COVID19 -- Checking the WHO Numbers

In [88]:
import os
import pandas as pd
entries = os.listdir('test_csvs/')
li = []
for entry in entries:
    if '.csv' in entry:
        num = entry.split('sitrep-')[1].split('-')[0]
        date = entry.split('-')[0]
        f = pd.read_csv('csvs/'+entry, index_col=None, header=0)
        if f.shape[1] == 7:
            if 'Total' in f.columns[0]:
                f.columns = ['country', 'total_confirmed', 'total_new', 'total_deaths', 'total_new_deaths', 'transmission_class', 'days_since_report']
                f['date'] = date
                li.append(f)
In [87]:
frame = pd.concat(li, axis=0, ignore_index=True)
frame
Out[87]:
country total_confirmed total_new total_deaths total_new_deaths transmission_class days_since_report date
0 Western Pacific Region NaN NaN NaN NaN NaN NaN 20200322
1 China 81498.0 82.0 3267.0 6.0 Local transmission 0.0 20200322
2 Republic of Korea 8897.0 98.0 104.0 2.0 Local transmission 0.0 20200322
3 Malaysia 1183.0 153.0 3.0 0.0 Local transmission 0.0 20200322
4 Australia 1081.0 208.0 7.0 0.0 Local transmission 0.0 20200322
5 Japan 1046.0 50.0 36.0 1.0 Local transmission 0.0 20200322
6 Singapore 432.0 47.0 2.0 2.0 Local transmission 0.0 20200322
7 Philippines 307.0 77.0 19.0 1.0 Local transmission 0.0 20200322
8 Viet Nam 94.0 3.0 0.0 0.0 Local transmission 0.0 20200322
9 Brunei Darussalam 83.0 5.0 0.0 0.0 Local transmission 0.0 20200322
10 New Zealand 66.0 13.0 0.0 0.0 Local transmission 0.0 20200322
11 Cambodia 53.0 2.0 0.0 0.0 Local transmission 0.0 20200322
12 Mongolia 10.0 4.0 0.0 0.0 Imported cases only 0.0 20200322
13 Fiji 2.0 1.0 0.0 0.0 Local transmission 0.0 20200322
14 Papua New Guinea 1.0 0.0 0.0 0.0 Imported cases only 1.0 20200322
15 Territories** NaN NaN NaN NaN NaN NaN 20200322
16 French Polynesia \n15 \n4 \n0 \n0 \nImported c... NaN NaN NaN NaN NaN NaN 20200322
17 Guam \n15 \n1 \n0 \n0 \nLocal transmission \n0 NaN NaN NaN NaN NaN NaN 20200322
18 New Caledonia \n4 \n2 \n0 \n0 \nImported cases... NaN NaN NaN NaN NaN NaN 20200322
19 European Region ^ NaN NaN NaN NaN NaN NaN 20200322
20 Italy 53578.0 6557.0 4827.0 795.0 Local transmission 0.0 20200322
21 Spain 24926.0 4946.0 1326.0 324.0 Local transmission 0.0 20200322
22 Germany 21463.0 3140.0 67.0 22.0 Local transmission 0.0 20200322
23 France 14296.0 1821.0 562.0 112.0 Local transmission 0.0 20200322
24 Switzerland 6077.0 1237.0 56.0 13.0 Local transmission 0.0 20200322
25 The United Kingdom 5018.0 1035.0 233.0 56.0 Local transmission 0.0 20200322
26 Netherlands 3631.0 637.0 136.0 30.0 Local transmission 0.0 20200322
27 Austria 3024.0 375.0 8.0 2.0 Local transmission 0.0 20200322
28 Belgium 2815.0 558.0 67.0 30.0 Local transmission 0.0 20200322
29 Norway 1926.0 184.0 7.0 0.0 Local transmission 0.0 20200322
... ... ... ... ... ... ... ... ...
110 Guam \n14 \n2 \n0 \n0 \nLocal transmission \n0 NaN NaN NaN NaN NaN NaN 20200321
111 French Polynesia \n11 \n0 \n0 \n0 \nImported c... NaN NaN NaN NaN NaN NaN 20200321
112 New Caledonia \n2 \n0 \n0 \n0 \nImported cases... NaN NaN NaN NaN NaN NaN 20200321
113 European Region ^ NaN NaN NaN NaN NaN NaN 20200321
114 Italy 47021.0 5986.0 4032.0 625.0 Local transmission 0.0 20200321
115 Spain 19980.0 2833.0 1002.0 235.0 Local transmission 0.0 20200321
116 Germany 18323.0 7324.0 45.0 25.0 Local transmission 0.0 20200321
117 France 12475.0 1598.0 450.0 78.0 Local transmission 0.0 20200321
118 Switzerland 4840.0 977.0 43.0 10.0 Local transmission 0.0 20200321
119 The United Kingdom 3983.0 706.0 177.0 33.0 Local transmission 0.0 20200321
120 Netherlands 2994.0 534.0 106.0 30.0 Local transmission 0.0 20200321
121 Austria 2649.0 806.0 6.0 1.0 Local transmission 0.0 20200321
122 Belgium 2257.0 462.0 37.0 23.0 Local transmission 0.0 20200321
123 Norway 1742.0 190.0 7.0 1.0 Local transmission 0.0 20200321
124 Sweden 1623.0 200.0 16.0 13.0 Local transmission 0.0 20200321
125 Denmark 1255.0 123.0 9.0 3.0 Local transmission 0.0 20200321
126 Portugal 1020.0 235.0 6.0 3.0 Local transmission 0.0 20200321
127 Czechia 904.0 210.0 0.0 0.0 Local transmission 0.0 20200321
128 Israel 712.0 183.0 1.0 1.0 Local transmission 0.0 20200321
129 Ireland 683.0 126.0 3.0 0.0 Local transmission 0.0 20200321
130 Turkey 670.0 479.0 9.0 7.0 Local transmission 0.0 20200321
131 Greece 495.0 77.0 8.0 3.0 Local transmission 0.0 20200321
132 Luxembourg 484.0 139.0 5.0 1.0 Local transmission 0.0 20200321
133 Finland 450.0 81.0 0.0 0.0 Local transmission 0.0 20200321
134 Poland 425.0 100.0 5.0 0.0 Local transmission 0.0 20200321
135 Iceland 409.0 79.0 1.0 1.0 Local transmission 0.0 20200321
136 Slovenia 341.0 22.0 1.0 0.0 Local transmission 0.0 20200321
137 Romania 308.0 48.0 0.0 0.0 Local transmission 0.0 20200321
138 Estonia 283.0 16.0 0.0 0.0 Local transmission 0.0 20200321
139 Russian Federation 253.0 54.0 0.0 0.0 Imported cases only 0.0 20200321

140 rows × 8 columns

In [95]:
grouped = pd.DataFrame(frame.groupby(['country', 'date','total_deaths']).sum())
In [96]:
grouped
Out[96]:
total_confirmed total_new total_new_deaths days_since_report
country date total_deaths
Australia 20200320 6.0 709.0 199.0 0.0 0.0
20200321 7.0 873.0 164.0 1.0 0.0
20200322 7.0 1081.0 208.0 0.0 0.0
Austria 20200320 5.0 1843.0 197.0 1.0 0.0
20200321 6.0 2649.0 806.0 1.0 0.0
20200322 8.0 3024.0 375.0 2.0 0.0
Belgium 20200320 14.0 1795.0 309.0 0.0 0.0
20200321 37.0 2257.0 462.0 23.0 0.0
20200322 67.0 2815.0 558.0 30.0 0.0
Brunei Darussalam 20200320 0.0 73.0 17.0 0.0 0.0
20200321 0.0 78.0 5.0 0.0 0.0
20200322 0.0 83.0 5.0 0.0 0.0
Cambodia 20200320 0.0 47.0 12.0 0.0 0.0
20200321 0.0 51.0 4.0 0.0 0.0
20200322 0.0 53.0 2.0 0.0 0.0
China 20200320 3253.0 81300.0 126.0 11.0 0.0
20200321 3261.0 81416.0 116.0 8.0 0.0
20200322 3267.0 81498.0 82.0 6.0 0.0
Croatia 20200322 1.0 206.0 80.0 0.0 0.0
Czechia 20200320 0.0 694.0 172.0 0.0 0.0
20200321 0.0 904.0 210.0 0.0 0.0
20200322 0.0 995.0 91.0 0.0 0.0
Denmark 20200320 6.0 1132.0 88.0 2.0 0.0
20200321 9.0 1255.0 123.0 3.0 0.0
20200322 13.0 1326.0 71.0 4.0 0.0
Estonia 20200320 0.0 267.0 9.0 0.0 0.0
20200321 0.0 283.0 16.0 0.0 0.0
20200322 0.0 306.0 23.0 0.0 0.0
Fiji 20200320 0.0 1.0 1.0 0.0 0.0
20200321 0.0 1.0 0.0 0.0 1.0
... ... ... ... ... ... ...
Romania 20200322 0.0 367.0 59.0 0.0 0.0
Russian Federation 20200320 0.0 199.0 52.0 0.0 0.0
20200321 0.0 253.0 54.0 0.0 0.0
20200322 0.0 306.0 53.0 0.0 0.0
San Marino 20200320 14.0 126.0 17.0 0.0 0.0
Serbia†† 20200320 0.0 123.0 41.0 0.0 0.0
Singapore 20200320 0.0 345.0 32.0 0.0 0.0
20200321 0.0 385.0 40.0 0.0 0.0
20200322 2.0 432.0 47.0 2.0 0.0
Slovenia 20200320 1.0 319.0 33.0 0.0 0.0
20200321 1.0 341.0 22.0 0.0 0.0
20200322 1.0 383.0 42.0 0.0 0.0
Spain 20200320 767.0 17147.0 3431.0 169.0 0.0
20200321 1002.0 19980.0 2833.0 235.0 0.0
20200322 1326.0 24926.0 4946.0 324.0 0.0
Sweden 20200320 3.0 1423.0 144.0 0.0 0.0
20200321 16.0 1623.0 200.0 13.0 0.0
20200322 20.0 1746.0 123.0 4.0 0.0
Switzerland 20200320 33.0 3863.0 853.0 12.0 0.0
20200321 43.0 4840.0 977.0 10.0 0.0
20200322 56.0 6077.0 1237.0 13.0 0.0
The United Kingdom 20200320 144.0 3277.0 647.0 41.0 0.0
20200321 177.0 3983.0 706.0 33.0 0.0
20200322 233.0 5018.0 1035.0 56.0 0.0
Turkey 20200320 2.0 191.0 0.0 0.0 1.0
20200321 9.0 670.0 479.0 7.0 0.0
20200322 21.0 947.0 277.0 12.0 0.0
Viet Nam 20200320 0.0 85.0 19.0 0.0 0.0
20200321 0.0 91.0 6.0 0.0 0.0
20200322 0.0 94.0 3.0 0.0 0.0

122 rows × 4 columns

In [ ]: