’t specify these before in our business rules, we would add

them here.

For each primary key (PK) in the ERD, change the uniqueidentifier entry in the new diagram to match

using the naming conventions described above. We’re also going to select data types at this point. It’s

best-practice to use “int identity” as the data type for any surrogate keys (for SQL Server). In a more

perfect world, all primary keys would be surrogate keys, but we’ll work with our business rules to make

a case either way.

For our diagram, the PKs for the College Course and Student tables will have a datatype of

varchar(10). The PKs for the Room and Section tables are surrogate keys and will get int

identity as data types.

Some modeling tools will automatically resize each shape to fit all the text within. Draw.io doesn’t do

this, so when you have text that overflows and can’t be read, simply resize the shape to accommodate

the text. To do so, click the title of the shape once and click-and-drag the blue handles to size as needed.

After changing your uniqueidentifier entries and resizing your shapes, your diagram should look like this:

Lab 03 – Logical Modeling Last Modified July 24, 2018

Page 6 of 23

Step 2.2 - Create new tables for multivalue attributes

Because we don’t have a way to store multiple values for one attribute in a table, we need to create a

new table for those. In most cases, we can combine the names of the original entity and the attribute to

build a good name for this new table. We will connect them later using relationships and foreign keys,

but for now we’ll create a new table for each. In our ERD, we have only one multivalue attribute, the

meeting days attribute of the section entity. Add a new ER Table 1 to the diagram (near the section

shape) and rename it to “section_meeting_day”. While we’re at it, let’s give it a surrogate key of

“section_meeting_day_id int identity”. Resize the shape to accommodate the new text.

If we had more multivalue attributes, we would repeat this step for each of those. Since we do not, we

can move along. Your diagram should now look like this:

Lab 03 – Logical Modeling Last Modified July 24, 2018

Page 7 of 23

Step 3 - Decompose any composite attributes into their constituent parts

In the course of conceptual modeling, we may have identified attributes which, while in the ERD are

only a single attribute, are actually composed of multiple components. For instance, in good database

design, we don’t want to store just “name” for a person. Instead, we want their “first_name”,

“last_name”, and potentially other parts. For an ERD it is sufficient to say “Name [c]” to indicate it is a

composite, but it is now time to break that apart into its constituent columns.

In our ERD, we have only one (1) composite attribute, the name of the student. Let’s break that apart

into three columns in our logical diagram: first_name, middle_initial, and last_name. We also need to

pick a data type for each of these at this point. These types need not be the same for all the

components, so we handle them individually. For first_name and last_name, let’s use varchar(30) to

allow for up to 30 alphanumeric characters. Middle initial is only one character long, so let’s use char(1).

* We don’t need varchar here because it’s only 1-character long.

On the student shape, change the row 1, row 2, and row 3 text to

• first_name varchar(30)

• middle_initial char(1)

• last_name varchar(30)

respectively.

Lab 03 – Logical Modeling Last Modified July 24, 2018

Page 8 of 23

In our ERD, the Student’s Name also has the “required” property, meaning all or part of this attribute

must be provided when adding data (that is, each student must have a name!) we indicate this in our

logical diagram by making the column name and data type bold faced. To do this, click on the column

that should be bold to select just that part of the shape. Try it with first_name. You should click once on

first_name and it should be surrounded by blue handles, indicating first_name is selected.

Next, in the properties on the right hand side of the screen, click the Text tab, and click the icon

below the font name.

Now the text of the column is bold faced, indicating it is required.

Do this to the last_name column as well. We will leave the middle_initial as is. While the narrative

doesn’t tell us which of these are a required component of the Name attribute, or even what the

components of the Name attribute are for that matter, we can use our prior domain knowledge of

Lab 03 – Logical Modeling Last Modified July 24, 2018

Page 9 of 23

names to assume that not everyone has a middle initial, but all our students should have a first and last

name. After doing this, your student table should look like this

If we had more composite attributes in our diagram, we would repeat this for each of those. Sonce we

do not, we are ready to move onto step 4!

Our diagram so far:

 Step 2.4 - Map the rest of the attributes to columns

Having handled most of our special case attributes, (composite, multivalue, primary key), we can now

move onto all the other attributes. We still have a couple special cases to handle, so let’s work on them

in turn.

Campus Email Address is a required and unique attribute of the Student entity, so let’s start there.

Unfortunately, we’re our of spots on our student shape:

Lab 03 – Logical Modeling Last Modified July 24, 2018

Page 10 of 23

The easiest method to add another spot is to duplicate one that’s already there. Right click on the

last_name column name and click Duplicate. This will add a copy of last_name to the bottom of the

shape.

This new entry appears below the helpful spacer at the bottom of our shape, so let’s move it up. With

the new copy of last_name selected (click once on it if it’s not. It will look like the above image when it is

selected), click and drag last name so that it is above the spacer.

If you’re new to the software, this can take some trial and error, but it will get easier with practice.

Rename the column email_address and leave the data type the same.

Lab 03 – Logical Modeling Last Modified July 24, 2018

Page 11 of 23

The email address should also be unique. To ensure this, we will need to add a Unique constraint to the

column. We will cover more about the technical aspects of unique constraints in coming weeks, but for

now, we can indicate that using a U1 in the space to the left of the vertical bar (under the letters PK but

left of the email_address line).

Double click in the space to the left of the email_address, but under the “PK” and you will be able to

type in that box. The shape should look like this when done:

Why “U1”?

The U in U1 indicates that this is a unique constraint. Because we may have more than one such

constraint in the table, we use an ordinal after the U to differentiate them. We will see the

impact of this momentarily.

Continue mapping the attributes of the other entities. Use the following diagram for advice on which

data type to choose. When you’re finished, your diagram should look like this:

Lab 03 – Logical Modeling Last Modified July 24, 2018

Page 12 of 23

Note that when we mapped the multivalue attribute, Meeting Days, we mapped it into the new table

we created in previous steps.

Let’s look at the room table:

There are a couple of observations and one edit we need to make. The first is the choice of varchar as

the data type for the room number. Even though it has “number” in its name, that isn’t necessarily a

clue to use a numeric data type. Very often, buildings will use letters in their room numbers (ie “B100”

to denote room 100 in the basement). Also, many buildings will use a zero (0) in the beginning of the

room number (i.e. 013 is a computer lab in Hinds Hall at Syracuse University).

In the case of the former, we will not be able to store the alphabetic portion of the number,

compromising our data integrity. In the case of the latter, when storing a number with a zero (0) at the

front, the software will zero-suppress the value, showing 013 as 13. Because the 0 is important to the

number, we would like to ensure that it is always shown and stored with the data.

The same is true for postal codes. US postal codes, called zip codes, are numeric (if the hyphen isn’t

considered). Zip codes in the northeast begin with zero (0). Also, postal codes in Canada and the UK, for

example, include letters.

Lab 03 – Logical Modeling Last Modified July 24, 2018

Page 13 of 23

Phone numbers, social security numbers (SSNs), and other numbers used for identification of real world

things should also allow alphanumeric input as the position of each digit or groups of digits is

meaningful.

As a rule, if a column is to store numbers, but arithmetic operations on those

numbers (addition, subtraction, multiplication, division, etc.) do not yield a

meaningful result, err on the side of caution and use char or varchar for the data

type.

The last problem with our room table is that we have made the room number unique. A closer look

reveals that this can be a problem if more than one building has a room of the same number. If Building

A has room 100, that will work. If we then add Building B and it has a room 100, we have a problem. We

have made the room number unique, so only one building can ever have room number 100.

To solve this, let’s look at it from a different perspective and change how we read the business rule. A

room number must be unique for any given building. Building A can only ever have one room numbered

100. Building B may also have a room 100, but only once.

We can assert that the combination of building_name and room_number must be unique for all rows in

room. This is called a composite unique constraint. To indicate that on the diagram, add another U1 to

the left of business name.

This indicates that U1 as a constraint is defined as the combination of any column with a U1 next to it.

That wraps up our mapping of attributes. After all of that, your diagram should look like this:

Lab 03 – Logical Modeling Last Modified July 24, 2018

Page 14 of 23

Now we’re ready for…

Step 3 - Map any relationships between entities as relationships between tables

Rules for mapping relationships are as follows:

• Add a foreign key to the “many” side of each one-to-many relationship

• The cardinality of one-to-many relationships remains the same

• Relationships between tables created when mapping multivalue attributes are one of the new

table to many of the original table

• Many to many relationships need to be broken up using associative tables.

• One to one relationships exist, but are rare

Start by mapping the one-to-many relationship between college_course and section. Begin by adding a

new column to section named course_number with a data type of varchar(10). It is probably easiest

to duplicate an existing column in section (instructor is a good choice) and moving it up above the

bottome spacer.

Then, in the space to the left of the column name, put FK1 to indicate that this is a Foreign Key. You may

have to use the Font properties to the right side of the screen to decrease the font size to get the full

FK1 to show in the box.

Like the unique constraint, we use FK to denote Foreign Key and we use an ordinal to differentiate this

Foreign Key from any others on the table. While composite foreign keys are rare, they do exist in the

wild.

Your section table should look like this:

Lab 03 – Logical Modeling Last Modified July 24, 2018

Page 15 of 23

Next, select the course_number in college_course

If you then hover over the college_course column in the shape, the arrow indicators appear, much like

the arrows when mapping during conceptual modeling. Drag a line between this column and the new

column in section. The new column will show with a blue outline when you are in the correct spot with

your cursor.

Change the line start and line ends as necessary to match the cardinality of the ERD.

Having this level of specificity will aid in coding these tables later.

Add another column to section called section_meeting_day_id and make its data type int. Make it FK2

instead of FK1.

Lab 03 – Logical Modeling Last Modified July 24, 2018

Page 16 of 23

Wait, why not “int identity”? The data type of foreign keys must match their referenced primary

keys, but “identity” is a property of the column in section_meeting_day. It is not part of the data type.

Incidentally, unlike the data type, the name of a foreign key column can be anything you like. It is a good

practice to use a column name that is close to the referenced primary key to help keep things straight.

Some software tools handle this automatically.

Drag a line between section_meeting_day_id from the section_meeting_day table to the new column in

section. Change its cardinality to one and only one section_meeting_day to zero or more section.

Add a new foreign key column to section called room_id and make its data type int. Because this is a

third foreign key for this table, indicate the FK as FK3. Make a one-to-many relationship between

room_id of the room table and room_id of the section table.

Your diagram should now look like this:

Lab 03 – Logical Modeling Last Modified July 24, 2018

Page 17 of 23

That is the process for mapping any one-to-many relationship in a logical model or E-ERD.

Because there is no functional way to implement a many-to-many in an RDBMS, we must use a bridge

table, or technically speaking, a weak-associative table, between the participating tables in the many to

many.

Begin by adding an ER Table 1 shape to the page between the student and section tables. Name this

table student_section_list and give it a primary key of student_section_list_id with the int int identity

data type / property. You may have to shuffle some shapes around to make space. Simply click and drag

on the grey header to move a shape.

Next, add the following column names/datatypes/constraint indicators and bold-face them to make the

required:

• section_id int; FK1

• id_number varchar(10); FK2

Lab 03 – Logical Modeling Last Modified July 24, 2018

Page 18 of 23

Next, draw a one to many relationship between section_id of the section table and section_id of the

student_section_list table.

It’s okay if lines cross one another at this point. We will adjust the spacing and orientation of tables

later. If you do move tables and the relationship lines don’t behave like you want them to, simply click

on the line and adjust the path using the blue circles (handles) along the length of the line. Avoid moving

the ends as those are the points that glue the shapes to the lines.

To complete this relationship, add a one to many relationship line from id_number on the student table

and id_number on the student_section_list table.

Lab 03 – Logical Modeling Last Modified July 24, 2018

Page 19 of 23

So far, so good:

When mapping a many-to-many to a logical model diagram, add a bridge table, or

weak associative table, between the participating tables and follow the rules for

mapping a one to many from the original tables to this new table.

In the original ERD, College Course has a unary many-to-many relationship that represents a list of

prerequisites. This is mapped in the same way as our binary many-to-many relationship, except both

new relationships map to this new table.

On your diagram, add a new ER Table 1 shape named prereq_course_list. Give it a surrogate key and

these columns:

• course_number varchar(10) – make this FK1 and required

• prereq_course_number varchar(10) – make this FK2 and required

Lab 03 – Logical Modeling Last Modified July 24, 2018

Page 20 of 23

Create a one-to-many relationship between the course_number of the course table and course_number

of the prereq_course_list. Create ANOTHER relationship between course_number of course and the

prereq_course_number of the prereq_course_list.

What does this mean? Though the relationships both point to the same column name in the course

table, it is assumed that the values in prereq_course_number and course_number of the

prereq_course_list table will be different, as in different instances of the College Course entity from the

ERD.

By now, your diagram should look like this

Lab 03 – Logical Modeling Last Modified July 24, 2018

Page 21 of 23

Feel free to practice shuffling things around to get a better fit, if you’d like. It is best to try one thing and

then undo that action if it didn’t behave as expected. Once you’re satisfied with your diagram’s layout,

add a text box with your name in it to the diagram and export the diagram as a PNG and insert that PNG

into your answer document.

Case Study 2 – Project Management

Use the same three-step process to map the project management ERD from Lab 02 into a logical model

E-ERD. Add a text box with your name to the diagram.

This model includes some “optional one” to many relationships. In addition to selecting the current line-

ends for those relationships, when you add the foreign keys for those relationships, do not make those

required. There are also some “mandatory many” cardinalities. Simply make the line ends match.

Also, we will skip any derived attributes. We can calculate those at run time using queries (again, later).

So we do not need to store them at all!

Lab 03 – Logical Modeling Last Modified July 24, 2018

Page 22 of 23

Your diagram should look like this:

Export the diagram to a PNG and add it to your answer document.

Case Study 3 – Book Publishing Database

Your turn: In Lab 02, you created an ERD for a book publishing database. Use your skills in mapping to

logical model E-ERDs to create a logical model diagram for it. Use your best judgment for datatypes and

such. Be sure to include a text box with your name on the diagram.

Lab 03 – Logical Modeling Last Modified July 24, 2018

Page 23 of 23

Part 2 – VidCast Logical Model

Setup

In the previous lab, we built a conceptual model ERD for our VidCast service. Since then, we have had

some more discussions with the design team and have made a few modifications to the ERD. Each user

can create a playlist containing one or more recorded VidCasts. A name is required for this playlist and

each play list will be identified by a system generated playlist id. The new ERD looks like this:

To-do

For the above diagram, use draw.io to create a logical model E-ERD for the VidCast software. Once

finished, export it as an image and place it at the end of your answer doc.

After completing Part 2, save and submit your answer doc.

