{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import os \n",
"import csv \n",
"import pandas as pd "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Reading in the df and looking at the first 5 rows "
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" execution \n",
" last_name \n",
" first_name \n",
" age_received \n",
" education_level \n",
" age_crime \n",
" occupation \n",
" prior_record \n",
" num_of_vic \n",
" main_crime \n",
" ... \n",
" vic_kid \n",
" vic_male \n",
" vic_female \n",
" vic_police \n",
" inmate_number \n",
" age \n",
" date_executed \n",
" race \n",
" county \n",
" last_statement \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" 566 \n",
" Hall \n",
" Justen \n",
" 23 \n",
" 9 \n",
" 21 \n",
" laborer \n",
" yes \n",
" 1 \n",
" murder \n",
" ... \n",
" 0 \n",
" 0 \n",
" 1 \n",
" no \n",
" 999497 \n",
" 38 \n",
" 11/6/2019 \n",
" White \n",
" El Paso \n",
" Yeah, I want to address the Roundtree family ... \n",
" \n",
" \n",
" 1 \n",
" 565 \n",
" Sparks \n",
" Robert \n",
" 34 \n",
" 8 \n",
" 33 \n",
" machine operator \n",
" yes \n",
" 3 \n",
" murder \n",
" ... \n",
" 2 \n",
" 2 \n",
" 1 \n",
" no \n",
" 999542 \n",
" 45 \n",
" 9/25/2019 \n",
" Black \n",
" Dallas \n",
" Umm, Pamela can you hear me Stephanie, Hardy,... \n",
" \n",
" \n",
" 2 \n",
" 564 \n",
" Soliz \n",
" Mark \n",
" 30 \n",
" 8 \n",
" 28 \n",
" cabinet maker \n",
" yes \n",
" 1 \n",
" murder, robbery \n",
" ... \n",
" 0 \n",
" 0 \n",
" 1 \n",
" no \n",
" 999571 \n",
" 37 \n",
" 9/10/2019 \n",
" Hispanic \n",
" Johnson \n",
" It's 6:09 on September 10th, Kayla and David,... \n",
" \n",
" \n",
" 3 \n",
" 563 \n",
" Crutsinger \n",
" Billy \n",
" 49 \n",
" 11 \n",
" 48 \n",
" laborer \n",
" yes \n",
" 2 \n",
" murder \n",
" ... \n",
" 0 \n",
" 0 \n",
" 2 \n",
" no \n",
" 999459 \n",
" 64 \n",
" 9/4/2019 \n",
" White \n",
" Tarrant \n",
" Hi ladies I wanted to tell ya'll how much I l... \n",
" \n",
" \n",
" 4 \n",
" 562 \n",
" Swearingen \n",
" Larry \n",
" 29 \n",
" 11 \n",
" 27 \n",
" laborer \n",
" yes \n",
" 1 \n",
" murder, kidnapping \n",
" ... \n",
" 0 \n",
" 0 \n",
" 1 \n",
" no \n",
" 999361 \n",
" 48 \n",
" 8/21/2019 \n",
" White \n",
" Montgomery \n",
" Lord forgive them. They don't know what they ... \n",
" \n",
" \n",
"
\n",
"
5 rows × 24 columns
\n",
"
"
],
"text/plain": [
" execution last_name first_name age_received education_level age_crime \\\n",
"0 566 Hall Justen 23 9 21 \n",
"1 565 Sparks Robert 34 8 33 \n",
"2 564 Soliz Mark 30 8 28 \n",
"3 563 Crutsinger Billy 49 11 48 \n",
"4 562 Swearingen Larry 29 11 27 \n",
"\n",
" occupation prior_record num_of_vic main_crime ... vic_kid \\\n",
"0 laborer yes 1 murder ... 0 \n",
"1 machine operator yes 3 murder ... 2 \n",
"2 cabinet maker yes 1 murder, robbery ... 0 \n",
"3 laborer yes 2 murder ... 0 \n",
"4 laborer yes 1 murder, kidnapping ... 0 \n",
"\n",
" vic_male vic_female vic_police inmate_number age date_executed race \\\n",
"0 0 1 no 999497 38 11/6/2019 White \n",
"1 2 1 no 999542 45 9/25/2019 Black \n",
"2 0 1 no 999571 37 9/10/2019 Hispanic \n",
"3 0 2 no 999459 64 9/4/2019 White \n",
"4 0 1 no 999361 48 8/21/2019 White \n",
"\n",
" county last_statement \n",
"0 El Paso Yeah, I want to address the Roundtree family ... \n",
"1 Dallas Umm, Pamela can you hear me Stephanie, Hardy,... \n",
"2 Johnson It's 6:09 on September 10th, Kayla and David,... \n",
"3 Tarrant Hi ladies I wanted to tell ya'll how much I l... \n",
"4 Montgomery Lord forgive them. They don't know what they ... \n",
"\n",
"[5 rows x 24 columns]"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"death_row = pd.read_csv(\"death_row_final_project.csv\")\n",
"death_row.head()"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(566, 24)"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# getting the shape of the df \n",
"death_row.shape"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" execution \n",
" inmate_number \n",
" age \n",
" \n",
" \n",
" \n",
" \n",
" count \n",
" 566.0000 \n",
" 566.000000 \n",
" 566.000000 \n",
" \n",
" \n",
" mean \n",
" 283.5000 \n",
" 531777.630742 \n",
" 39.726148 \n",
" \n",
" \n",
" std \n",
" 163.5344 \n",
" 498661.405354 \n",
" 8.828008 \n",
" \n",
" \n",
" min \n",
" 1.0000 \n",
" 511.000000 \n",
" 24.000000 \n",
" \n",
" \n",
" 25% \n",
" 142.2500 \n",
" 819.250000 \n",
" 33.000000 \n",
" \n",
" \n",
" 50% \n",
" 283.5000 \n",
" 999033.000000 \n",
" 38.000000 \n",
" \n",
" \n",
" 75% \n",
" 424.7500 \n",
" 999269.750000 \n",
" 45.000000 \n",
" \n",
" \n",
" max \n",
" 566.0000 \n",
" 999571.000000 \n",
" 70.000000 \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" execution inmate_number age\n",
"count 566.0000 566.000000 566.000000\n",
"mean 283.5000 531777.630742 39.726148\n",
"std 163.5344 498661.405354 8.828008\n",
"min 1.0000 511.000000 24.000000\n",
"25% 142.2500 819.250000 33.000000\n",
"50% 283.5000 999033.000000 38.000000\n",
"75% 424.7500 999269.750000 45.000000\n",
"max 566.0000 999571.000000 70.000000"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#looking at descriptive stats for the numeric columns\n",
"death_row.describe()"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"execution int64\n",
"last_name object\n",
"first_name object\n",
"age_received object\n",
"education_level object\n",
"age_crime object\n",
"occupation object\n",
"prior_record object\n",
"num_of_vic object\n",
"main_crime object\n",
"type_of_crime object\n",
"weapon object\n",
"co_defendants object\n",
"race_vic object\n",
"vic_kid object\n",
"vic_male object\n",
"vic_female object\n",
"vic_police object\n",
"inmate_number int64\n",
"age int64\n",
"date_executed object\n",
"race object\n",
"county object\n",
"last_statement object\n",
"dtype: object"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#looking at the data types for each column in the df \n",
"death_row.dtypes"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Things I want to change: \n",
"1. age_received, age-crime, num_of_vic, vic_kid, vic_male, vic_female need to be changed to int \n",
"2. education level might make sense to discretize \n",
"3. occupation, main_crime, type_of_crime, weapon, race_vic, race, county, late_name, first_name, prior_record, vic_police boolean turn to a factor\n",
"4. can remove execution, date_executed and inmate_number as it serves no useful purpose and is unique to each prisoner "
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"23 43\n",
"20 38\n",
"21 37\n",
"25 34\n",
"24 31\n",
"29 29\n",
"19 28\n",
"22 28\n",
"27 25\n",
"30 22\n",
"26 22\n",
"31 21\n",
"32 21\n",
"28 19\n",
"38 17\n",
"36 17\n",
"33 14\n",
"40 14\n",
"35 14\n",
"34 13\n",
"39 13\n",
"18 11\n",
"37 9\n",
"45 5\n",
"43 5\n",
"41 4\n",
"46 4\n",
"49 4\n",
"42 3\n",
"51 3\n",
"44 3\n",
"47 3\n",
"53 3\n",
"48 2\n",
"unknown 2\n",
"52 1\n",
"54 1\n",
"50 1\n",
"17 1\n",
"57 1\n",
"Name: age_received, dtype: int64"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# looking at the values for age_received to ensure all are numeric.\n",
"death_row.age_received.value_counts()"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"# need to remove unknown to n/a for all the columns that I want to change to numeric. \n",
"numeric_columns = [\"age_received\", \"age_crime\", \"num_of_vic\", \"vic_kid\", \"vic_male\", \"vic_female\", \"co_defendants\"]\n",
"\n",
"for column in numeric_columns: \n",
" death_row[column] = death_row[column].str.replace(\"unknown\", \"\")"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"23 43\n",
"20 38\n",
"21 37\n",
"25 34\n",
"24 31\n",
"29 29\n",
"19 28\n",
"22 28\n",
"27 25\n",
"30 22\n",
"26 22\n",
"31 21\n",
"32 21\n",
"28 19\n",
"38 17\n",
"36 17\n",
"33 14\n",
"40 14\n",
"35 14\n",
"34 13\n",
"39 13\n",
"18 11\n",
"37 9\n",
"45 5\n",
"43 5\n",
"41 4\n",
"46 4\n",
"49 4\n",
"42 3\n",
"51 3\n",
"44 3\n",
"47 3\n",
"53 3\n",
"48 2\n",
" 2\n",
"52 1\n",
"54 1\n",
"50 1\n",
"17 1\n",
"57 1\n",
"Name: age_received, dtype: int64"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# checking to make sure that worked... \n",
"death_row.age_received.value_counts()"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"death_row[numeric_columns] = death_row[numeric_columns].apply(pd.to_numeric) #changes everything to float"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" execution \n",
" last_name \n",
" first_name \n",
" age_received \n",
" education_level \n",
" age_crime \n",
" occupation \n",
" prior_record \n",
" num_of_vic \n",
" main_crime \n",
" ... \n",
" vic_kid \n",
" vic_male \n",
" vic_female \n",
" vic_police \n",
" inmate_number \n",
" age \n",
" date_executed \n",
" race \n",
" county \n",
" last_statement \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" 566 \n",
" Hall \n",
" Justen \n",
" 23.0 \n",
" 9 \n",
" 21.0 \n",
" laborer \n",
" yes \n",
" 1.0 \n",
" murder \n",
" ... \n",
" 0.0 \n",
" 0.0 \n",
" 1.0 \n",
" no \n",
" 999497 \n",
" 38 \n",
" 11/6/2019 \n",
" White \n",
" El Paso \n",
" Yeah, I want to address the Roundtree family ... \n",
" \n",
" \n",
" 1 \n",
" 565 \n",
" Sparks \n",
" Robert \n",
" 34.0 \n",
" 8 \n",
" 33.0 \n",
" machine operator \n",
" yes \n",
" 3.0 \n",
" murder \n",
" ... \n",
" 2.0 \n",
" 2.0 \n",
" 1.0 \n",
" no \n",
" 999542 \n",
" 45 \n",
" 9/25/2019 \n",
" Black \n",
" Dallas \n",
" Umm, Pamela can you hear me Stephanie, Hardy,... \n",
" \n",
" \n",
" 2 \n",
" 564 \n",
" Soliz \n",
" Mark \n",
" 30.0 \n",
" 8 \n",
" 28.0 \n",
" cabinet maker \n",
" yes \n",
" 1.0 \n",
" murder, robbery \n",
" ... \n",
" 0.0 \n",
" 0.0 \n",
" 1.0 \n",
" no \n",
" 999571 \n",
" 37 \n",
" 9/10/2019 \n",
" Hispanic \n",
" Johnson \n",
" It's 6:09 on September 10th, Kayla and David,... \n",
" \n",
" \n",
" 3 \n",
" 563 \n",
" Crutsinger \n",
" Billy \n",
" 49.0 \n",
" 11 \n",
" 48.0 \n",
" laborer \n",
" yes \n",
" 2.0 \n",
" murder \n",
" ... \n",
" 0.0 \n",
" 0.0 \n",
" 2.0 \n",
" no \n",
" 999459 \n",
" 64 \n",
" 9/4/2019 \n",
" White \n",
" Tarrant \n",
" Hi ladies I wanted to tell ya'll how much I l... \n",
" \n",
" \n",
" 4 \n",
" 562 \n",
" Swearingen \n",
" Larry \n",
" 29.0 \n",
" 11 \n",
" 27.0 \n",
" laborer \n",
" yes \n",
" 1.0 \n",
" murder, kidnapping \n",
" ... \n",
" 0.0 \n",
" 0.0 \n",
" 1.0 \n",
" no \n",
" 999361 \n",
" 48 \n",
" 8/21/2019 \n",
" White \n",
" Montgomery \n",
" Lord forgive them. They don't know what they ... \n",
" \n",
" \n",
"
\n",
"
5 rows × 24 columns
\n",
"
"
],
"text/plain": [
" execution last_name first_name age_received education_level age_crime \\\n",
"0 566 Hall Justen 23.0 9 21.0 \n",
"1 565 Sparks Robert 34.0 8 33.0 \n",
"2 564 Soliz Mark 30.0 8 28.0 \n",
"3 563 Crutsinger Billy 49.0 11 48.0 \n",
"4 562 Swearingen Larry 29.0 11 27.0 \n",
"\n",
" occupation prior_record num_of_vic main_crime ... vic_kid \\\n",
"0 laborer yes 1.0 murder ... 0.0 \n",
"1 machine operator yes 3.0 murder ... 2.0 \n",
"2 cabinet maker yes 1.0 murder, robbery ... 0.0 \n",
"3 laborer yes 2.0 murder ... 0.0 \n",
"4 laborer yes 1.0 murder, kidnapping ... 0.0 \n",
"\n",
" vic_male vic_female vic_police inmate_number age date_executed \\\n",
"0 0.0 1.0 no 999497 38 11/6/2019 \n",
"1 2.0 1.0 no 999542 45 9/25/2019 \n",
"2 0.0 1.0 no 999571 37 9/10/2019 \n",
"3 0.0 2.0 no 999459 64 9/4/2019 \n",
"4 0.0 1.0 no 999361 48 8/21/2019 \n",
"\n",
" race county last_statement \n",
"0 White El Paso Yeah, I want to address the Roundtree family ... \n",
"1 Black Dallas Umm, Pamela can you hear me Stephanie, Hardy,... \n",
"2 Hispanic Johnson It's 6:09 on September 10th, Kayla and David,... \n",
"3 White Tarrant Hi ladies I wanted to tell ya'll how much I l... \n",
"4 White Montgomery Lord forgive them. They don't know what they ... \n",
"\n",
"[5 rows x 24 columns]"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"death_row.head()"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"# I do not want to see the decimal places in the columns \n",
"pd.options.display.float_format = \"{:,.0f}\".format"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Replacing all missing values with the mean of each column"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The number of missing values in age_received is 2\n",
"Now the number of missing values in age_received is 0\n",
"The number of missing values in age_crime is 2\n",
"Now the number of missing values in age_crime is 0\n",
"The number of missing values in num_of_vic is 1\n",
"Now the number of missing values in num_of_vic is 0\n",
"The number of missing values in vic_kid is 1\n",
"Now the number of missing values in vic_kid is 0\n",
"The number of missing values in vic_male is 2\n",
"Now the number of missing values in vic_male is 0\n",
"The number of missing values in vic_female is 2\n",
"Now the number of missing values in vic_female is 0\n",
"The number of missing values in co_defendants is 1\n",
"Now the number of missing values in co_defendants is 0\n"
]
}
],
"source": [
"for column in numeric_columns: \n",
" print(\"The number of missing values in\", column, \"is\", death_row[column].isna().sum())\n",
" death_row[column] = death_row[column].fillna(death_row[column].mean())\n",
" print(\"Now the number of missing values in\", column, \"is\", death_row[column].isna().sum())"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" execution \n",
" last_name \n",
" first_name \n",
" age_received \n",
" education_level \n",
" age_crime \n",
" occupation \n",
" prior_record \n",
" num_of_vic \n",
" main_crime \n",
" ... \n",
" vic_kid \n",
" vic_male \n",
" vic_female \n",
" vic_police \n",
" inmate_number \n",
" age \n",
" date_executed \n",
" race \n",
" county \n",
" last_statement \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" 566 \n",
" Hall \n",
" Justen \n",
" 23 \n",
" 9 \n",
" 21 \n",
" laborer \n",
" yes \n",
" 1 \n",
" murder \n",
" ... \n",
" 0 \n",
" 0 \n",
" 1 \n",
" no \n",
" 999497 \n",
" 38 \n",
" 11/6/2019 \n",
" White \n",
" El Paso \n",
" Yeah, I want to address the Roundtree family ... \n",
" \n",
" \n",
" 1 \n",
" 565 \n",
" Sparks \n",
" Robert \n",
" 34 \n",
" 8 \n",
" 33 \n",
" machine operator \n",
" yes \n",
" 3 \n",
" murder \n",
" ... \n",
" 2 \n",
" 2 \n",
" 1 \n",
" no \n",
" 999542 \n",
" 45 \n",
" 9/25/2019 \n",
" Black \n",
" Dallas \n",
" Umm, Pamela can you hear me Stephanie, Hardy,... \n",
" \n",
" \n",
" 2 \n",
" 564 \n",
" Soliz \n",
" Mark \n",
" 30 \n",
" 8 \n",
" 28 \n",
" cabinet maker \n",
" yes \n",
" 1 \n",
" murder, robbery \n",
" ... \n",
" 0 \n",
" 0 \n",
" 1 \n",
" no \n",
" 999571 \n",
" 37 \n",
" 9/10/2019 \n",
" Hispanic \n",
" Johnson \n",
" It's 6:09 on September 10th, Kayla and David,... \n",
" \n",
" \n",
" 3 \n",
" 563 \n",
" Crutsinger \n",
" Billy \n",
" 49 \n",
" 11 \n",
" 48 \n",
" laborer \n",
" yes \n",
" 2 \n",
" murder \n",
" ... \n",
" 0 \n",
" 0 \n",
" 2 \n",
" no \n",
" 999459 \n",
" 64 \n",
" 9/4/2019 \n",
" White \n",
" Tarrant \n",
" Hi ladies I wanted to tell ya'll how much I l... \n",
" \n",
" \n",
" 4 \n",
" 562 \n",
" Swearingen \n",
" Larry \n",
" 29 \n",
" 11 \n",
" 27 \n",
" laborer \n",
" yes \n",
" 1 \n",
" murder, kidnapping \n",
" ... \n",
" 0 \n",
" 0 \n",
" 1 \n",
" no \n",
" 999361 \n",
" 48 \n",
" 8/21/2019 \n",
" White \n",
" Montgomery \n",
" Lord forgive them. They don't know what they ... \n",
" \n",
" \n",
"
\n",
"
5 rows × 24 columns
\n",
"
"
],
"text/plain": [
" execution last_name first_name age_received education_level age_crime \\\n",
"0 566 Hall Justen 23 9 21 \n",
"1 565 Sparks Robert 34 8 33 \n",
"2 564 Soliz Mark 30 8 28 \n",
"3 563 Crutsinger Billy 49 11 48 \n",
"4 562 Swearingen Larry 29 11 27 \n",
"\n",
" occupation prior_record num_of_vic main_crime ... vic_kid \\\n",
"0 laborer yes 1 murder ... 0 \n",
"1 machine operator yes 3 murder ... 2 \n",
"2 cabinet maker yes 1 murder, robbery ... 0 \n",
"3 laborer yes 2 murder ... 0 \n",
"4 laborer yes 1 murder, kidnapping ... 0 \n",
"\n",
" vic_male vic_female vic_police inmate_number age date_executed \\\n",
"0 0 1 no 999497 38 11/6/2019 \n",
"1 2 1 no 999542 45 9/25/2019 \n",
"2 0 1 no 999571 37 9/10/2019 \n",
"3 0 2 no 999459 64 9/4/2019 \n",
"4 0 1 no 999361 48 8/21/2019 \n",
"\n",
" race county last_statement \n",
"0 White El Paso Yeah, I want to address the Roundtree family ... \n",
"1 Black Dallas Umm, Pamela can you hear me Stephanie, Hardy,... \n",
"2 Hispanic Johnson It's 6:09 on September 10th, Kayla and David,... \n",
"3 White Tarrant Hi ladies I wanted to tell ya'll how much I l... \n",
"4 White Montgomery Lord forgive them. They don't know what they ... \n",
"\n",
"[5 rows x 24 columns]"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"death_row.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Discretizing education level "
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"12 110\n",
"11 75\n",
"10 75\n",
"9 72\n",
"ged 63\n",
"8 50\n",
"unknown 41\n",
"7 27\n",
"14 17\n",
"6 9\n",
"13 8\n",
"15 5\n",
"5 4\n",
"16 4\n",
"3 2\n",
"12.5 1\n",
"0 1\n",
"college 1\n",
"4 1\n",
"Name: education_level, dtype: int64"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"death_row.education_level.value_counts()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"For discretizing, anything above 12 will be changed to college, 12 and ged will be changed to highschool, 9 - 11 to some highschool, less than 9 is not highschool"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [],
"source": [
"def replace_items_in_column_from_list(a_list_of_items_to_replace, df, column, word_to_be_changed_to):\n",
" for item in a_list_of_items_to_replace: \n",
" df[column] = df[column].str.replace(item, word_to_be_changed_to)\n",
" return df[column]"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"some_highschool 222\n",
"highschool 173\n",
"no_highschool 94\n",
"unknown 41\n",
"college 36\n",
"Name: education_level, dtype: int64"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"high_school = [\"12\", \"ged\"]\n",
"some_highschool = [\"11\", \"10\", \"9\"]\n",
"no_highschool = [\"8\", \"7\", \"6\", \"5\", \"4\", \"3\", \"2\", \"1\", \"0\"]\n",
"college = [\"13\", \"14\", \"15\", \"12.5\", \"16\"]\n",
"death_row[\"education_level\"] = replace_items_in_column_from_list(college, death_row, \"education_level\", \"college\")\n",
"death_row[\"education_level\"] = replace_items_in_column_from_list(high_school, death_row, \"education_level\", \"highschool\")\n",
"death_row[\"education_level\"] = replace_items_in_column_from_list(some_highschool, death_row, \"education_level\", \"some_highschool\")\n",
"death_row[\"education_level\"] = replace_items_in_column_from_list(no_highschool, death_row, \"education_level\", \"no_highschool\")\n",
"death_row.education_level.value_counts()"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"CategoricalDtype(categories=['unknown', 'no_highschool', 'some_highschool', 'highschool',\n",
" 'college'],\n",
" ordered=True)"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#Changing the education level to an ordered category \n",
"cat = [\"unknown\", \"no_highschool\", \"some_highschool\", \"highschool\", \"college\"]\n",
"#Changing the month data type from int to ordered category \n",
"death_row[\"education_level\"] = pd.Categorical(death_row[\"education_level\"], ordered = True, categories = cat)\n",
"#Checking to see if it worked \n",
"death_row.education_level.dtype"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" execution \n",
" last_name \n",
" first_name \n",
" age_received \n",
" education_level \n",
" age_crime \n",
" occupation \n",
" prior_record \n",
" num_of_vic \n",
" main_crime \n",
" ... \n",
" vic_kid \n",
" vic_male \n",
" vic_female \n",
" vic_police \n",
" inmate_number \n",
" age \n",
" date_executed \n",
" race \n",
" county \n",
" last_statement \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" 566 \n",
" Hall \n",
" Justen \n",
" 23 \n",
" some_highschool \n",
" 21 \n",
" laborer \n",
" yes \n",
" 1 \n",
" murder \n",
" ... \n",
" 0 \n",
" 0 \n",
" 1 \n",
" no \n",
" 999497 \n",
" 38 \n",
" 11/6/2019 \n",
" White \n",
" El Paso \n",
" Yeah, I want to address the Roundtree family ... \n",
" \n",
" \n",
" 1 \n",
" 565 \n",
" Sparks \n",
" Robert \n",
" 34 \n",
" no_highschool \n",
" 33 \n",
" machine operator \n",
" yes \n",
" 3 \n",
" murder \n",
" ... \n",
" 2 \n",
" 2 \n",
" 1 \n",
" no \n",
" 999542 \n",
" 45 \n",
" 9/25/2019 \n",
" Black \n",
" Dallas \n",
" Umm, Pamela can you hear me Stephanie, Hardy,... \n",
" \n",
" \n",
" 2 \n",
" 564 \n",
" Soliz \n",
" Mark \n",
" 30 \n",
" no_highschool \n",
" 28 \n",
" cabinet maker \n",
" yes \n",
" 1 \n",
" murder, robbery \n",
" ... \n",
" 0 \n",
" 0 \n",
" 1 \n",
" no \n",
" 999571 \n",
" 37 \n",
" 9/10/2019 \n",
" Hispanic \n",
" Johnson \n",
" It's 6:09 on September 10th, Kayla and David,... \n",
" \n",
" \n",
" 3 \n",
" 563 \n",
" Crutsinger \n",
" Billy \n",
" 49 \n",
" some_highschool \n",
" 48 \n",
" laborer \n",
" yes \n",
" 2 \n",
" murder \n",
" ... \n",
" 0 \n",
" 0 \n",
" 2 \n",
" no \n",
" 999459 \n",
" 64 \n",
" 9/4/2019 \n",
" White \n",
" Tarrant \n",
" Hi ladies I wanted to tell ya'll how much I l... \n",
" \n",
" \n",
" 4 \n",
" 562 \n",
" Swearingen \n",
" Larry \n",
" 29 \n",
" some_highschool \n",
" 27 \n",
" laborer \n",
" yes \n",
" 1 \n",
" murder, kidnapping \n",
" ... \n",
" 0 \n",
" 0 \n",
" 1 \n",
" no \n",
" 999361 \n",
" 48 \n",
" 8/21/2019 \n",
" White \n",
" Montgomery \n",
" Lord forgive them. They don't know what they ... \n",
" \n",
" \n",
"
\n",
"
5 rows × 24 columns
\n",
"
"
],
"text/plain": [
" execution last_name first_name age_received education_level age_crime \\\n",
"0 566 Hall Justen 23 some_highschool 21 \n",
"1 565 Sparks Robert 34 no_highschool 33 \n",
"2 564 Soliz Mark 30 no_highschool 28 \n",
"3 563 Crutsinger Billy 49 some_highschool 48 \n",
"4 562 Swearingen Larry 29 some_highschool 27 \n",
"\n",
" occupation prior_record num_of_vic main_crime ... vic_kid \\\n",
"0 laborer yes 1 murder ... 0 \n",
"1 machine operator yes 3 murder ... 2 \n",
"2 cabinet maker yes 1 murder, robbery ... 0 \n",
"3 laborer yes 2 murder ... 0 \n",
"4 laborer yes 1 murder, kidnapping ... 0 \n",
"\n",
" vic_male vic_female vic_police inmate_number age date_executed \\\n",
"0 0 1 no 999497 38 11/6/2019 \n",
"1 2 1 no 999542 45 9/25/2019 \n",
"2 0 1 no 999571 37 9/10/2019 \n",
"3 0 2 no 999459 64 9/4/2019 \n",
"4 0 1 no 999361 48 8/21/2019 \n",
"\n",
" race county last_statement \n",
"0 White El Paso Yeah, I want to address the Roundtree family ... \n",
"1 Black Dallas Umm, Pamela can you hear me Stephanie, Hardy,... \n",
"2 Hispanic Johnson It's 6:09 on September 10th, Kayla and David,... \n",
"3 White Tarrant Hi ladies I wanted to tell ya'll how much I l... \n",
"4 White Montgomery Lord forgive them. They don't know what they ... \n",
"\n",
"[5 rows x 24 columns]"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"death_row.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Changing the other columns that should be a category (factor)"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [],
"source": [
"def cat_fun(df, column): \n",
" df[column] = df[column].astype(\"category\") \n",
" return(df[column])"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [],
"source": [
"category_columns = [\"occupation\", \"main_crime\", \"type_of_crime\", \"weapon\", \"race\", \"race_vic\", \"county\", \"last_name\", \"first_name\", \"prior_record\", \"vic_police\"]\n",
"for column in category_columns: \n",
" death_row[column] = cat_fun(death_row, column)"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"execution int64\n",
"last_name category\n",
"first_name category\n",
"age_received float64\n",
"education_level category\n",
"age_crime float64\n",
"occupation category\n",
"prior_record category\n",
"num_of_vic float64\n",
"main_crime category\n",
"type_of_crime category\n",
"weapon category\n",
"co_defendants float64\n",
"race_vic category\n",
"vic_kid float64\n",
"vic_male float64\n",
"vic_female float64\n",
"vic_police category\n",
"inmate_number int64\n",
"age int64\n",
"date_executed object\n",
"race category\n",
"county category\n",
"last_statement object\n",
"dtype: object"
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#Checking the data types\n",
"death_row.dtypes"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Removing execution and inmate number "
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" last_name \n",
" first_name \n",
" age_received \n",
" education_level \n",
" age_crime \n",
" occupation \n",
" prior_record \n",
" num_of_vic \n",
" main_crime \n",
" type_of_crime \n",
" ... \n",
" co_defendants \n",
" race_vic \n",
" vic_kid \n",
" vic_male \n",
" vic_female \n",
" vic_police \n",
" age \n",
" race \n",
" county \n",
" last_statement \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" Hall \n",
" Justen \n",
" 23 \n",
" some_highschool \n",
" 21 \n",
" laborer \n",
" yes \n",
" 1 \n",
" murder \n",
" strangling \n",
" ... \n",
" 0 \n",
" unkown \n",
" 0 \n",
" 0 \n",
" 1 \n",
" no \n",
" 38 \n",
" White \n",
" El Paso \n",
" Yeah, I want to address the Roundtree family ... \n",
" \n",
" \n",
" 1 \n",
" Sparks \n",
" Robert \n",
" 34 \n",
" no_highschool \n",
" 33 \n",
" machine operator \n",
" yes \n",
" 3 \n",
" murder \n",
" stabbing \n",
" ... \n",
" 0 \n",
" black \n",
" 2 \n",
" 2 \n",
" 1 \n",
" no \n",
" 45 \n",
" Black \n",
" Dallas \n",
" Umm, Pamela can you hear me Stephanie, Hardy,... \n",
" \n",
" \n",
" 2 \n",
" Soliz \n",
" Mark \n",
" 30 \n",
" no_highschool \n",
" 28 \n",
" cabinet maker \n",
" yes \n",
" 1 \n",
" murder, robbery \n",
" shooting \n",
" ... \n",
" 1 \n",
" white \n",
" 0 \n",
" 0 \n",
" 1 \n",
" no \n",
" 37 \n",
" Hispanic \n",
" Johnson \n",
" It's 6:09 on September 10th, Kayla and David,... \n",
" \n",
" \n",
" 3 \n",
" Crutsinger \n",
" Billy \n",
" 49 \n",
" some_highschool \n",
" 48 \n",
" laborer \n",
" yes \n",
" 2 \n",
" murder \n",
" stabbing \n",
" ... \n",
" 0 \n",
" white \n",
" 0 \n",
" 0 \n",
" 2 \n",
" no \n",
" 64 \n",
" White \n",
" Tarrant \n",
" Hi ladies I wanted to tell ya'll how much I l... \n",
" \n",
" \n",
" 4 \n",
" Swearingen \n",
" Larry \n",
" 29 \n",
" some_highschool \n",
" 27 \n",
" laborer \n",
" yes \n",
" 1 \n",
" murder, kidnapping \n",
" strangling \n",
" ... \n",
" 0 \n",
" white \n",
" 0 \n",
" 0 \n",
" 1 \n",
" no \n",
" 48 \n",
" White \n",
" Montgomery \n",
" Lord forgive them. They don't know what they ... \n",
" \n",
" \n",
"
\n",
"
5 rows × 21 columns
\n",
"
"
],
"text/plain": [
" last_name first_name age_received education_level age_crime \\\n",
"0 Hall Justen 23 some_highschool 21 \n",
"1 Sparks Robert 34 no_highschool 33 \n",
"2 Soliz Mark 30 no_highschool 28 \n",
"3 Crutsinger Billy 49 some_highschool 48 \n",
"4 Swearingen Larry 29 some_highschool 27 \n",
"\n",
" occupation prior_record num_of_vic main_crime \\\n",
"0 laborer yes 1 murder \n",
"1 machine operator yes 3 murder \n",
"2 cabinet maker yes 1 murder, robbery \n",
"3 laborer yes 2 murder \n",
"4 laborer yes 1 murder, kidnapping \n",
"\n",
" type_of_crime ... co_defendants race_vic vic_kid vic_male vic_female \\\n",
"0 strangling ... 0 unkown 0 0 1 \n",
"1 stabbing ... 0 black 2 2 1 \n",
"2 shooting ... 1 white 0 0 1 \n",
"3 stabbing ... 0 white 0 0 2 \n",
"4 strangling ... 0 white 0 0 1 \n",
"\n",
" vic_police age race county \\\n",
"0 no 38 White El Paso \n",
"1 no 45 Black Dallas \n",
"2 no 37 Hispanic Johnson \n",
"3 no 64 White Tarrant \n",
"4 no 48 White Montgomery \n",
"\n",
" last_statement \n",
"0 Yeah, I want to address the Roundtree family ... \n",
"1 Umm, Pamela can you hear me Stephanie, Hardy,... \n",
"2 It's 6:09 on September 10th, Kayla and David,... \n",
"3 Hi ladies I wanted to tell ya'll how much I l... \n",
"4 Lord forgive them. They don't know what they ... \n",
"\n",
"[5 rows x 21 columns]"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"death_row.drop([\"execution\", \"inmate_number\", \"date_executed\"], axis = 1, inplace = True)\n",
"death_row.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Aggregating a column: time_on_death_row"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [],
"source": [
"death_row[\"time_spent\"] = death_row[\"age\"] - death_row[\"age_received\"]"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" last_name \n",
" first_name \n",
" age_received \n",
" education_level \n",
" age_crime \n",
" occupation \n",
" prior_record \n",
" num_of_vic \n",
" main_crime \n",
" type_of_crime \n",
" ... \n",
" race_vic \n",
" vic_kid \n",
" vic_male \n",
" vic_female \n",
" vic_police \n",
" age \n",
" race \n",
" county \n",
" last_statement \n",
" time_spent \n",
" \n",
" \n",
" \n",
" \n",
" 153 \n",
" Rodriguez \n",
" Michael \n",
" 39 \n",
" highschool \n",
" 40 \n",
" laborer \n",
" yes \n",
" 1 \n",
" murder, escape \n",
" shooting \n",
" ... \n",
" white \n",
" 0 \n",
" 1 \n",
" 0 \n",
" yes \n",
" 40 \n",
" Hispanic \n",
" Dallas \n",
" Yes I do, I know this no way makes up for all... \n",
" 1 \n",
" \n",
" \n",
" 184 \n",
" Swift \n",
" Christopher \n",
" 30 \n",
" some_highschool \n",
" 28 \n",
" laborer \n",
" yes \n",
" 2 \n",
" murder \n",
" strangling \n",
" ... \n",
" white \n",
" 0 \n",
" 0 \n",
" 2 \n",
" no \n",
" 31 \n",
" White \n",
" Denton \n",
" This offender declined to make a last statemen... \n",
" 1 \n",
" \n",
" \n",
" 344 \n",
" Graham \n",
" Gary \n",
" 38 \n",
" some_highschool \n",
" 18 \n",
" laborer \n",
" no \n",
" 1 \n",
" murder, robbery \n",
" shooting \n",
" ... \n",
" white \n",
" 0 \n",
" 1 \n",
" 0 \n",
" no \n",
" 39 \n",
" Black \n",
" Harris \n",
" I would like to say that I did not kill Bobby... \n",
" 1 \n",
" \n",
" \n",
" 392 \n",
" Foust \n",
" Aaron \n",
" 25 \n",
" highschool \n",
" 24 \n",
" laborer \n",
" no \n",
" 1 \n",
" murder, car theft, robbery \n",
" strangling \n",
" ... \n",
" white \n",
" 0 \n",
" 1 \n",
" 0 \n",
" no \n",
" 26 \n",
" White \n",
" Tarrant \n",
" Adios, amigos, I'll see ya'll on the other sid... \n",
" 1 \n",
" \n",
" \n",
" 420 \n",
" Renfro \n",
" Steven \n",
" 39 \n",
" unknown \n",
" 38 \n",
" laborer \n",
" no \n",
" 4 \n",
" murder \n",
" shooting \n",
" ... \n",
" white \n",
" 0 \n",
" 2 \n",
" 2 \n",
" yes \n",
" 40 \n",
" White \n",
" Harrison \n",
" I would like to tell the victims' families tha... \n",
" 1 \n",
" \n",
" \n",
" 459 \n",
" Gonzales, Jr. \n",
" Joe \n",
" 35 \n",
" highschool \n",
" 31 \n",
" construction \n",
" yes \n",
" 1 \n",
" murder, robbery \n",
" shooting \n",
" ... \n",
" white \n",
" 0 \n",
" 1 \n",
" 0 \n",
" no \n",
" 36 \n",
" Hispanic \n",
" Potter \n",
" There are people all over the world who face t... \n",
" 1 \n",
" \n",
" \n",
"
\n",
"
6 rows × 22 columns
\n",
"
"
],
"text/plain": [
" last_name first_name age_received education_level age_crime \\\n",
"153 Rodriguez Michael 39 highschool 40 \n",
"184 Swift Christopher 30 some_highschool 28 \n",
"344 Graham Gary 38 some_highschool 18 \n",
"392 Foust Aaron 25 highschool 24 \n",
"420 Renfro Steven 39 unknown 38 \n",
"459 Gonzales, Jr. Joe 35 highschool 31 \n",
"\n",
" occupation prior_record num_of_vic main_crime \\\n",
"153 laborer yes 1 murder, escape \n",
"184 laborer yes 2 murder \n",
"344 laborer no 1 murder, robbery \n",
"392 laborer no 1 murder, car theft, robbery \n",
"420 laborer no 4 murder \n",
"459 construction yes 1 murder, robbery \n",
"\n",
" type_of_crime ... race_vic vic_kid vic_male vic_female vic_police \\\n",
"153 shooting ... white 0 1 0 yes \n",
"184 strangling ... white 0 0 2 no \n",
"344 shooting ... white 0 1 0 no \n",
"392 strangling ... white 0 1 0 no \n",
"420 shooting ... white 0 2 2 yes \n",
"459 shooting ... white 0 1 0 no \n",
"\n",
" age race county \\\n",
"153 40 Hispanic Dallas \n",
"184 31 White Denton \n",
"344 39 Black Harris \n",
"392 26 White Tarrant \n",
"420 40 White Harrison \n",
"459 36 Hispanic Potter \n",
"\n",
" last_statement time_spent \n",
"153 Yes I do, I know this no way makes up for all... 1 \n",
"184 This offender declined to make a last statemen... 1 \n",
"344 I would like to say that I did not kill Bobby... 1 \n",
"392 Adios, amigos, I'll see ya'll on the other sid... 1 \n",
"420 I would like to tell the victims' families tha... 1 \n",
"459 There are people all over the world who face t... 1 \n",
"\n",
"[6 rows x 22 columns]"
]
},
"execution_count": 24,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"looking = death_row[death_row[\"time_spent\"] == 1]\n",
"looking\n",
"#double checking that the data is correct, as 1 year is a small amount of time spent on death row. \n",
"#There were a few records that were incorrect based on data entry from the website we scraped. Those records were updated. "
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" last_name \n",
" first_name \n",
" age_received \n",
" education_level \n",
" age_crime \n",
" occupation \n",
" prior_record \n",
" num_of_vic \n",
" main_crime \n",
" type_of_crime \n",
" ... \n",
" race_vic \n",
" vic_kid \n",
" vic_male \n",
" vic_female \n",
" vic_police \n",
" age \n",
" race \n",
" county \n",
" last_statement \n",
" time_spent \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" Hall \n",
" Justen \n",
" 23 \n",
" some_highschool \n",
" 21 \n",
" laborer \n",
" yes \n",
" 1 \n",
" murder \n",
" strangling \n",
" ... \n",
" unkown \n",
" 0 \n",
" 0 \n",
" 1 \n",
" no \n",
" 38 \n",
" White \n",
" El Paso \n",
" Yeah, I want to address the Roundtree family ... \n",
" 15 \n",
" \n",
" \n",
" 1 \n",
" Sparks \n",
" Robert \n",
" 34 \n",
" no_highschool \n",
" 33 \n",
" machine operator \n",
" yes \n",
" 3 \n",
" murder \n",
" stabbing \n",
" ... \n",
" black \n",
" 2 \n",
" 2 \n",
" 1 \n",
" no \n",
" 45 \n",
" Black \n",
" Dallas \n",
" Umm, Pamela can you hear me Stephanie, Hardy,... \n",
" 11 \n",
" \n",
" \n",
" 2 \n",
" Soliz \n",
" Mark \n",
" 30 \n",
" no_highschool \n",
" 28 \n",
" cabinet maker \n",
" yes \n",
" 1 \n",
" murder, robbery \n",
" shooting \n",
" ... \n",
" white \n",
" 0 \n",
" 0 \n",
" 1 \n",
" no \n",
" 37 \n",
" Hispanic \n",
" Johnson \n",
" It's 6:09 on September 10th, Kayla and David,... \n",
" 7 \n",
" \n",
" \n",
" 3 \n",
" Crutsinger \n",
" Billy \n",
" 49 \n",
" some_highschool \n",
" 48 \n",
" laborer \n",
" yes \n",
" 2 \n",
" murder \n",
" stabbing \n",
" ... \n",
" white \n",
" 0 \n",
" 0 \n",
" 2 \n",
" no \n",
" 64 \n",
" White \n",
" Tarrant \n",
" Hi ladies I wanted to tell ya'll how much I l... \n",
" 15 \n",
" \n",
" \n",
" 4 \n",
" Swearingen \n",
" Larry \n",
" 29 \n",
" some_highschool \n",
" 27 \n",
" laborer \n",
" yes \n",
" 1 \n",
" murder, kidnapping \n",
" strangling \n",
" ... \n",
" white \n",
" 0 \n",
" 0 \n",
" 1 \n",
" no \n",
" 48 \n",
" White \n",
" Montgomery \n",
" Lord forgive them. They don't know what they ... \n",
" 19 \n",
" \n",
" \n",
"
\n",
"
5 rows × 22 columns
\n",
"
"
],
"text/plain": [
" last_name first_name age_received education_level age_crime \\\n",
"0 Hall Justen 23 some_highschool 21 \n",
"1 Sparks Robert 34 no_highschool 33 \n",
"2 Soliz Mark 30 no_highschool 28 \n",
"3 Crutsinger Billy 49 some_highschool 48 \n",
"4 Swearingen Larry 29 some_highschool 27 \n",
"\n",
" occupation prior_record num_of_vic main_crime \\\n",
"0 laborer yes 1 murder \n",
"1 machine operator yes 3 murder \n",
"2 cabinet maker yes 1 murder, robbery \n",
"3 laborer yes 2 murder \n",
"4 laborer yes 1 murder, kidnapping \n",
"\n",
" type_of_crime ... race_vic vic_kid vic_male vic_female vic_police age \\\n",
"0 strangling ... unkown 0 0 1 no 38 \n",
"1 stabbing ... black 2 2 1 no 45 \n",
"2 shooting ... white 0 0 1 no 37 \n",
"3 stabbing ... white 0 0 2 no 64 \n",
"4 strangling ... white 0 0 1 no 48 \n",
"\n",
" race county last_statement \\\n",
"0 White El Paso Yeah, I want to address the Roundtree family ... \n",
"1 Black Dallas Umm, Pamela can you hear me Stephanie, Hardy,... \n",
"2 Hispanic Johnson It's 6:09 on September 10th, Kayla and David,... \n",
"3 White Tarrant Hi ladies I wanted to tell ya'll how much I l... \n",
"4 White Montgomery Lord forgive them. They don't know what they ... \n",
"\n",
" time_spent \n",
"0 15 \n",
"1 11 \n",
"2 7 \n",
"3 15 \n",
"4 19 \n",
"\n",
"[5 rows x 22 columns]"
]
},
"execution_count": 25,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"death_row.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### On further thought, since all of the columns except for last_statement are different labels. I am going to discretize everything. "
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" age_received \n",
" age_crime \n",
" num_of_vic \n",
" co_defendants \n",
" vic_kid \n",
" vic_male \n",
" vic_female \n",
" age \n",
" time_spent \n",
" \n",
" \n",
" \n",
" \n",
" count \n",
" 566 \n",
" 566 \n",
" 566 \n",
" 566 \n",
" 566 \n",
" 566 \n",
" 566 \n",
" 566 \n",
" 566 \n",
" \n",
" \n",
" mean \n",
" 29 \n",
" 27 \n",
" 2 \n",
" 1 \n",
" 0 \n",
" 1 \n",
" 1 \n",
" 40 \n",
" 11 \n",
" \n",
" \n",
" std \n",
" 8 \n",
" 8 \n",
" 1 \n",
" 1 \n",
" 1 \n",
" 1 \n",
" 1 \n",
" 9 \n",
" 5 \n",
" \n",
" \n",
" min \n",
" 17 \n",
" 17 \n",
" 1 \n",
" 0 \n",
" 0 \n",
" 0 \n",
" 0 \n",
" 24 \n",
" -1 \n",
" \n",
" \n",
" 25% \n",
" 22 \n",
" 21 \n",
" 1 \n",
" 0 \n",
" 0 \n",
" 0 \n",
" 0 \n",
" 33 \n",
" 8 \n",
" \n",
" \n",
" 50% \n",
" 27 \n",
" 25 \n",
" 1 \n",
" 0 \n",
" 0 \n",
" 1 \n",
" 1 \n",
" 38 \n",
" 11 \n",
" \n",
" \n",
" 75% \n",
" 33 \n",
" 32 \n",
" 2 \n",
" 1 \n",
" 0 \n",
" 1 \n",
" 1 \n",
" 45 \n",
" 13 \n",
" \n",
" \n",
" max \n",
" 57 \n",
" 56 \n",
" 15 \n",
" 9 \n",
" 5 \n",
" 5 \n",
" 15 \n",
" 70 \n",
" 32 \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" age_received age_crime num_of_vic co_defendants vic_kid vic_male \\\n",
"count 566 566 566 566 566 566 \n",
"mean 29 27 2 1 0 1 \n",
"std 8 8 1 1 1 1 \n",
"min 17 17 1 0 0 0 \n",
"25% 22 21 1 0 0 0 \n",
"50% 27 25 1 0 0 1 \n",
"75% 33 32 2 1 0 1 \n",
"max 57 56 15 9 5 5 \n",
"\n",
" vic_female age time_spent \n",
"count 566 566 566 \n",
"mean 1 40 11 \n",
"std 1 9 5 \n",
"min 0 24 -1 \n",
"25% 0 33 8 \n",
"50% 1 38 11 \n",
"75% 1 45 13 \n",
"max 15 70 32 "
]
},
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"death_row.describe()"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"count 566\n",
"mean 29\n",
"std 8\n",
"min 17\n",
"25% 22\n",
"50% 27\n",
"75% 33\n",
"max 57\n",
"Name: age_received, dtype: float64"
]
},
"execution_count": 27,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"death_row.age_received.describe()"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [],
"source": [
"categories = [\"teens\", \"twenties\", \"thirty+\"]\n",
"death_row[\"age_received\"] = pd.cut(death_row[\"age_received\"], [0, 19, 29, 99], labels = categories)\n",
"death_row[\"age_crime\"] = pd.cut(death_row[\"age_crime\"], [0, 19, 29, 99], labels = categories)"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" last_name \n",
" first_name \n",
" age_received \n",
" education_level \n",
" age_crime \n",
" occupation \n",
" prior_record \n",
" num_of_vic \n",
" main_crime \n",
" type_of_crime \n",
" ... \n",
" race_vic \n",
" vic_kid \n",
" vic_male \n",
" vic_female \n",
" vic_police \n",
" age \n",
" race \n",
" county \n",
" last_statement \n",
" time_spent \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" Hall \n",
" Justen \n",
" twenties \n",
" some_highschool \n",
" twenties \n",
" laborer \n",
" yes \n",
" 1 \n",
" murder \n",
" strangling \n",
" ... \n",
" unkown \n",
" 0 \n",
" 0 \n",
" 1 \n",
" no \n",
" 38 \n",
" White \n",
" El Paso \n",
" Yeah, I want to address the Roundtree family ... \n",
" 15 \n",
" \n",
" \n",
" 1 \n",
" Sparks \n",
" Robert \n",
" thirty+ \n",
" no_highschool \n",
" thirty+ \n",
" machine operator \n",
" yes \n",
" 3 \n",
" murder \n",
" stabbing \n",
" ... \n",
" black \n",
" 2 \n",
" 2 \n",
" 1 \n",
" no \n",
" 45 \n",
" Black \n",
" Dallas \n",
" Umm, Pamela can you hear me Stephanie, Hardy,... \n",
" 11 \n",
" \n",
" \n",
" 2 \n",
" Soliz \n",
" Mark \n",
" thirty+ \n",
" no_highschool \n",
" twenties \n",
" cabinet maker \n",
" yes \n",
" 1 \n",
" murder, robbery \n",
" shooting \n",
" ... \n",
" white \n",
" 0 \n",
" 0 \n",
" 1 \n",
" no \n",
" 37 \n",
" Hispanic \n",
" Johnson \n",
" It's 6:09 on September 10th, Kayla and David,... \n",
" 7 \n",
" \n",
" \n",
" 3 \n",
" Crutsinger \n",
" Billy \n",
" thirty+ \n",
" some_highschool \n",
" thirty+ \n",
" laborer \n",
" yes \n",
" 2 \n",
" murder \n",
" stabbing \n",
" ... \n",
" white \n",
" 0 \n",
" 0 \n",
" 2 \n",
" no \n",
" 64 \n",
" White \n",
" Tarrant \n",
" Hi ladies I wanted to tell ya'll how much I l... \n",
" 15 \n",
" \n",
" \n",
" 4 \n",
" Swearingen \n",
" Larry \n",
" twenties \n",
" some_highschool \n",
" twenties \n",
" laborer \n",
" yes \n",
" 1 \n",
" murder, kidnapping \n",
" strangling \n",
" ... \n",
" white \n",
" 0 \n",
" 0 \n",
" 1 \n",
" no \n",
" 48 \n",
" White \n",
" Montgomery \n",
" Lord forgive them. They don't know what they ... \n",
" 19 \n",
" \n",
" \n",
"
\n",
"
5 rows × 22 columns
\n",
"
"
],
"text/plain": [
" last_name first_name age_received education_level age_crime \\\n",
"0 Hall Justen twenties some_highschool twenties \n",
"1 Sparks Robert thirty+ no_highschool thirty+ \n",
"2 Soliz Mark thirty+ no_highschool twenties \n",
"3 Crutsinger Billy thirty+ some_highschool thirty+ \n",
"4 Swearingen Larry twenties some_highschool twenties \n",
"\n",
" occupation prior_record num_of_vic main_crime \\\n",
"0 laborer yes 1 murder \n",
"1 machine operator yes 3 murder \n",
"2 cabinet maker yes 1 murder, robbery \n",
"3 laborer yes 2 murder \n",
"4 laborer yes 1 murder, kidnapping \n",
"\n",
" type_of_crime ... race_vic vic_kid vic_male vic_female vic_police age \\\n",
"0 strangling ... unkown 0 0 1 no 38 \n",
"1 stabbing ... black 2 2 1 no 45 \n",
"2 shooting ... white 0 0 1 no 37 \n",
"3 stabbing ... white 0 0 2 no 64 \n",
"4 strangling ... white 0 0 1 no 48 \n",
"\n",
" race county last_statement \\\n",
"0 White El Paso Yeah, I want to address the Roundtree family ... \n",
"1 Black Dallas Umm, Pamela can you hear me Stephanie, Hardy,... \n",
"2 Hispanic Johnson It's 6:09 on September 10th, Kayla and David,... \n",
"3 White Tarrant Hi ladies I wanted to tell ya'll how much I l... \n",
"4 White Montgomery Lord forgive them. They don't know what they ... \n",
"\n",
" time_spent \n",
"0 15 \n",
"1 11 \n",
"2 7 \n",
"3 15 \n",
"4 19 \n",
"\n",
"[5 rows x 22 columns]"
]
},
"execution_count": 29,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"death_row.head()"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"count 566\n",
"mean 2\n",
"std 1\n",
"min 1\n",
"25% 1\n",
"50% 1\n",
"75% 2\n",
"max 15\n",
"Name: num_of_vic, dtype: float64"
]
},
"execution_count": 30,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"death_row.num_of_vic.describe()"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {},
"outputs": [],
"source": [
"categories = [\"one\", \"two+\"]\n",
"death_row[\"num_of_vic\"] = pd.cut(death_row[\"num_of_vic\"], [0,1,99], labels = categories)"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" last_name \n",
" first_name \n",
" age_received \n",
" education_level \n",
" age_crime \n",
" occupation \n",
" prior_record \n",
" num_of_vic \n",
" main_crime \n",
" type_of_crime \n",
" ... \n",
" race_vic \n",
" vic_kid \n",
" vic_male \n",
" vic_female \n",
" vic_police \n",
" age \n",
" race \n",
" county \n",
" last_statement \n",
" time_spent \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" Hall \n",
" Justen \n",
" twenties \n",
" some_highschool \n",
" twenties \n",
" laborer \n",
" yes \n",
" one \n",
" murder \n",
" strangling \n",
" ... \n",
" unkown \n",
" 0 \n",
" 0 \n",
" 1 \n",
" no \n",
" 38 \n",
" White \n",
" El Paso \n",
" Yeah, I want to address the Roundtree family ... \n",
" 15 \n",
" \n",
" \n",
" 1 \n",
" Sparks \n",
" Robert \n",
" thirty+ \n",
" no_highschool \n",
" thirty+ \n",
" machine operator \n",
" yes \n",
" two+ \n",
" murder \n",
" stabbing \n",
" ... \n",
" black \n",
" 2 \n",
" 2 \n",
" 1 \n",
" no \n",
" 45 \n",
" Black \n",
" Dallas \n",
" Umm, Pamela can you hear me Stephanie, Hardy,... \n",
" 11 \n",
" \n",
" \n",
" 2 \n",
" Soliz \n",
" Mark \n",
" thirty+ \n",
" no_highschool \n",
" twenties \n",
" cabinet maker \n",
" yes \n",
" one \n",
" murder, robbery \n",
" shooting \n",
" ... \n",
" white \n",
" 0 \n",
" 0 \n",
" 1 \n",
" no \n",
" 37 \n",
" Hispanic \n",
" Johnson \n",
" It's 6:09 on September 10th, Kayla and David,... \n",
" 7 \n",
" \n",
" \n",
" 3 \n",
" Crutsinger \n",
" Billy \n",
" thirty+ \n",
" some_highschool \n",
" thirty+ \n",
" laborer \n",
" yes \n",
" two+ \n",
" murder \n",
" stabbing \n",
" ... \n",
" white \n",
" 0 \n",
" 0 \n",
" 2 \n",
" no \n",
" 64 \n",
" White \n",
" Tarrant \n",
" Hi ladies I wanted to tell ya'll how much I l... \n",
" 15 \n",
" \n",
" \n",
" 4 \n",
" Swearingen \n",
" Larry \n",
" twenties \n",
" some_highschool \n",
" twenties \n",
" laborer \n",
" yes \n",
" one \n",
" murder, kidnapping \n",
" strangling \n",
" ... \n",
" white \n",
" 0 \n",
" 0 \n",
" 1 \n",
" no \n",
" 48 \n",
" White \n",
" Montgomery \n",
" Lord forgive them. They don't know what they ... \n",
" 19 \n",
" \n",
" \n",
"
\n",
"
5 rows × 22 columns
\n",
"
"
],
"text/plain": [
" last_name first_name age_received education_level age_crime \\\n",
"0 Hall Justen twenties some_highschool twenties \n",
"1 Sparks Robert thirty+ no_highschool thirty+ \n",
"2 Soliz Mark thirty+ no_highschool twenties \n",
"3 Crutsinger Billy thirty+ some_highschool thirty+ \n",
"4 Swearingen Larry twenties some_highschool twenties \n",
"\n",
" occupation prior_record num_of_vic main_crime type_of_crime \\\n",
"0 laborer yes one murder strangling \n",
"1 machine operator yes two+ murder stabbing \n",
"2 cabinet maker yes one murder, robbery shooting \n",
"3 laborer yes two+ murder stabbing \n",
"4 laborer yes one murder, kidnapping strangling \n",
"\n",
" ... race_vic vic_kid vic_male vic_female vic_police age race \\\n",
"0 ... unkown 0 0 1 no 38 White \n",
"1 ... black 2 2 1 no 45 Black \n",
"2 ... white 0 0 1 no 37 Hispanic \n",
"3 ... white 0 0 2 no 64 White \n",
"4 ... white 0 0 1 no 48 White \n",
"\n",
" county last_statement time_spent \n",
"0 El Paso Yeah, I want to address the Roundtree family ... 15 \n",
"1 Dallas Umm, Pamela can you hear me Stephanie, Hardy,... 11 \n",
"2 Johnson It's 6:09 on September 10th, Kayla and David,... 7 \n",
"3 Tarrant Hi ladies I wanted to tell ya'll how much I l... 15 \n",
"4 Montgomery Lord forgive them. They don't know what they ... 19 \n",
"\n",
"[5 rows x 22 columns]"
]
},
"execution_count": 32,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"death_row.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Before discretizing vic_kid, vic_male, vic_female I am going to get a count of the total number of victims for each column"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The number of children victims is 154.0\n",
"The number of male victims is 458.0\n",
"The number of female victims is 466.0\n"
]
}
],
"source": [
"sum_kid_victims = death_row.vic_kid.sum(axis = 0, skipna = True).round()\n",
"print(\"The number of children victims is\", sum_kid_victims)\n",
"sum_male_victims = death_row.vic_male.sum(axis = 0, skipna = True).round()\n",
"print(\"The number of male victims is\", sum_male_victims)\n",
"sum_female_victims = death_row.vic_female.sum(axis = 0, skipna = True).round()\n",
"print(\"The number of female victims is\", sum_female_victims)"
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {},
"outputs": [],
"source": [
"# #Changing vic_kid, vic_male, vic_female back to object \n",
"# columns = [\"vic_kid\", \"vic_male\", \"vic_female\"]\n",
"# for column in columns: \n",
"# death_row[column] = death_row[column].astype(\"object\")"
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"last_name category\n",
"first_name category\n",
"age_received category\n",
"education_level category\n",
"age_crime category\n",
"occupation category\n",
"prior_record category\n",
"num_of_vic category\n",
"main_crime category\n",
"type_of_crime category\n",
"weapon category\n",
"co_defendants float64\n",
"race_vic category\n",
"vic_kid float64\n",
"vic_male float64\n",
"vic_female float64\n",
"vic_police category\n",
"age int64\n",
"race category\n",
"county category\n",
"last_statement object\n",
"time_spent float64\n",
"dtype: object"
]
},
"execution_count": 35,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"death_row.dtypes"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0 460\n",
"1 67\n",
"2 30\n",
"3 6\n",
"0 1\n",
"5 1\n",
"4 1\n",
"Name: vic_kid, dtype: int64"
]
},
"execution_count": 36,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"death_row.vic_kid.value_counts()"
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {},
"outputs": [],
"source": [
"# numeric_columns = [\"vic_kid\", \"vic_male\", \"vic_female\"]\n",
"# death_row[numeric_columns] = death_row[numeric_columns].apply(pd.to_numeric)"
]
},
{
"cell_type": "code",
"execution_count": 38,
"metadata": {},
"outputs": [],
"source": [
"categories = [\"no\", \"yes\"]\n",
"death_row[\"vic_kid\"] = pd.cut(death_row[\"vic_kid\"], [-1, 0, 99], labels = categories)"
]
},
{
"cell_type": "code",
"execution_count": 39,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" last_name \n",
" first_name \n",
" age_received \n",
" education_level \n",
" age_crime \n",
" occupation \n",
" prior_record \n",
" num_of_vic \n",
" main_crime \n",
" type_of_crime \n",
" ... \n",
" race_vic \n",
" vic_kid \n",
" vic_male \n",
" vic_female \n",
" vic_police \n",
" age \n",
" race \n",
" county \n",
" last_statement \n",
" time_spent \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" Hall \n",
" Justen \n",
" twenties \n",
" some_highschool \n",
" twenties \n",
" laborer \n",
" yes \n",
" one \n",
" murder \n",
" strangling \n",
" ... \n",
" unkown \n",
" no \n",
" 0 \n",
" 1 \n",
" no \n",
" 38 \n",
" White \n",
" El Paso \n",
" Yeah, I want to address the Roundtree family ... \n",
" 15 \n",
" \n",
" \n",
" 1 \n",
" Sparks \n",
" Robert \n",
" thirty+ \n",
" no_highschool \n",
" thirty+ \n",
" machine operator \n",
" yes \n",
" two+ \n",
" murder \n",
" stabbing \n",
" ... \n",
" black \n",
" yes \n",
" 2 \n",
" 1 \n",
" no \n",
" 45 \n",
" Black \n",
" Dallas \n",
" Umm, Pamela can you hear me Stephanie, Hardy,... \n",
" 11 \n",
" \n",
" \n",
" 2 \n",
" Soliz \n",
" Mark \n",
" thirty+ \n",
" no_highschool \n",
" twenties \n",
" cabinet maker \n",
" yes \n",
" one \n",
" murder, robbery \n",
" shooting \n",
" ... \n",
" white \n",
" no \n",
" 0 \n",
" 1 \n",
" no \n",
" 37 \n",
" Hispanic \n",
" Johnson \n",
" It's 6:09 on September 10th, Kayla and David,... \n",
" 7 \n",
" \n",
" \n",
" 3 \n",
" Crutsinger \n",
" Billy \n",
" thirty+ \n",
" some_highschool \n",
" thirty+ \n",
" laborer \n",
" yes \n",
" two+ \n",
" murder \n",
" stabbing \n",
" ... \n",
" white \n",
" no \n",
" 0 \n",
" 2 \n",
" no \n",
" 64 \n",
" White \n",
" Tarrant \n",
" Hi ladies I wanted to tell ya'll how much I l... \n",
" 15 \n",
" \n",
" \n",
" 4 \n",
" Swearingen \n",
" Larry \n",
" twenties \n",
" some_highschool \n",
" twenties \n",
" laborer \n",
" yes \n",
" one \n",
" murder, kidnapping \n",
" strangling \n",
" ... \n",
" white \n",
" no \n",
" 0 \n",
" 1 \n",
" no \n",
" 48 \n",
" White \n",
" Montgomery \n",
" Lord forgive them. They don't know what they ... \n",
" 19 \n",
" \n",
" \n",
"
\n",
"
5 rows × 22 columns
\n",
"
"
],
"text/plain": [
" last_name first_name age_received education_level age_crime \\\n",
"0 Hall Justen twenties some_highschool twenties \n",
"1 Sparks Robert thirty+ no_highschool thirty+ \n",
"2 Soliz Mark thirty+ no_highschool twenties \n",
"3 Crutsinger Billy thirty+ some_highschool thirty+ \n",
"4 Swearingen Larry twenties some_highschool twenties \n",
"\n",
" occupation prior_record num_of_vic main_crime type_of_crime \\\n",
"0 laborer yes one murder strangling \n",
"1 machine operator yes two+ murder stabbing \n",
"2 cabinet maker yes one murder, robbery shooting \n",
"3 laborer yes two+ murder stabbing \n",
"4 laborer yes one murder, kidnapping strangling \n",
"\n",
" ... race_vic vic_kid vic_male vic_female vic_police age race \\\n",
"0 ... unkown no 0 1 no 38 White \n",
"1 ... black yes 2 1 no 45 Black \n",
"2 ... white no 0 1 no 37 Hispanic \n",
"3 ... white no 0 2 no 64 White \n",
"4 ... white no 0 1 no 48 White \n",
"\n",
" county last_statement time_spent \n",
"0 El Paso Yeah, I want to address the Roundtree family ... 15 \n",
"1 Dallas Umm, Pamela can you hear me Stephanie, Hardy,... 11 \n",
"2 Johnson It's 6:09 on September 10th, Kayla and David,... 7 \n",
"3 Tarrant Hi ladies I wanted to tell ya'll how much I l... 15 \n",
"4 Montgomery Lord forgive them. They don't know what they ... 19 \n",
"\n",
"[5 rows x 22 columns]"
]
},
"execution_count": 39,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"death_row.head()"
]
},
{
"cell_type": "code",
"execution_count": 40,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" last_name \n",
" first_name \n",
" age_received \n",
" education_level \n",
" age_crime \n",
" occupation \n",
" prior_record \n",
" num_of_vic \n",
" main_crime \n",
" type_of_crime \n",
" ... \n",
" race_vic \n",
" vic_kid \n",
" vic_male \n",
" vic_female \n",
" vic_police \n",
" age \n",
" race \n",
" county \n",
" last_statement \n",
" time_spent \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" Hall \n",
" Justen \n",
" twenties \n",
" some_highschool \n",
" twenties \n",
" laborer \n",
" yes \n",
" one \n",
" murder \n",
" strangling \n",
" ... \n",
" unkown \n",
" no \n",
" no \n",
" yes \n",
" no \n",
" 38 \n",
" White \n",
" El Paso \n",
" Yeah, I want to address the Roundtree family ... \n",
" 15 \n",
" \n",
" \n",
" 1 \n",
" Sparks \n",
" Robert \n",
" thirty+ \n",
" no_highschool \n",
" thirty+ \n",
" machine operator \n",
" yes \n",
" two+ \n",
" murder \n",
" stabbing \n",
" ... \n",
" black \n",
" yes \n",
" yes \n",
" yes \n",
" no \n",
" 45 \n",
" Black \n",
" Dallas \n",
" Umm, Pamela can you hear me Stephanie, Hardy,... \n",
" 11 \n",
" \n",
" \n",
" 2 \n",
" Soliz \n",
" Mark \n",
" thirty+ \n",
" no_highschool \n",
" twenties \n",
" cabinet maker \n",
" yes \n",
" one \n",
" murder, robbery \n",
" shooting \n",
" ... \n",
" white \n",
" no \n",
" no \n",
" yes \n",
" no \n",
" 37 \n",
" Hispanic \n",
" Johnson \n",
" It's 6:09 on September 10th, Kayla and David,... \n",
" 7 \n",
" \n",
" \n",
" 3 \n",
" Crutsinger \n",
" Billy \n",
" thirty+ \n",
" some_highschool \n",
" thirty+ \n",
" laborer \n",
" yes \n",
" two+ \n",
" murder \n",
" stabbing \n",
" ... \n",
" white \n",
" no \n",
" no \n",
" yes \n",
" no \n",
" 64 \n",
" White \n",
" Tarrant \n",
" Hi ladies I wanted to tell ya'll how much I l... \n",
" 15 \n",
" \n",
" \n",
" 4 \n",
" Swearingen \n",
" Larry \n",
" twenties \n",
" some_highschool \n",
" twenties \n",
" laborer \n",
" yes \n",
" one \n",
" murder, kidnapping \n",
" strangling \n",
" ... \n",
" white \n",
" no \n",
" no \n",
" yes \n",
" no \n",
" 48 \n",
" White \n",
" Montgomery \n",
" Lord forgive them. They don't know what they ... \n",
" 19 \n",
" \n",
" \n",
"
\n",
"
5 rows × 22 columns
\n",
"
"
],
"text/plain": [
" last_name first_name age_received education_level age_crime \\\n",
"0 Hall Justen twenties some_highschool twenties \n",
"1 Sparks Robert thirty+ no_highschool thirty+ \n",
"2 Soliz Mark thirty+ no_highschool twenties \n",
"3 Crutsinger Billy thirty+ some_highschool thirty+ \n",
"4 Swearingen Larry twenties some_highschool twenties \n",
"\n",
" occupation prior_record num_of_vic main_crime type_of_crime \\\n",
"0 laborer yes one murder strangling \n",
"1 machine operator yes two+ murder stabbing \n",
"2 cabinet maker yes one murder, robbery shooting \n",
"3 laborer yes two+ murder stabbing \n",
"4 laborer yes one murder, kidnapping strangling \n",
"\n",
" ... race_vic vic_kid vic_male vic_female vic_police age race \\\n",
"0 ... unkown no no yes no 38 White \n",
"1 ... black yes yes yes no 45 Black \n",
"2 ... white no no yes no 37 Hispanic \n",
"3 ... white no no yes no 64 White \n",
"4 ... white no no yes no 48 White \n",
"\n",
" county last_statement time_spent \n",
"0 El Paso Yeah, I want to address the Roundtree family ... 15 \n",
"1 Dallas Umm, Pamela can you hear me Stephanie, Hardy,... 11 \n",
"2 Johnson It's 6:09 on September 10th, Kayla and David,... 7 \n",
"3 Tarrant Hi ladies I wanted to tell ya'll how much I l... 15 \n",
"4 Montgomery Lord forgive them. They don't know what they ... 19 \n",
"\n",
"[5 rows x 22 columns]"
]
},
"execution_count": 40,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"death_row[\"vic_male\"] = pd.cut(death_row[\"vic_male\"], [-1, 0, 99], labels = categories)\n",
"death_row[\"vic_female\"] = pd.cut(death_row[\"vic_female\"], [-1, 0, 99], labels = categories)\n",
"death_row.head()"
]
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"count 566\n",
"mean 11\n",
"std 5\n",
"min -1\n",
"25% 8\n",
"50% 11\n",
"75% 13\n",
"max 32\n",
"Name: time_spent, dtype: float64"
]
},
"execution_count": 41,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"death_row.time_spent.describe()"
]
},
{
"cell_type": "code",
"execution_count": 42,
"metadata": {},
"outputs": [],
"source": [
"categories = [\"10_or_less\", \"10+\"]\n",
"death_row[\"time_spent\"] = pd.cut(death_row[\"time_spent\"], [-1, 10, 99], labels = categories)"
]
},
{
"cell_type": "code",
"execution_count": 43,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" last_name \n",
" first_name \n",
" age_received \n",
" education_level \n",
" age_crime \n",
" occupation \n",
" prior_record \n",
" num_of_vic \n",
" main_crime \n",
" type_of_crime \n",
" ... \n",
" race_vic \n",
" vic_kid \n",
" vic_male \n",
" vic_female \n",
" vic_police \n",
" age \n",
" race \n",
" county \n",
" last_statement \n",
" time_spent \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" Hall \n",
" Justen \n",
" twenties \n",
" some_highschool \n",
" twenties \n",
" laborer \n",
" yes \n",
" one \n",
" murder \n",
" strangling \n",
" ... \n",
" unkown \n",
" no \n",
" no \n",
" yes \n",
" no \n",
" 38 \n",
" White \n",
" El Paso \n",
" Yeah, I want to address the Roundtree family ... \n",
" 10+ \n",
" \n",
" \n",
" 1 \n",
" Sparks \n",
" Robert \n",
" thirty+ \n",
" no_highschool \n",
" thirty+ \n",
" machine operator \n",
" yes \n",
" two+ \n",
" murder \n",
" stabbing \n",
" ... \n",
" black \n",
" yes \n",
" yes \n",
" yes \n",
" no \n",
" 45 \n",
" Black \n",
" Dallas \n",
" Umm, Pamela can you hear me Stephanie, Hardy,... \n",
" 10+ \n",
" \n",
" \n",
" 2 \n",
" Soliz \n",
" Mark \n",
" thirty+ \n",
" no_highschool \n",
" twenties \n",
" cabinet maker \n",
" yes \n",
" one \n",
" murder, robbery \n",
" shooting \n",
" ... \n",
" white \n",
" no \n",
" no \n",
" yes \n",
" no \n",
" 37 \n",
" Hispanic \n",
" Johnson \n",
" It's 6:09 on September 10th, Kayla and David,... \n",
" 10_or_less \n",
" \n",
" \n",
" 3 \n",
" Crutsinger \n",
" Billy \n",
" thirty+ \n",
" some_highschool \n",
" thirty+ \n",
" laborer \n",
" yes \n",
" two+ \n",
" murder \n",
" stabbing \n",
" ... \n",
" white \n",
" no \n",
" no \n",
" yes \n",
" no \n",
" 64 \n",
" White \n",
" Tarrant \n",
" Hi ladies I wanted to tell ya'll how much I l... \n",
" 10+ \n",
" \n",
" \n",
" 4 \n",
" Swearingen \n",
" Larry \n",
" twenties \n",
" some_highschool \n",
" twenties \n",
" laborer \n",
" yes \n",
" one \n",
" murder, kidnapping \n",
" strangling \n",
" ... \n",
" white \n",
" no \n",
" no \n",
" yes \n",
" no \n",
" 48 \n",
" White \n",
" Montgomery \n",
" Lord forgive them. They don't know what they ... \n",
" 10+ \n",
" \n",
" \n",
"
\n",
"
5 rows × 22 columns
\n",
"
"
],
"text/plain": [
" last_name first_name age_received education_level age_crime \\\n",
"0 Hall Justen twenties some_highschool twenties \n",
"1 Sparks Robert thirty+ no_highschool thirty+ \n",
"2 Soliz Mark thirty+ no_highschool twenties \n",
"3 Crutsinger Billy thirty+ some_highschool thirty+ \n",
"4 Swearingen Larry twenties some_highschool twenties \n",
"\n",
" occupation prior_record num_of_vic main_crime type_of_crime \\\n",
"0 laborer yes one murder strangling \n",
"1 machine operator yes two+ murder stabbing \n",
"2 cabinet maker yes one murder, robbery shooting \n",
"3 laborer yes two+ murder stabbing \n",
"4 laborer yes one murder, kidnapping strangling \n",
"\n",
" ... race_vic vic_kid vic_male vic_female vic_police age race \\\n",
"0 ... unkown no no yes no 38 White \n",
"1 ... black yes yes yes no 45 Black \n",
"2 ... white no no yes no 37 Hispanic \n",
"3 ... white no no yes no 64 White \n",
"4 ... white no no yes no 48 White \n",
"\n",
" county last_statement time_spent \n",
"0 El Paso Yeah, I want to address the Roundtree family ... 10+ \n",
"1 Dallas Umm, Pamela can you hear me Stephanie, Hardy,... 10+ \n",
"2 Johnson It's 6:09 on September 10th, Kayla and David,... 10_or_less \n",
"3 Tarrant Hi ladies I wanted to tell ya'll how much I l... 10+ \n",
"4 Montgomery Lord forgive them. They don't know what they ... 10+ \n",
"\n",
"[5 rows x 22 columns]"
]
},
"execution_count": 43,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"death_row.head()"
]
},
{
"cell_type": "code",
"execution_count": 44,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"count 566\n",
"mean 40\n",
"std 9\n",
"min 24\n",
"25% 33\n",
"50% 38\n",
"75% 45\n",
"max 70\n",
"Name: age, dtype: float64"
]
},
"execution_count": 44,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"death_row.age.describe()"
]
},
{
"cell_type": "code",
"execution_count": 45,
"metadata": {},
"outputs": [],
"source": [
"categories = [\"18-34\", \"35-45\", \"45+\"]\n",
"death_row[\"age\"] = pd.cut(death_row[\"age\"], [18, 34, 45, 99], labels = categories)"
]
},
{
"cell_type": "code",
"execution_count": 46,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" last_name \n",
" first_name \n",
" age_received \n",
" education_level \n",
" age_crime \n",
" occupation \n",
" prior_record \n",
" num_of_vic \n",
" main_crime \n",
" type_of_crime \n",
" ... \n",
" race_vic \n",
" vic_kid \n",
" vic_male \n",
" vic_female \n",
" vic_police \n",
" age \n",
" race \n",
" county \n",
" last_statement \n",
" time_spent \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" Hall \n",
" Justen \n",
" twenties \n",
" some_highschool \n",
" twenties \n",
" laborer \n",
" yes \n",
" one \n",
" murder \n",
" strangling \n",
" ... \n",
" unkown \n",
" no \n",
" no \n",
" yes \n",
" no \n",
" 35-45 \n",
" White \n",
" El Paso \n",
" Yeah, I want to address the Roundtree family ... \n",
" 10+ \n",
" \n",
" \n",
" 1 \n",
" Sparks \n",
" Robert \n",
" thirty+ \n",
" no_highschool \n",
" thirty+ \n",
" machine operator \n",
" yes \n",
" two+ \n",
" murder \n",
" stabbing \n",
" ... \n",
" black \n",
" yes \n",
" yes \n",
" yes \n",
" no \n",
" 35-45 \n",
" Black \n",
" Dallas \n",
" Umm, Pamela can you hear me Stephanie, Hardy,... \n",
" 10+ \n",
" \n",
" \n",
" 2 \n",
" Soliz \n",
" Mark \n",
" thirty+ \n",
" no_highschool \n",
" twenties \n",
" cabinet maker \n",
" yes \n",
" one \n",
" murder, robbery \n",
" shooting \n",
" ... \n",
" white \n",
" no \n",
" no \n",
" yes \n",
" no \n",
" 35-45 \n",
" Hispanic \n",
" Johnson \n",
" It's 6:09 on September 10th, Kayla and David,... \n",
" 10_or_less \n",
" \n",
" \n",
" 3 \n",
" Crutsinger \n",
" Billy \n",
" thirty+ \n",
" some_highschool \n",
" thirty+ \n",
" laborer \n",
" yes \n",
" two+ \n",
" murder \n",
" stabbing \n",
" ... \n",
" white \n",
" no \n",
" no \n",
" yes \n",
" no \n",
" 45+ \n",
" White \n",
" Tarrant \n",
" Hi ladies I wanted to tell ya'll how much I l... \n",
" 10+ \n",
" \n",
" \n",
" 4 \n",
" Swearingen \n",
" Larry \n",
" twenties \n",
" some_highschool \n",
" twenties \n",
" laborer \n",
" yes \n",
" one \n",
" murder, kidnapping \n",
" strangling \n",
" ... \n",
" white \n",
" no \n",
" no \n",
" yes \n",
" no \n",
" 45+ \n",
" White \n",
" Montgomery \n",
" Lord forgive them. They don't know what they ... \n",
" 10+ \n",
" \n",
" \n",
"
\n",
"
5 rows × 22 columns
\n",
"
"
],
"text/plain": [
" last_name first_name age_received education_level age_crime \\\n",
"0 Hall Justen twenties some_highschool twenties \n",
"1 Sparks Robert thirty+ no_highschool thirty+ \n",
"2 Soliz Mark thirty+ no_highschool twenties \n",
"3 Crutsinger Billy thirty+ some_highschool thirty+ \n",
"4 Swearingen Larry twenties some_highschool twenties \n",
"\n",
" occupation prior_record num_of_vic main_crime type_of_crime \\\n",
"0 laborer yes one murder strangling \n",
"1 machine operator yes two+ murder stabbing \n",
"2 cabinet maker yes one murder, robbery shooting \n",
"3 laborer yes two+ murder stabbing \n",
"4 laborer yes one murder, kidnapping strangling \n",
"\n",
" ... race_vic vic_kid vic_male vic_female vic_police age race \\\n",
"0 ... unkown no no yes no 35-45 White \n",
"1 ... black yes yes yes no 35-45 Black \n",
"2 ... white no no yes no 35-45 Hispanic \n",
"3 ... white no no yes no 45+ White \n",
"4 ... white no no yes no 45+ White \n",
"\n",
" county last_statement time_spent \n",
"0 El Paso Yeah, I want to address the Roundtree family ... 10+ \n",
"1 Dallas Umm, Pamela can you hear me Stephanie, Hardy,... 10+ \n",
"2 Johnson It's 6:09 on September 10th, Kayla and David,... 10_or_less \n",
"3 Tarrant Hi ladies I wanted to tell ya'll how much I l... 10+ \n",
"4 Montgomery Lord forgive them. They don't know what they ... 10+ \n",
"\n",
"[5 rows x 22 columns]"
]
},
"execution_count": 46,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"death_row.head()"
]
},
{
"cell_type": "code",
"execution_count": 47,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"last_name category\n",
"first_name category\n",
"age_received category\n",
"education_level category\n",
"age_crime category\n",
"occupation category\n",
"prior_record category\n",
"num_of_vic category\n",
"main_crime category\n",
"type_of_crime category\n",
"weapon category\n",
"co_defendants float64\n",
"race_vic category\n",
"vic_kid category\n",
"vic_male category\n",
"vic_female category\n",
"vic_police category\n",
"age category\n",
"race category\n",
"county category\n",
"last_statement object\n",
"time_spent category\n",
"dtype: object"
]
},
"execution_count": 47,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"death_row.dtypes"
]
},
{
"cell_type": "code",
"execution_count": 48,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"count 566\n",
"mean 1\n",
"std 1\n",
"min 0\n",
"25% 0\n",
"50% 0\n",
"75% 1\n",
"max 9\n",
"Name: co_defendants, dtype: float64"
]
},
"execution_count": 48,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"death_row.co_defendants.describe()"
]
},
{
"cell_type": "code",
"execution_count": 49,
"metadata": {},
"outputs": [],
"source": [
"categories = [\"no\", \"yes\"]\n",
"death_row[\"co_defendants\"] = pd.cut(death_row[\"co_defendants\"], [-1, 0, 99], labels = categories)"
]
},
{
"cell_type": "code",
"execution_count": 50,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" last_name \n",
" first_name \n",
" age_received \n",
" education_level \n",
" age_crime \n",
" occupation \n",
" prior_record \n",
" num_of_vic \n",
" main_crime \n",
" type_of_crime \n",
" ... \n",
" race_vic \n",
" vic_kid \n",
" vic_male \n",
" vic_female \n",
" vic_police \n",
" age \n",
" race \n",
" county \n",
" last_statement \n",
" time_spent \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" Hall \n",
" Justen \n",
" twenties \n",
" some_highschool \n",
" twenties \n",
" laborer \n",
" yes \n",
" one \n",
" murder \n",
" strangling \n",
" ... \n",
" unkown \n",
" no \n",
" no \n",
" yes \n",
" no \n",
" 35-45 \n",
" White \n",
" El Paso \n",
" Yeah, I want to address the Roundtree family ... \n",
" 10+ \n",
" \n",
" \n",
" 1 \n",
" Sparks \n",
" Robert \n",
" thirty+ \n",
" no_highschool \n",
" thirty+ \n",
" machine operator \n",
" yes \n",
" two+ \n",
" murder \n",
" stabbing \n",
" ... \n",
" black \n",
" yes \n",
" yes \n",
" yes \n",
" no \n",
" 35-45 \n",
" Black \n",
" Dallas \n",
" Umm, Pamela can you hear me Stephanie, Hardy,... \n",
" 10+ \n",
" \n",
" \n",
" 2 \n",
" Soliz \n",
" Mark \n",
" thirty+ \n",
" no_highschool \n",
" twenties \n",
" cabinet maker \n",
" yes \n",
" one \n",
" murder, robbery \n",
" shooting \n",
" ... \n",
" white \n",
" no \n",
" no \n",
" yes \n",
" no \n",
" 35-45 \n",
" Hispanic \n",
" Johnson \n",
" It's 6:09 on September 10th, Kayla and David,... \n",
" 10_or_less \n",
" \n",
" \n",
" 3 \n",
" Crutsinger \n",
" Billy \n",
" thirty+ \n",
" some_highschool \n",
" thirty+ \n",
" laborer \n",
" yes \n",
" two+ \n",
" murder \n",
" stabbing \n",
" ... \n",
" white \n",
" no \n",
" no \n",
" yes \n",
" no \n",
" 45+ \n",
" White \n",
" Tarrant \n",
" Hi ladies I wanted to tell ya'll how much I l... \n",
" 10+ \n",
" \n",
" \n",
" 4 \n",
" Swearingen \n",
" Larry \n",
" twenties \n",
" some_highschool \n",
" twenties \n",
" laborer \n",
" yes \n",
" one \n",
" murder, kidnapping \n",
" strangling \n",
" ... \n",
" white \n",
" no \n",
" no \n",
" yes \n",
" no \n",
" 45+ \n",
" White \n",
" Montgomery \n",
" Lord forgive them. They don't know what they ... \n",
" 10+ \n",
" \n",
" \n",
"
\n",
"
5 rows × 22 columns
\n",
"
"
],
"text/plain": [
" last_name first_name age_received education_level age_crime \\\n",
"0 Hall Justen twenties some_highschool twenties \n",
"1 Sparks Robert thirty+ no_highschool thirty+ \n",
"2 Soliz Mark thirty+ no_highschool twenties \n",
"3 Crutsinger Billy thirty+ some_highschool thirty+ \n",
"4 Swearingen Larry twenties some_highschool twenties \n",
"\n",
" occupation prior_record num_of_vic main_crime type_of_crime \\\n",
"0 laborer yes one murder strangling \n",
"1 machine operator yes two+ murder stabbing \n",
"2 cabinet maker yes one murder, robbery shooting \n",
"3 laborer yes two+ murder stabbing \n",
"4 laborer yes one murder, kidnapping strangling \n",
"\n",
" ... race_vic vic_kid vic_male vic_female vic_police age race \\\n",
"0 ... unkown no no yes no 35-45 White \n",
"1 ... black yes yes yes no 35-45 Black \n",
"2 ... white no no yes no 35-45 Hispanic \n",
"3 ... white no no yes no 45+ White \n",
"4 ... white no no yes no 45+ White \n",
"\n",
" county last_statement time_spent \n",
"0 El Paso Yeah, I want to address the Roundtree family ... 10+ \n",
"1 Dallas Umm, Pamela can you hear me Stephanie, Hardy,... 10+ \n",
"2 Johnson It's 6:09 on September 10th, Kayla and David,... 10_or_less \n",
"3 Tarrant Hi ladies I wanted to tell ya'll how much I l... 10+ \n",
"4 Montgomery Lord forgive them. They don't know what they ... 10+ \n",
"\n",
"[5 rows x 22 columns]"
]
},
"execution_count": 50,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"death_row.head()"
]
},
{
"cell_type": "code",
"execution_count": 51,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"last_name category\n",
"first_name category\n",
"age_received category\n",
"education_level category\n",
"age_crime category\n",
"occupation category\n",
"prior_record category\n",
"num_of_vic category\n",
"main_crime category\n",
"type_of_crime category\n",
"weapon category\n",
"co_defendants category\n",
"race_vic category\n",
"vic_kid category\n",
"vic_male category\n",
"vic_female category\n",
"vic_police category\n",
"age category\n",
"race category\n",
"county category\n",
"last_statement object\n",
"time_spent category\n",
"dtype: object"
]
},
"execution_count": 51,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"death_row.dtypes"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ultimately we do not need the prisoner's first and last name unless we want to look to see if there are any specific names that occur more frequently than others. Therefore, I am removing those two columns"
]
},
{
"cell_type": "code",
"execution_count": 52,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" age_received \n",
" education_level \n",
" age_crime \n",
" occupation \n",
" prior_record \n",
" num_of_vic \n",
" main_crime \n",
" type_of_crime \n",
" weapon \n",
" co_defendants \n",
" race_vic \n",
" vic_kid \n",
" vic_male \n",
" vic_female \n",
" vic_police \n",
" age \n",
" race \n",
" county \n",
" last_statement \n",
" time_spent \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" twenties \n",
" some_highschool \n",
" twenties \n",
" laborer \n",
" yes \n",
" one \n",
" murder \n",
" strangling \n",
" cord \n",
" no \n",
" unkown \n",
" no \n",
" no \n",
" yes \n",
" no \n",
" 35-45 \n",
" White \n",
" El Paso \n",
" Yeah, I want to address the Roundtree family ... \n",
" 10+ \n",
" \n",
" \n",
" 1 \n",
" thirty+ \n",
" no_highschool \n",
" thirty+ \n",
" machine operator \n",
" yes \n",
" two+ \n",
" murder \n",
" stabbing \n",
" knife \n",
" no \n",
" black \n",
" yes \n",
" yes \n",
" yes \n",
" no \n",
" 35-45 \n",
" Black \n",
" Dallas \n",
" Umm, Pamela can you hear me Stephanie, Hardy,... \n",
" 10+ \n",
" \n",
" \n",
" 2 \n",
" thirty+ \n",
" no_highschool \n",
" twenties \n",
" cabinet maker \n",
" yes \n",
" one \n",
" murder, robbery \n",
" shooting \n",
" gun \n",
" yes \n",
" white \n",
" no \n",
" no \n",
" yes \n",
" no \n",
" 35-45 \n",
" Hispanic \n",
" Johnson \n",
" It's 6:09 on September 10th, Kayla and David,... \n",
" 10_or_less \n",
" \n",
" \n",
" 3 \n",
" thirty+ \n",
" some_highschool \n",
" thirty+ \n",
" laborer \n",
" yes \n",
" two+ \n",
" murder \n",
" stabbing \n",
" knife \n",
" no \n",
" white \n",
" no \n",
" no \n",
" yes \n",
" no \n",
" 45+ \n",
" White \n",
" Tarrant \n",
" Hi ladies I wanted to tell ya'll how much I l... \n",
" 10+ \n",
" \n",
" \n",
" 4 \n",
" twenties \n",
" some_highschool \n",
" twenties \n",
" laborer \n",
" yes \n",
" one \n",
" murder, kidnapping \n",
" strangling \n",
" hands \n",
" no \n",
" white \n",
" no \n",
" no \n",
" yes \n",
" no \n",
" 45+ \n",
" White \n",
" Montgomery \n",
" Lord forgive them. They don't know what they ... \n",
" 10+ \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" age_received education_level age_crime occupation prior_record \\\n",
"0 twenties some_highschool twenties laborer yes \n",
"1 thirty+ no_highschool thirty+ machine operator yes \n",
"2 thirty+ no_highschool twenties cabinet maker yes \n",
"3 thirty+ some_highschool thirty+ laborer yes \n",
"4 twenties some_highschool twenties laborer yes \n",
"\n",
" num_of_vic main_crime type_of_crime weapon co_defendants race_vic \\\n",
"0 one murder strangling cord no unkown \n",
"1 two+ murder stabbing knife no black \n",
"2 one murder, robbery shooting gun yes white \n",
"3 two+ murder stabbing knife no white \n",
"4 one murder, kidnapping strangling hands no white \n",
"\n",
" vic_kid vic_male vic_female vic_police age race county \\\n",
"0 no no yes no 35-45 White El Paso \n",
"1 yes yes yes no 35-45 Black Dallas \n",
"2 no no yes no 35-45 Hispanic Johnson \n",
"3 no no yes no 45+ White Tarrant \n",
"4 no no yes no 45+ White Montgomery \n",
"\n",
" last_statement time_spent \n",
"0 Yeah, I want to address the Roundtree family ... 10+ \n",
"1 Umm, Pamela can you hear me Stephanie, Hardy,... 10+ \n",
"2 It's 6:09 on September 10th, Kayla and David,... 10_or_less \n",
"3 Hi ladies I wanted to tell ya'll how much I l... 10+ \n",
"4 Lord forgive them. They don't know what they ... 10+ "
]
},
"execution_count": 52,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"death_row.drop([\"last_name\", \"first_name\"], axis = 1, inplace = True)\n",
"death_row.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Now the data is ready to analyze "
]
},
{
"cell_type": "code",
"execution_count": 53,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0 Yeah, I want to address the Roundtree family ...\n",
"1 Umm, Pamela can you hear me Stephanie, Hardy,...\n",
"2 It's 6:09 on September 10th, Kayla and David,...\n",
"3 Hi ladies I wanted to tell ya'll how much I l...\n",
"4 Lord forgive them. They don't know what they ...\n",
"5 Spoken: No.\n",
"6 Yes Sir, that will be five Dollars I love you,...\n",
"7 To my friends and family it was a nice journey...\n",
"8 Yes Sir, I would like to thank the Shape Commu...\n",
"9 Yes Sir. Dear Heavenly Father please forgive t...\n",
"10 I am very thankful for all the hard work the M...\n",
"11 No statement given.\n",
"12 Thank you I love you all. Sandra, nice meeting...\n",
"13 l want to make sure the Patel family knows I l...\n",
"14 no statement\n",
"15 To everyone that has been there for me you kno...\n",
"16 Yes, I would like to say nephew it burns huh. ...\n",
"17 First I would like to say I have been here sin...\n",
"18 No, Well, Hi Mary Jean. See y'all later. Go ah...\n",
"19 First I would like to praise my Lord Jesus Ch...\n",
"20 I'd like to take a moment to say I'm sorry. N...\n",
"21 NaN\n",
"22 NaN\n",
"23 First and foremost I'd like to say, \"Justice h...\n",
"24 Yes, I do, Grace Kehler is that you? I have gi...\n",
"Name: last_statement, dtype: object"
]
},
"execution_count": 53,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"death_row.last_statement.head(25)"
]
},
{
"cell_type": "code",
"execution_count": 54,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"541 This offender declined to make a last statemen...\n",
"542 This offender declined to make a last statemen...\n",
"543 Mother, I am sorry for all the pain I've cause...\n",
"544 This offender declined to make a last statemen...\n",
"545 This offender declined to make a last statemen...\n",
"546 This offender declined to make a last statemen...\n",
"547 I want to say I'm sorry for the things I've do...\n",
"548 This offender declined to make a last statemen...\n",
"549 Tell my mother I love her and continue on with...\n",
"550 Goodbye to my family; I love all of you, I'm s...\n",
"551 I have no last words. I am ready.\n",
"552 Goodbye to all my friends; be cool. Thank you ...\n",
"553 \"Be strong for me,\" Pinkerton told his father,...\n",
"554 This offender declined to make a last statemen...\n",
"555 I deserve this. Tell everyone I said goodbye.\n",
"556 D.J., Laurie, Dr. Wheat, about all I can say i...\n",
"557 I want to thank Father Walsh for his spiritual...\n",
"558 There's no God but Allah, and unto thy I belo...\n",
"559 This offender declined to make a last statemen...\n",
"560 Heavenly Father, I give thanks for this time, ...\n",
"561 I pray that my family will rejoice and will fo...\n",
"562 When asked if he had a last statement, he rep...\n",
"563 What is about to transpire in a few moments is...\n",
"564 This offender declined to make a last statemen...\n",
"565 Statement to the Media: I, at this very moment...\n",
"Name: last_statement, dtype: object"
]
},
"execution_count": 54,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"death_row.last_statement.tail(25)"
]
},
{
"cell_type": "code",
"execution_count": 55,
"metadata": {},
"outputs": [],
"source": [
"''' different ways that no statment is represented: \n",
"1. Spoken: No. \n",
"2. No statement given. \n",
"3. no statement \n",
"4. This offender declined to make a last statement.\n",
"\n",
"going to replace all of these with nothing'''\n",
"\n",
"death_row[\"last_statement\"] = death_row[\"last_statement\"].str.replace(\"Spoken: No.\", \"none\")\n",
"death_row[\"last_statement\"] = death_row[\"last_statement\"].str.replace(\"No statement given.\", \"none\")\n",
"death_row[\"last_statement\"] = death_row[\"last_statement\"].str.replace(\"no statement\", \"none\")\n",
"death_row[\"last_statement\"] = death_row[\"last_statement\"].str.replace(\"This offender declined to make a last statement.\", \"none\")\n"
]
},
{
"cell_type": "code",
"execution_count": 56,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0 Yeah, I want to address the Roundtree family ...\n",
"1 Umm, Pamela can you hear me Stephanie, Hardy,...\n",
"2 It's 6:09 on September 10th, Kayla and David,...\n",
"3 Hi ladies I wanted to tell ya'll how much I l...\n",
"4 Lord forgive them. They don't know what they ...\n",
"5 none\n",
"6 Yes Sir, that will be five Dollars I love you,...\n",
"7 To my friends and family it was a nice journey...\n",
"8 Yes Sir, I would like to thank the Shape Commu...\n",
"9 Yes Sir. Dear Heavenly Father please forgive t...\n",
"10 I am very thankful for all the hard work the M...\n",
"11 none\n",
"12 Thank you I love you all. Sandra, nice meeting...\n",
"13 l want to make sure the Patel family knows I l...\n",
"14 none\n",
"15 To everyone that has been there for me you kno...\n",
"16 Yes, I would like to say nephew it burns huh. ...\n",
"17 First I would like to say I have been here sin...\n",
"18 No, Well, Hi Mary Jean. See y'all later. Go ah...\n",
"19 First I would like to praise my Lord Jesus Ch...\n",
"20 I'd like to take a moment to say I'm sorry. N...\n",
"21 NaN\n",
"22 NaN\n",
"23 First and foremost I'd like to say, \"Justice h...\n",
"24 Yes, I do, Grace Kehler is that you? I have gi...\n",
"Name: last_statement, dtype: object"
]
},
"execution_count": 56,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"death_row.last_statement.head(25)"
]
},
{
"cell_type": "code",
"execution_count": 57,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"541 none \n",
"542 none \n",
"543 Mother, I am sorry for all the pain I've cause...\n",
"544 none \n",
"545 none \n",
"546 none \n",
"547 I want to say I'm sorry for the things I've do...\n",
"548 none \n",
"549 Tell my mother I love her and continue on with...\n",
"550 Goodbye to my family; I love all of you, I'm s...\n",
"551 I have no last words. I am ready.\n",
"552 Goodbye to all my friends; be cool. Thank you ...\n",
"553 \"Be strong for me,\" Pinkerton told his father,...\n",
"554 none \n",
"555 I deserve this. Tell everyone I said goodbye.\n",
"556 D.J., Laurie, Dr. Wheat, about all I can say i...\n",
"557 I want to thank Father Walsh for his spiritual...\n",
"558 There's no God but Allah, and unto thy I belo...\n",
"559 none \n",
"560 Heavenly Father, I give thanks for this time, ...\n",
"561 I pray that my family will rejoice and will fo...\n",
"562 When asked if he had a last statement, he rep...\n",
"563 What is about to transpire in a few moments is...\n",
"564 none \n",
"565 Statement to the Media: I, at this very moment...\n",
"Name: last_statement, dtype: object"
]
},
"execution_count": 57,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"death_row.last_statement.tail(25)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Now we can analyze (hopefully)"
]
},
{
"cell_type": "code",
"execution_count": 58,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" age_received \n",
" education_level \n",
" age_crime \n",
" occupation \n",
" prior_record \n",
" num_of_vic \n",
" main_crime \n",
" type_of_crime \n",
" weapon \n",
" co_defendants \n",
" race_vic \n",
" vic_kid \n",
" vic_male \n",
" vic_female \n",
" vic_police \n",
" age \n",
" race \n",
" county \n",
" last_statement \n",
" time_spent \n",
" \n",
" \n",
" \n",
" \n",
" count \n",
" 566 \n",
" 566 \n",
" 566 \n",
" 566 \n",
" 566 \n",
" 566 \n",
" 566 \n",
" 566 \n",
" 566 \n",
" 566 \n",
" 566 \n",
" 566 \n",
" 566 \n",
" 566 \n",
" 566 \n",
" 566 \n",
" 566 \n",
" 566 \n",
" 564 \n",
" 565 \n",
" \n",
" \n",
" unique \n",
" 3 \n",
" 5 \n",
" 3 \n",
" 78 \n",
" 4 \n",
" 2 \n",
" 38 \n",
" 44 \n",
" 82 \n",
" 2 \n",
" 10 \n",
" 2 \n",
" 2 \n",
" 2 \n",
" 6 \n",
" 3 \n",
" 6 \n",
" 113 \n",
" 454 \n",
" 2 \n",
" \n",
" \n",
" top \n",
" twenties \n",
" some_highschool \n",
" twenties \n",
" laborer \n",
" yes \n",
" one \n",
" murder, robbery \n",
" shooting \n",
" gun \n",
" no \n",
" white \n",
" no \n",
" yes \n",
" yes \n",
" no \n",
" 35-45 \n",
" White \n",
" Harris \n",
" none \n",
" 10+ \n",
" \n",
" \n",
" freq \n",
" 308 \n",
" 222 \n",
" 299 \n",
" 206 \n",
" 298 \n",
" 354 \n",
" 209 \n",
" 290 \n",
" 297 \n",
" 328 \n",
" 298 \n",
" 460 \n",
" 356 \n",
" 329 \n",
" 478 \n",
" 245 \n",
" 250 \n",
" 128 \n",
" 101 \n",
" 284 \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" age_received education_level age_crime occupation prior_record \\\n",
"count 566 566 566 566 566 \n",
"unique 3 5 3 78 4 \n",
"top twenties some_highschool twenties laborer yes \n",
"freq 308 222 299 206 298 \n",
"\n",
" num_of_vic main_crime type_of_crime weapon co_defendants \\\n",
"count 566 566 566 566 566 \n",
"unique 2 38 44 82 2 \n",
"top one murder, robbery shooting gun no \n",
"freq 354 209 290 297 328 \n",
"\n",
" race_vic vic_kid vic_male vic_female vic_police age race county \\\n",
"count 566 566 566 566 566 566 566 566 \n",
"unique 10 2 2 2 6 3 6 113 \n",
"top white no yes yes no 35-45 White Harris \n",
"freq 298 460 356 329 478 245 250 128 \n",
"\n",
" last_statement time_spent \n",
"count 564 565 \n",
"unique 454 2 \n",
"top none 10+ \n",
"freq 101 284 "
]
},
"execution_count": 58,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"death_row.describe()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Going through each column and looking at the categories"
]
},
{
"cell_type": "code",
"execution_count": 59,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"twenties 308\n",
"thirty+ 218\n",
"teens 40\n",
"Name: age_received, dtype: int64\n"
]
}
],
"source": [
"print(death_row.age_received.value_counts())"
]
},
{
"cell_type": "code",
"execution_count": 60,
"metadata": {},
"outputs": [],
"source": [
"column_names = list(death_row.columns)\n",
"column_names.remove(\"last_statement\")"
]
},
{
"cell_type": "code",
"execution_count": 61,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['age_received',\n",
" 'education_level',\n",
" 'age_crime',\n",
" 'occupation',\n",
" 'prior_record',\n",
" 'num_of_vic',\n",
" 'main_crime',\n",
" 'type_of_crime',\n",
" 'weapon',\n",
" 'co_defendants',\n",
" 'race_vic',\n",
" 'vic_kid',\n",
" 'vic_male',\n",
" 'vic_female',\n",
" 'vic_police',\n",
" 'age',\n",
" 'race',\n",
" 'county',\n",
" 'time_spent']"
]
},
"execution_count": 61,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"column_names"
]
},
{
"cell_type": "code",
"execution_count": 62,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"------------- age_received ------------- \n",
" twenties 308\n",
"thirty+ 218\n",
"teens 40\n",
"Name: age_received, dtype: int64\n",
"------------- education_level ------------- \n",
" some_highschool 222\n",
"highschool 173\n",
"no_highschool 94\n",
"unknown 41\n",
"college 36\n",
"Name: education_level, dtype: int64\n",
"------------- age_crime ------------- \n",
" twenties 299\n",
"thirty+ 180\n",
"teens 87\n",
"Name: age_crime, dtype: int64\n",
"------------- occupation ------------- \n",
" laborer 206\n",
"unknown 47\n",
"mechanic 32\n",
"construction 28\n",
"food service 22\n",
" ... \n",
"press operator 1\n",
"farm worker 1\n",
"factory worker 1\n",
"produce broker 1\n",
"ac/heating tech 1\n",
"Name: occupation, Length: 78, dtype: int64\n",
"------------- prior_record ------------- \n",
" yes 298\n",
"no 253\n",
"unknown 14\n",
"no 1\n",
"Name: prior_record, dtype: int64\n",
"------------- num_of_vic ------------- \n",
" one 354\n",
"two+ 212\n",
"Name: num_of_vic, dtype: int64\n",
"------------- main_crime ------------- \n",
" murder, robbery 209\n",
"murder 115\n",
"murder, rape 47\n",
"murder, kidnapping, rape 30\n",
"murder, rape, robbery 28\n",
"murder, car theft 25\n",
"murder, eluding arrest 20\n",
"murder, kidnapping 20\n",
"murder, kidnapping, robbery 14\n",
"murder, kidnapping, rape, robbery 10\n",
"murder, car theft, robbery 8\n",
"murder, insurance scam 6\n",
"murder, escape 4\n",
"murder-serial, rape-serial 2\n",
"murder, eluding arrest, robbery 2\n",
"murder, car theft, rape 2\n",
"murder-serial, rape 2\n",
"murder, for hire, rape 2\n",
"murder, car theft, rape, robbery 1\n",
"murder, car theft, kidnappy, robbery 1\n",
"murder, car theft, kidnapping, rape 1\n",
"murder, car theft, kidnapping 1\n",
"murder, eluding arrest, kidnapping 1\n",
"murder, eluding arrest, rape 1\n",
"murder, car theft, eluding arrest, kidnapping, robbery 1\n",
"unknown 1\n",
"murder, for hire 1\n",
"murder, identity theft 1\n",
"murder-serial, robbery-serial, rape 1\n",
"murder, kidnapping, ransom 1\n",
"murder, mutilation-sexual 1\n",
"murder-attempted, escape 1\n",
"murder-attempted, robbery 1\n",
"murder-serial 1\n",
"murder-serial, rape, robbery 1\n",
"murder-serial, rape-serial, kidnapping 1\n",
"murder-serial, robbery-serial 1\n",
"murder, insurance scam, rape 1\n",
"Name: main_crime, dtype: int64\n",
"------------- type_of_crime ------------- \n",
" shooting 290\n",
"stabbing 82\n",
"strangling 44\n",
"beating 41\n",
"beating, stabbing 20\n",
"beating, strangling 15\n",
"shooting, stabbing 8\n",
"stabbing, strangling 4\n",
"shooting, strangling 4\n",
"beating, stabbing, strangling 4\n",
"drowning 3\n",
"beating, shooting, stabbing 3\n",
"car 3\n",
"arson 3\n",
"shooting, stabbing, strangling 3\n",
"shooting 3\n",
"unknown 2\n",
"beating, shooting 2\n",
"arson, strangling 2\n",
"arson, stabbing 2\n",
"drowning, strangling 2\n",
"arson, shooting 2\n",
"hate 2\n",
"beating, shooting, strangling 2\n",
"arson, shooting, stabbing 1\n",
"arson, shooting, strangling 1\n",
"stabbing, strangulation 1\n",
"beating, drowning, stabbing 1\n",
"beating, rape 1\n",
"arson, beating, stabbing 1\n",
"beating, rape, strangling 1\n",
"rape, shooting 1\n",
"stabbing, strangling 1\n",
"poisoning 1\n",
"shooting, stabbing 1\n",
"broke neck 1\n",
"buried alive, strangling 1\n",
"contract 1\n",
"rape, stabbing 1\n",
"drowning, shooting 1\n",
"drowning, shooting, strangling 1\n",
"drugs 1\n",
"neglect 1\n",
"shotting 1\n",
"Name: type_of_crime, dtype: int64\n",
"------------- weapon ------------- \n",
" gun 297\n",
"knife 78\n",
"hands 41\n",
"hands, knife 12\n",
"gun, knife 10\n",
" ... \n",
"cord, fireplace brush 1\n",
"cord, fire, gun 1\n",
"concrete 1\n",
"coat hangers 1\n",
"ace bandage 1\n",
"Name: weapon, Length: 82, dtype: int64\n",
"------------- co_defendants ------------- \n",
" no 328\n",
"yes 238\n",
"Name: co_defendants, dtype: int64\n",
"------------- race_vic ------------- \n",
" white 298\n",
"unknown 106\n",
"hispanic 86\n",
"black 57\n",
"asian 9\n",
"unkown 4\n",
"middle eastern 2\n",
"black 2\n",
"white 1\n",
"samoan 1\n",
"Name: race_vic, dtype: int64\n",
"------------- vic_kid ------------- \n",
" no 460\n",
"yes 106\n",
"Name: vic_kid, dtype: int64\n",
"------------- vic_male ------------- \n",
" yes 356\n",
"no 210\n",
"Name: vic_male, dtype: int64\n",
"------------- vic_female ------------- \n",
" yes 329\n",
"no 237\n",
"Name: vic_female, dtype: int64\n",
"------------- vic_police ------------- \n",
" no 478\n",
"yes 50\n",
"no 32\n",
"yes 3\n",
" no 2\n",
"unknown 1\n",
"Name: vic_police, dtype: int64\n",
"------------- age ------------- \n",
" 35-45 245\n",
"18-34 188\n",
"45+ 133\n",
"Name: age, dtype: int64\n",
"------------- race ------------- \n",
" White 250\n",
"Black 204\n",
"Hispanic 107\n",
"White 2\n",
"Other 2\n",
"Hispanic 1\n",
"Name: race, dtype: int64\n",
"------------- county ------------- \n",
" Harris 128\n",
"Dallas 59\n",
"Bexar 46\n",
"Tarrant 42\n",
"Montgomery 15\n",
" ... \n",
"Llano 1\n",
"Lubbock 1\n",
"Madison 1\n",
"McLennan 1\n",
"Kaufman 1\n",
"Name: county, Length: 113, dtype: int64\n",
"------------- time_spent ------------- \n",
" 10+ 284\n",
"10_or_less 281\n",
"Name: time_spent, dtype: int64\n"
]
}
],
"source": [
"for column in column_names: \n",
" print(\"-------------\", column, \"-------------\", \"\\n\", death_row[column].value_counts())"
]
},
{
"cell_type": "code",
"execution_count": 63,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'\\nNeed to change shotting to shooting for type of crime\\nIn order to predict weapon or type_of_crime a main crime needs to be decided\\n\\nneed to remove the space after white, black, in race_vic and also might want to change it to white, and non-white\\n\\nneed to remove the space after yesm and no for vic police and for the unknown changing it to no, because our belief is if it was it would have said yes \\n\\nneed to remove the space after White, and Hispanic for race. Also might make sense to change to white, non-white\\n\\n'"
]
},
"execution_count": 63,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"'''\n",
"Need to change shotting to shooting for type of crime\n",
"In order to predict weapon or type_of_crime a main crime needs to be decided\n",
"\n",
"need to remove the space after white, black, in race_vic and also might want to change it to white, and non-white\n",
"\n",
"need to remove the space after yesm and no for vic police and for the unknown changing it to no, because our belief is if it was it would have said yes \n",
"\n",
"need to remove the space after White, and Hispanic for race. Also might make sense to change to white, non-white\n",
"\n",
"'''"
]
},
{
"cell_type": "code",
"execution_count": 64,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"shooting 291\n",
"stabbing 82\n",
"strangling 44\n",
"beating 41\n",
"beating, stabbing 20\n",
"beating, strangling 15\n",
"shooting, stabbing 8\n",
"beating, stabbing, strangling 4\n",
"shooting, strangling 4\n",
"stabbing, strangling 4\n",
"shooting, stabbing, strangling 3\n",
"drowning 3\n",
"beating, shooting, stabbing 3\n",
"arson 3\n",
"shooting 3\n",
"car 3\n",
"hate 2\n",
"arson, stabbing 2\n",
"beating, shooting 2\n",
"drowning, strangling 2\n",
"beating, shooting, strangling 2\n",
"arson, strangling 2\n",
"arson, shooting 2\n",
"unknown 2\n",
"neglect 1\n",
"rape, shooting 1\n",
"beating, rape 1\n",
"shooting, stabbing 1\n",
"arson, shooting, stabbing 1\n",
"broke neck 1\n",
"poisoning 1\n",
"drowning, shooting, strangling 1\n",
"buried alive, strangling 1\n",
"beating, drowning, stabbing 1\n",
"arson, shooting, strangling 1\n",
"beating, rape, strangling 1\n",
"drowning, shooting 1\n",
"arson, beating, stabbing 1\n",
"drugs 1\n",
"contract 1\n",
"stabbing, strangling 1\n",
"stabbing, strangulation 1\n",
"rape, stabbing 1\n",
"Name: type_of_crime, dtype: int64"
]
},
"execution_count": 64,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#It looks like there is a space after one no therefore removing that and looking again to see if we just have 3 categories\n",
"death_row[\"type_of_crime\"] = death_row[\"type_of_crime\"].str.replace(\"shotting\", \"shooting\")\n",
"death_row.type_of_crime.value_counts()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Because the majority of the crimes deal with guns, I think that it might be beneficial, in order to try to preduct type_of_crime, to change it to gun or non-gun. Non-gun would encompass any crime that did not use a gun so arson, stabbing, beating, strangling, drowning, car, neglect, rape. Contract will be included in gun. "
]
},
{
"cell_type": "code",
"execution_count": 65,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"gun 294\n",
"stabbing 82\n",
"strangling 44\n",
"beating 41\n",
"beating, stabbing 20\n",
"beating, strangling 15\n",
"gun, stabbing 8\n",
"beating, stabbing, strangling 4\n",
"gun, strangling 4\n",
"stabbing, strangling 4\n",
"car 3\n",
"drowning 3\n",
"arson 3\n",
"gun, stabbing, strangling 3\n",
"beating, gun, stabbing 3\n",
"hate 2\n",
"beating, gun 2\n",
"arson, strangling 2\n",
"beating, gun, strangling 2\n",
"arson, gun 2\n",
"drowning, strangling 2\n",
"arson, stabbing 2\n",
"unknown 2\n",
"poisoning 1\n",
"rape, stabbing 1\n",
"drowning, gun, strangling 1\n",
"arson, gun, strangling 1\n",
"beating, rape 1\n",
"arson, gun, stabbing 1\n",
"buried alive, strangling 1\n",
"broke neck 1\n",
"stabbing, strangulation 1\n",
"arson, beating, stabbing 1\n",
"beating, drowning, stabbing 1\n",
"rape, gun 1\n",
"beating, rape, strangling 1\n",
"gun, stabbing 1\n",
"stabbing, strangling 1\n",
"drugs 1\n",
"contract 1\n",
"drowning, gun 1\n",
"neglect 1\n",
"Name: type_of_crime, dtype: int64"
]
},
"execution_count": 65,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"death_row[\"type_of_crime\"] = death_row[\"type_of_crime\"].str.replace(\"shooting\", \"gun\")\n",
"death_row[\"type_of_crime\"] = death_row[\"type_of_crime\"].str.replace(\"gun \", \"gun\")\n",
"death_row.type_of_crime.value_counts()"
]
},
{
"cell_type": "code",
"execution_count": 66,
"metadata": {},
"outputs": [],
"source": [
"death_row[\"type_of_crime\"] = death_row[\"type_of_crime\"].astype(\"object\")\n",
"\n",
"death_row[\"type_of_crime\"] = death_row[\"type_of_crime\"].str.replace(\"gun, stabbing\", \"gun\")\n",
"death_row[\"type_of_crime\"] = death_row[\"type_of_crime\"].str.replace(\"gun, strangling\", \"gun\")\n",
"death_row[\"type_of_crime\"] = death_row[\"type_of_crime\"].str.replace(\"beating, gun, stabbing\", \"gun\")\n",
"death_row[\"type_of_crime\"] = death_row[\"type_of_crime\"].str.replace(\"gun, stabbing, strangling\", \"gun\")\n",
"death_row[\"type_of_crime\"] = death_row[\"type_of_crime\"].str.replace(\"beating, gun\", \"gun\")\n",
"death_row[\"type_of_crime\"] = death_row[\"type_of_crime\"].str.replace(\"arson, gun\", \"gun\")\n",
"death_row[\"type_of_crime\"] = death_row[\"type_of_crime\"].str.replace(\"beating, gun, strangling\", \"gun\")\n",
"death_row[\"type_of_crime\"] = death_row[\"type_of_crime\"].str.replace(\"rape, gun\", \"gun\")\n",
"death_row[\"type_of_crime\"] = death_row[\"type_of_crime\"].str.replace(\"drowning, gun, strangling\", \"gun\")\n",
"death_row[\"type_of_crime\"] = death_row[\"type_of_crime\"].str.replace(\"arson, gun, stabbing\", \"gun\")\n",
"death_row[\"type_of_crime\"] = death_row[\"type_of_crime\"].str.replace(\"arson, gun, strangling\", \"gun\")\n",
"death_row[\"type_of_crime\"] = death_row[\"type_of_crime\"].str.replace(\"drowning, gun\", \"gun\")\n",
"death_row[\"type_of_crime\"] = death_row[\"type_of_crime\"].str.replace(\"contract\", \"gun\")\n",
"death_row[\"type_of_crime\"] = death_row[\"type_of_crime\"].str.replace(\"gun, stabbing\", \"gun\")\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 67,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"gun 324\n",
"stabbing 82\n",
"strangling 44\n",
"beating 41\n",
"beating, stabbing 20\n",
"beating, strangling 15\n",
"beating, stabbing, strangling 4\n",
"stabbing, strangling 4\n",
"drowning 3\n",
"arson 3\n",
"car 3\n",
"hate 2\n",
"drowning, strangling 2\n",
"unknown 2\n",
"arson, strangling 2\n",
"arson, stabbing 2\n",
"poisoning 1\n",
"arson, beating, stabbing 1\n",
"beating, rape 1\n",
"gun 1\n",
"broke neck 1\n",
"beating, drowning, stabbing 1\n",
"stabbing, strangulation 1\n",
"rape, stabbing 1\n",
"beating, rape, strangling 1\n",
"stabbing, strangling 1\n",
"drugs 1\n",
"buried alive, strangling 1\n",
"neglect 1\n",
"Name: type_of_crime, dtype: int64"
]
},
"execution_count": 67,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"death_row.type_of_crime.value_counts()"
]
},
{
"cell_type": "code",
"execution_count": 68,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"dtype('O')"
]
},
"execution_count": 68,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"death_row.type_of_crime.dtype"
]
},
{
"cell_type": "code",
"execution_count": 69,
"metadata": {},
"outputs": [],
"source": [
"death_row.loc[death_row[\"type_of_crime\"] != \"gun\", \"type_of_crime\"] = \"other\""
]
},
{
"cell_type": "code",
"execution_count": 70,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"gun 324\n",
"other 242\n",
"Name: type_of_crime, dtype: int64"
]
},
"execution_count": 70,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"death_row.type_of_crime.value_counts()"
]
},
{
"cell_type": "code",
"execution_count": 71,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'\\nneed to remove the space after white, black, in race_vic \\n\\nneed to remove the space after yes and no for vic police and for the unknown changing it to no, because our belief is if it was it would have said yes \\n\\nneed to remove the space after White, and Hispanic for race. Also might make sense to change to white, non-white\\n\\n'"
]
},
"execution_count": 71,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"'''\n",
"need to remove the space after white, black, in race_vic \n",
"\n",
"need to remove the space after yes and no for vic police and for the unknown changing it to no, because our belief is if it was it would have said yes \n",
"\n",
"need to remove the space after White, and Hispanic for race. Also might make sense to change to white, non-white\n",
"\n",
"'''"
]
},
{
"cell_type": "code",
"execution_count": 72,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" age_received \n",
" education_level \n",
" age_crime \n",
" occupation \n",
" prior_record \n",
" num_of_vic \n",
" main_crime \n",
" type_of_crime \n",
" weapon \n",
" co_defendants \n",
" race_vic \n",
" vic_kid \n",
" vic_male \n",
" vic_female \n",
" vic_police \n",
" age \n",
" race \n",
" county \n",
" last_statement \n",
" time_spent \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" twenties \n",
" some_highschool \n",
" twenties \n",
" laborer \n",
" yes \n",
" one \n",
" murder \n",
" other \n",
" cord \n",
" no \n",
" unkown \n",
" no \n",
" no \n",
" yes \n",
" no \n",
" 35-45 \n",
" White \n",
" El Paso \n",
" Yeah, I want to address the Roundtree family ... \n",
" 10+ \n",
" \n",
" \n",
" 1 \n",
" thirty+ \n",
" no_highschool \n",
" thirty+ \n",
" machine operator \n",
" yes \n",
" two+ \n",
" murder \n",
" other \n",
" knife \n",
" no \n",
" black \n",
" yes \n",
" yes \n",
" yes \n",
" no \n",
" 35-45 \n",
" Black \n",
" Dallas \n",
" Umm, Pamela can you hear me Stephanie, Hardy,... \n",
" 10+ \n",
" \n",
" \n",
" 2 \n",
" thirty+ \n",
" no_highschool \n",
" twenties \n",
" cabinet maker \n",
" yes \n",
" one \n",
" murder, robbery \n",
" gun \n",
" gun \n",
" yes \n",
" white \n",
" no \n",
" no \n",
" yes \n",
" no \n",
" 35-45 \n",
" Hispanic \n",
" Johnson \n",
" It's 6:09 on September 10th, Kayla and David,... \n",
" 10_or_less \n",
" \n",
" \n",
" 3 \n",
" thirty+ \n",
" some_highschool \n",
" thirty+ \n",
" laborer \n",
" yes \n",
" two+ \n",
" murder \n",
" other \n",
" knife \n",
" no \n",
" white \n",
" no \n",
" no \n",
" yes \n",
" no \n",
" 45+ \n",
" White \n",
" Tarrant \n",
" Hi ladies I wanted to tell ya'll how much I l... \n",
" 10+ \n",
" \n",
" \n",
" 4 \n",
" twenties \n",
" some_highschool \n",
" twenties \n",
" laborer \n",
" yes \n",
" one \n",
" murder, kidnapping \n",
" other \n",
" hands \n",
" no \n",
" white \n",
" no \n",
" no \n",
" yes \n",
" no \n",
" 45+ \n",
" White \n",
" Montgomery \n",
" Lord forgive them. They don't know what they ... \n",
" 10+ \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" age_received education_level age_crime occupation prior_record \\\n",
"0 twenties some_highschool twenties laborer yes \n",
"1 thirty+ no_highschool thirty+ machine operator yes \n",
"2 thirty+ no_highschool twenties cabinet maker yes \n",
"3 thirty+ some_highschool thirty+ laborer yes \n",
"4 twenties some_highschool twenties laborer yes \n",
"\n",
" num_of_vic main_crime type_of_crime weapon co_defendants race_vic \\\n",
"0 one murder other cord no unkown \n",
"1 two+ murder other knife no black \n",
"2 one murder, robbery gun gun yes white \n",
"3 two+ murder other knife no white \n",
"4 one murder, kidnapping other hands no white \n",
"\n",
" vic_kid vic_male vic_female vic_police age race county \\\n",
"0 no no yes no 35-45 White El Paso \n",
"1 yes yes yes no 35-45 Black Dallas \n",
"2 no no yes no 35-45 Hispanic Johnson \n",
"3 no no yes no 45+ White Tarrant \n",
"4 no no yes no 45+ White Montgomery \n",
"\n",
" last_statement time_spent \n",
"0 Yeah, I want to address the Roundtree family ... 10+ \n",
"1 Umm, Pamela can you hear me Stephanie, Hardy,... 10+ \n",
"2 It's 6:09 on September 10th, Kayla and David,... 10_or_less \n",
"3 Hi ladies I wanted to tell ya'll how much I l... 10+ \n",
"4 Lord forgive them. They don't know what they ... 10+ "
]
},
"execution_count": 72,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"death_row.head()"
]
},
{
"cell_type": "code",
"execution_count": 73,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"yes 298\n",
"no 253\n",
"unknown 14\n",
"no 1\n",
"Name: prior_record, dtype: int64"
]
},
"execution_count": 73,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"death_row.prior_record.value_counts()"
]
},
{
"cell_type": "code",
"execution_count": 74,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"yes 298\n",
"no 254\n",
"unknown 14\n",
"Name: prior_record, dtype: int64"
]
},
"execution_count": 74,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#It looks like there is a space after one no therefore removing that and looking again to see if we just have 3 categories\n",
"death_row[\"prior_record\"] = death_row[\"prior_record\"].str.replace(\"no \", \"no\")\n",
"death_row.prior_record.value_counts()"
]
},
{
"cell_type": "code",
"execution_count": 75,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"white 298\n",
"unknown 106\n",
"hispanic 86\n",
"black 57\n",
"asian 9\n",
"unkown 4\n",
"middle eastern 2\n",
"black 2\n",
"white 1\n",
"samoan 1\n",
"Name: race_vic, dtype: int64"
]
},
"execution_count": 75,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"death_row.race_vic.value_counts()"
]
},
{
"cell_type": "code",
"execution_count": 76,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"white 299\n",
"unknown 110\n",
"hispanic 86\n",
"black 59\n",
"other 12\n",
"Name: race_vic, dtype: int64"
]
},
"execution_count": 76,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#We have decided to break race into white, hispanic, black, other, and unknown \n",
"death_row[\"race_vic\"] = death_row[\"race_vic\"].str.replace(\"white \", \"white\")\n",
"death_row[\"race_vic\"] = death_row[\"race_vic\"].str.replace(\"black \", \"black\")\n",
"death_row[\"race_vic\"] = death_row[\"race_vic\"].str.replace(\"unkown\", \"unknown\")\n",
"death_row[\"race_vic\"] = death_row[\"race_vic\"].str.replace(\"asian\", \"other\")\n",
"death_row[\"race_vic\"] = death_row[\"race_vic\"].str.replace(\"middle eastern\", \"other\")\n",
"death_row[\"race_vic\"] = death_row[\"race_vic\"].str.replace(\"samoan\", \"other\")\n",
"death_row.race_vic.value_counts()"
]
},
{
"cell_type": "code",
"execution_count": 77,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"White 250\n",
"Black 204\n",
"Hispanic 107\n",
"White 2\n",
"Other 2\n",
"Hispanic 1\n",
"Name: race, dtype: int64"
]
},
"execution_count": 77,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"death_row.race.value_counts()"
]
},
{
"cell_type": "code",
"execution_count": 78,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"white 252\n",
"black 204\n",
"hispanic 108\n",
"other 2\n",
"Name: race, dtype: int64"
]
},
"execution_count": 78,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#We have decided to break race into white, hispanic, black, other, and unknown \n",
"death_row[\"race\"] = death_row[\"race\"].str.replace(\"White\", \"white\")\n",
"death_row[\"race\"] = death_row[\"race\"].str.replace(\"white \", \"white\")\n",
"death_row[\"race\"] = death_row[\"race\"].str.replace(\"Black\", \"black\")\n",
"death_row[\"race\"] = death_row[\"race\"].str.replace(\"Hispanic\", \"hispanic\")\n",
"death_row[\"race\"] = death_row[\"race\"].str.replace(\"hispanic \", \"hispanic\")\n",
"death_row[\"race\"] = death_row[\"race\"].str.replace(\"Other\", \"other\")\n",
"\n",
"death_row.race.value_counts()"
]
},
{
"cell_type": "code",
"execution_count": 79,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"no 478\n",
"yes 50\n",
"no 32\n",
"yes 3\n",
" no 2\n",
"unknown 1\n",
"Name: vic_police, dtype: int64"
]
},
"execution_count": 79,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"death_row.vic_police.value_counts()"
]
},
{
"cell_type": "code",
"execution_count": 80,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"no 513\n",
"yes 53\n",
"Name: vic_police, dtype: int64"
]
},
"execution_count": 80,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"death_row[\"vic_police\"] = death_row[\"vic_police\"].str.replace(\"no \", \"no\")\n",
"death_row[\"vic_police\"] = death_row[\"vic_police\"].str.replace(\"yes \", \"yes\")\n",
"death_row[\"vic_police\"] = death_row[\"vic_police\"].str.replace(\" no\", \"no\")\n",
"death_row[\"vic_police\"] = death_row[\"vic_police\"].str.replace(\"unknown\", \"no\")\n",
"death_row.vic_police.value_counts()"
]
},
{
"cell_type": "code",
"execution_count": 81,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"gun 297\n",
"knife 78\n",
"hands 41\n",
"hands, knife 12\n",
"gun, knife 10\n",
" ... \n",
"cord, fireplace brush 1\n",
"cord, fire, gun 1\n",
"concrete 1\n",
"coat hangers 1\n",
"ace bandage 1\n",
"Name: weapon, Length: 82, dtype: int64"
]
},
"execution_count": 81,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"death_row.weapon.value_counts()"
]
},
{
"cell_type": "code",
"execution_count": 82,
"metadata": {},
"outputs": [],
"source": [
"#Changing weapon to gun, knife, strangulation_item, other \n",
"#If a gun is used it will be the main weapon, then goes knife, then strangulation_item... \n",
"death_row[\"weapon\"] = death_row[\"weapon\"].str.replace(\"hands, knife\", \"knife\")\n",
"death_row[\"weapon\"] = death_row[\"weapon\"].str.replace(\"gun, knife\", \"gun\")\n",
"death_row[\"weapon\"] = death_row[\"weapon\"].str.replace(\"cord, fireplace brush\", \"strangulation_item\")\n",
"death_row[\"weapon\"] = death_row[\"weapon\"].str.replace(\"cord, fire, gun\", \"strangulation_item\")\n",
"death_row[\"weapon\"] = death_row[\"weapon\"].str.replace(\"coat hangers\", \"strangulation_item\")\n",
"death_row[\"weapon\"] = death_row[\"weapon\"].str.replace(\"ace bandage\", \"strangulation_item\")\n",
"death_row[\"weapon\"] = death_row[\"weapon\"].str.replace(\"clothes\", \"strangulation_item\")\n",
"death_row[\"weapon\"] = death_row[\"weapon\"].str.replace(\"concrete\", \"other\")\n",
"death_row[\"weapon\"] = death_row[\"weapon\"].str.replace(\"blunt object\", \"other\")\n",
"death_row[\"weapon\"] = death_row[\"weapon\"].str.replace(\"gun, water\", \"gun\")\n",
"death_row[\"weapon\"] = death_row[\"weapon\"].str.replace(\"bag, gun\", \"gun\")\n",
"death_row[\"weapon\"] = death_row[\"weapon\"].str.replace(\"knife, rope\", \"knife\")\n",
"death_row[\"weapon\"] = death_row[\"weapon\"].str.replace(\"belt, club\", \"strangulation_item\")\n",
"death_row[\"weapon\"] = death_row[\"weapon\"].str.replace(\"sword\", \"knife\")\n",
"death_row[\"weapon\"] = death_row[\"weapon\"].str.replace(\"screwdriver\", \"knife\")\n",
"death_row[\"weapon\"] = death_row[\"weapon\"].str.replace(\"rock\", \"other\")\n",
"death_row[\"weapon\"] = death_row[\"weapon\"].str.replace(\"gun, lamp\", \"gun\")\n",
"death_row[\"weapon\"] = death_row[\"weapon\"].str.replace(\"asphalt\", \"other\")\n",
"death_row[\"weapon\"] = death_row[\"weapon\"].str.replace(\"board, strangulation_item\", \"other\")\n",
"death_row[\"weapon\"] = death_row[\"weapon\"].str.replace(\"sissors\", \"knife\")\n",
"death_row[\"weapon\"] = death_row[\"weapon\"].str.replace(\"club, gun\", \"knife\")\n",
"death_row[\"weapon\"] = death_row[\"weapon\"].str.replace(\"strangulation_item, gun\", \"gun\")\n",
"death_row[\"weapon\"] = death_row[\"weapon\"].str.replace(\"gun, pipe\", \"gun\")\n",
"death_row[\"weapon\"] = death_row[\"weapon\"].str.replace(\"hammer\", \"other\")\n",
"death_row[\"weapon\"] = death_row[\"weapon\"].str.replace(\"car\", \"other\")\n",
"death_row[\"weapon\"] = death_row[\"weapon\"].str.replace(\"gun, hands\", \"gun\")\n",
"death_row[\"weapon\"] = death_row[\"weapon\"].str.replace(\"cord\", \"strangulation_item\")\n",
"death_row[\"weapon\"] = death_row[\"weapon\"].str.replace(\"tool\", \"other\")\n",
"death_row[\"weapon\"] = death_row[\"weapon\"].str.replace(\"hammer, knife\", \"knife\")\n",
"death_row[\"weapon\"] = death_row[\"weapon\"].str.replace(\"fire, gun\", \"gun\")\n",
"death_row[\"weapon\"] = death_row[\"weapon\"].str.replace(\"bat\", \"other\")\n",
"death_row[\"weapon\"] = death_row[\"weapon\"].str.replace(\"fire\", \"other\")\n",
"death_row[\"weapon\"] = death_row[\"weapon\"].str.replace(\"other, hands\", \"strangulation_item\")\n",
"death_row[\"weapon\"] = death_row[\"weapon\"].str.replace(\"unknown\", \"other\")\n",
"death_row[\"weapon\"] = death_row[\"weapon\"].str.replace(\"gun, wire\", \"gun\")\n",
"death_row[\"weapon\"] = death_row[\"weapon\"].str.replace(\"board\", \"other\")\n",
"death_row[\"weapon\"] = death_row[\"weapon\"].str.replace(\"knife, other\", \"knife\")\n",
"death_row[\"weapon\"] = death_row[\"weapon\"].str.replace(\"knife, pipe\", \"knife\")\n",
"death_row[\"weapon\"] = death_row[\"weapon\"].str.replace(\"bar\", \"other\")\n",
"death_row[\"weapon\"] = death_row[\"weapon\"].str.replace(\"bathtub\", \"other\")\n",
"death_row[\"weapon\"] = death_row[\"weapon\"].str.replace(\"rope\", \"strangulation_item\")\n",
"death_row[\"weapon\"] = death_row[\"weapon\"].str.replace(\"strangulation_item, hammer\", \"strangulation_item\")\n",
"death_row[\"weapon\"] = death_row[\"weapon\"].str.replace(\"bar, knife\", \"knife\")\n",
"death_row[\"weapon\"] = death_row[\"weapon\"].str.replace(\"belt, fire\", \"strangulation_item\")\n",
"death_row[\"weapon\"] = death_row[\"weapon\"].str.replace(\"other, knife\", \"knife\")\n",
"death_row[\"weapon\"] = death_row[\"weapon\"].str.replace(\"pillow\", \"strangulation_item\")\n",
"death_row[\"weapon\"] = death_row[\"weapon\"].str.replace(\"strangulation_item, other\", \"strangulation_item\")\n",
"death_row[\"weapon\"] = death_row[\"weapon\"].str.replace(\"belt, other\", \"strangulation_item\")\n",
"death_row[\"weapon\"] = death_row[\"weapon\"].str.replace(\"axe\", \"other\")\n",
"death_row[\"weapon\"] = death_row[\"weapon\"].str.replace(\"otherhtub\", \"other\")\n",
"death_row[\"weapon\"] = death_row[\"weapon\"].str.replace(\"heroin\", \"other\")\n",
"death_row[\"weapon\"] = death_row[\"weapon\"].str.replace(\"knife, water\", \"knife\")\n",
"death_row[\"weapon\"] = death_row[\"weapon\"].str.replace(\"bag, other\", \"strangulation_item\")\n",
"death_row[\"weapon\"] = death_row[\"weapon\"].str.replace(\"other, other, knife\", \"knife\")\n",
"death_row[\"weapon\"] = death_row[\"weapon\"].str.replace(\"starvation\", \"other\")\n",
"death_row[\"weapon\"] = death_row[\"weapon\"].str.replace(\"statuette\", \"other\")\n",
"death_row[\"weapon\"] = death_row[\"weapon\"].str.replace(\"steel lock\", \"other\")\n",
"death_row[\"weapon\"] = death_row[\"weapon\"].str.replace(\"pickax\", \"knife\")\n",
"death_row[\"weapon\"] = death_row[\"weapon\"].str.replace(\"hands, strangulation_item\", \"strangulation_item\")\n",
"death_row[\"weapon\"] = death_row[\"weapon\"].str.replace(\"strangulation_item, hands\", \"strangulation_item\")\n",
"death_row[\"weapon\"] = death_row[\"weapon\"].str.replace(\"plastic tie wrap\", \"strangulation_item\")\n",
"death_row[\"weapon\"] = death_row[\"weapon\"].str.replace(\"poison\", \"other\")\n",
"death_row[\"weapon\"] = death_row[\"weapon\"].str.replace(\"cellophane, gun, sink\", \"gun\")\n",
"death_row[\"weapon\"] = death_row[\"weapon\"].str.replace(\"beer bottle, hands\", \"hands\")\n",
"death_row[\"weapon\"] = death_row[\"weapon\"].str.replace(\"hands, water\", \"hands\")\n",
"death_row[\"weapon\"] = death_row[\"weapon\"].str.replace(\"strangulation_item, ice pick\", \"knife\")\n",
"death_row[\"weapon\"] = death_row[\"weapon\"].str.replace(\"hands, sand\", \"hands\")\n",
"death_row[\"weapon\"] = death_row[\"weapon\"].str.replace(\"club\", \"other\")\n",
"death_row[\"weapon\"] = death_row[\"weapon\"].str.replace(\"knife, mug\", \"knife\")\n",
"death_row[\"weapon\"] = death_row[\"weapon\"].str.replace(\"ice pick, knife\", \"knife\")\n",
"death_row[\"weapon\"] = death_row[\"weapon\"].str.replace(\"pipe\", \"other\")\n",
"death_row[\"weapon\"] = death_row[\"weapon\"].str.replace(\"hatchet\", \"knife\")\n",
"death_row[\"weapon\"] = death_row[\"weapon\"].str.replace(\"chain\", \"other\")\n",
"death_row[\"weapon\"] = death_row[\"weapon\"].str.replace(\"bumper jack\", \"other\")\n",
"death_row[\"weapon\"] = death_row[\"weapon\"].str.replace(\"frying pan\", \"other\")\n",
"death_row[\"weapon\"] = death_row[\"weapon\"].str.replace(\"river\", \"other\")\n",
"death_row[\"weapon\"] = death_row[\"weapon\"].str.replace(\"other, gun, other\", \"gun\")\n",
"death_row[\"weapon\"] = death_row[\"weapon\"].str.replace(\"other, other\", \"other\")\n",
"death_row[\"weapon\"] = death_row[\"weapon\"].str.replace(\"other \", \"other\")\n",
"death_row[\"weapon\"] = death_row[\"weapon\"].str.replace(\"other, knife\", \"other\")\n",
"death_row[\"weapon\"] = death_row[\"weapon\"].str.replace(\"other, hands\", \"other\")"
]
},
{
"cell_type": "code",
"execution_count": 83,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"gun 324\n",
"knife 114\n",
"other 55\n",
"hands 44\n",
"strangulation_item 29\n",
"Name: weapon, dtype: int64"
]
},
"execution_count": 83,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"death_row.weapon.value_counts()"
]
},
{
"cell_type": "code",
"execution_count": 84,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"gun 324\n",
"other 128\n",
"knife 114\n",
"Name: weapon, dtype: int64"
]
},
"execution_count": 84,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"death_row[\"weapon\"] = death_row[\"weapon\"].str.replace(\"hands\", \"other\")\n",
"death_row[\"weapon\"] = death_row[\"weapon\"].str.replace(\"strangulation_item\", \"other\")\n",
"death_row.weapon.value_counts()"
]
},
{
"cell_type": "code",
"execution_count": 85,
"metadata": {},
"outputs": [],
"source": [
"death_row[\"main_crime\"] = death_row[\"main_crime\"].str.replace(\"murder-serial, robbery-serial, rape\", \"murder_rape_robbery\")\n",
"death_row[\"main_crime\"] = death_row[\"main_crime\"].str.replace(\"murder-serial, robbery-serial\", \"murder_robbery\")\n",
"death_row[\"main_crime\"] = death_row[\"main_crime\"].str.replace(\"murder-serial, rape-serial, kidnapping\", \"murder_rape\")\n",
"death_row[\"main_crime\"] = death_row[\"main_crime\"].str.replace(\"murder-serial, rape, robbery\", \"murder_rape_robbery\")\n",
"death_row[\"main_crime\"] = death_row[\"main_crime\"].str.replace(\"murder-serial, rape-serial\", \"murder_rape\")\n",
"death_row[\"main_crime\"] = death_row[\"main_crime\"].str.replace(\"murder-serial, rape\", \"murder_rape\")\n",
"death_row[\"main_crime\"] = death_row[\"main_crime\"].str.replace(\"murder-serial\", \"murder\")\n",
"death_row[\"main_crime\"] = death_row[\"main_crime\"].str.replace(\"unknown\", \"murder\")\n",
"death_row[\"main_crime\"] = death_row[\"main_crime\"].str.replace(\"murder-attempted, robbery\", \"murder_robbery\")\n",
"death_row[\"main_crime\"] = death_row[\"main_crime\"].str.replace(\"murder-attempted, escape\", \"murder_other\")\n",
"death_row[\"main_crime\"] = death_row[\"main_crime\"].str.replace(\"murder, car theft, eluding arrest, kidnapping, robbery\", \"murder_robbery\")\n",
"death_row[\"main_crime\"] = death_row[\"main_crime\"].str.replace(\"murder, car theft, kidnapping, rape\", \"murder_rape_robbery\")\n",
"death_row[\"main_crime\"] = death_row[\"main_crime\"].str.replace(\"murder, car theft, kidnappy, robbery\", \"murder_robbery\")\n",
"death_row[\"main_crime\"] = death_row[\"main_crime\"].str.replace(\"murder, car theft, rape, robbery\", \"murder_rape_robbery\")\n",
"death_row[\"main_crime\"] = death_row[\"main_crime\"].str.replace(\"murder, car theft, kidnapping\", \"murder_robbery\")\n",
"death_row[\"main_crime\"] = death_row[\"main_crime\"].str.replace(\"murder, eluding arrest, kidnapping\", \"murder_other\")\n",
"death_row[\"main_crime\"] = death_row[\"main_crime\"].str.replace(\"murder, eluding arrest, rape\", \"murder_rape\")\n",
"death_row[\"main_crime\"] = death_row[\"main_crime\"].str.replace(\"murder, kidnapping, rape, robbery\", \"murder_rape_robbery\")\n",
"death_row[\"main_crime\"] = death_row[\"main_crime\"].str.replace(\"murder, kidnapping, robbery\", \"murder_robbery\")\n",
"death_row[\"main_crime\"] = death_row[\"main_crime\"].str.replace(\"murder, kidnapping, ransom\", \"murder_other\")\n",
"death_row[\"main_crime\"] = death_row[\"main_crime\"].str.replace(\"murder, kidnapping, rape\", \"murder_rape\")\n",
"death_row[\"main_crime\"] = death_row[\"main_crime\"].str.replace(\"murder, kidnapping\", \"murder_other\")\n",
"death_row[\"main_crime\"] = death_row[\"main_crime\"].str.replace(\"murder, for hire, rape\", \"murder_rape\")\n",
"death_row[\"main_crime\"] = death_row[\"main_crime\"].str.replace(\"murder, for hire\", \"murder\")\n",
"death_row[\"main_crime\"] = death_row[\"main_crime\"].str.replace(\"murder, insurance scam, rape\", \"murder_rape\")\n",
"death_row[\"main_crime\"] = death_row[\"main_crime\"].str.replace(\"murder, insurance scam\", \"murder_other\")\n",
"death_row[\"main_crime\"] = death_row[\"main_crime\"].str.replace(\"murder, car theft, robbery\", \"murder_robbery\")\n",
"death_row[\"main_crime\"] = death_row[\"main_crime\"].str.replace(\"murder, car theft, rape\", \"murder_rape_robbery\")\n",
"death_row[\"main_crime\"] = death_row[\"main_crime\"].str.replace(\"murder, car theft\", \"murder_robbery\")\n",
"death_row[\"main_crime\"] = death_row[\"main_crime\"].str.replace(\"murder, eluding arrest, robbery\", \"murder_robbery\")\n",
"death_row[\"main_crime\"] = death_row[\"main_crime\"].str.replace(\"murder, eluding arrest\", \"murder_other\")\n",
"death_row[\"main_crime\"] = death_row[\"main_crime\"].str.replace(\"murder, rape, robbery\", \"murder_rape_robbery\")\n",
"death_row[\"main_crime\"] = death_row[\"main_crime\"].str.replace(\"murder, rape\", \"murder_rape\")\n",
"death_row[\"main_crime\"] = death_row[\"main_crime\"].str.replace(\"murder, mutilation-sexual\", \"murder_rape\")\n",
"death_row[\"main_crime\"] = death_row[\"main_crime\"].str.replace(\"murder, identity theft\", \"murder_other\")\n",
"death_row[\"main_crime\"] = death_row[\"main_crime\"].str.replace(\"murder, escape\", \"murder_other\")\n",
"death_row[\"main_crime\"] = death_row[\"main_crime\"].str.replace(\"murder, robbery\", \"murder_robbery\")\n",
"death_row[\"main_crime\"] = death_row[\"main_crime\"].str.replace(\"murder_robbery \", \"murder_robbery\")"
]
},
{
"cell_type": "code",
"execution_count": 86,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"murder_robbery 263\n",
"murder 118\n",
"murder_rape 87\n",
"murder_other 54\n",
"murder_rape_robbery 44\n",
"Name: main_crime, dtype: int64"
]
},
"execution_count": 86,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"death_row.main_crime.value_counts()"
]
},
{
"cell_type": "code",
"execution_count": 87,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" age_received \n",
" education_level \n",
" age_crime \n",
" occupation \n",
" prior_record \n",
" num_of_vic \n",
" main_crime \n",
" type_of_crime \n",
" weapon \n",
" co_defendants \n",
" race_vic \n",
" vic_kid \n",
" vic_male \n",
" vic_female \n",
" vic_police \n",
" age \n",
" race \n",
" county \n",
" last_statement \n",
" time_spent \n",
" \n",
" \n",
" \n",
" \n",
" count \n",
" 566 \n",
" 566 \n",
" 566 \n",
" 566 \n",
" 566 \n",
" 566 \n",
" 566 \n",
" 566 \n",
" 566 \n",
" 566 \n",
" 566 \n",
" 566 \n",
" 566 \n",
" 566 \n",
" 566 \n",
" 566 \n",
" 566 \n",
" 566 \n",
" 564 \n",
" 565 \n",
" \n",
" \n",
" unique \n",
" 3 \n",
" 5 \n",
" 3 \n",
" 78 \n",
" 3 \n",
" 2 \n",
" 5 \n",
" 2 \n",
" 3 \n",
" 2 \n",
" 5 \n",
" 2 \n",
" 2 \n",
" 2 \n",
" 2 \n",
" 3 \n",
" 4 \n",
" 113 \n",
" 454 \n",
" 2 \n",
" \n",
" \n",
" top \n",
" twenties \n",
" some_highschool \n",
" twenties \n",
" laborer \n",
" yes \n",
" one \n",
" murder_robbery \n",
" gun \n",
" gun \n",
" no \n",
" white \n",
" no \n",
" yes \n",
" yes \n",
" no \n",
" 35-45 \n",
" white \n",
" Harris \n",
" none \n",
" 10+ \n",
" \n",
" \n",
" freq \n",
" 308 \n",
" 222 \n",
" 299 \n",
" 206 \n",
" 298 \n",
" 354 \n",
" 263 \n",
" 324 \n",
" 324 \n",
" 328 \n",
" 299 \n",
" 460 \n",
" 356 \n",
" 329 \n",
" 513 \n",
" 245 \n",
" 252 \n",
" 128 \n",
" 101 \n",
" 284 \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" age_received education_level age_crime occupation prior_record \\\n",
"count 566 566 566 566 566 \n",
"unique 3 5 3 78 3 \n",
"top twenties some_highschool twenties laborer yes \n",
"freq 308 222 299 206 298 \n",
"\n",
" num_of_vic main_crime type_of_crime weapon co_defendants race_vic \\\n",
"count 566 566 566 566 566 566 \n",
"unique 2 5 2 3 2 5 \n",
"top one murder_robbery gun gun no white \n",
"freq 354 263 324 324 328 299 \n",
"\n",
" vic_kid vic_male vic_female vic_police age race county \\\n",
"count 566 566 566 566 566 566 566 \n",
"unique 2 2 2 2 3 4 113 \n",
"top no yes yes no 35-45 white Harris \n",
"freq 460 356 329 513 245 252 128 \n",
"\n",
" last_statement time_spent \n",
"count 564 565 \n",
"unique 454 2 \n",
"top none 10+ \n",
"freq 101 284 "
]
},
"execution_count": 87,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"death_row.describe()"
]
},
{
"cell_type": "code",
"execution_count": 88,
"metadata": {},
"outputs": [],
"source": [
"death_row[\"occupation\"] = death_row[\"occupation\"].astype(\"object\")\n",
"death_row.loc[death_row[\"occupation\"] != \"laborer\", \"occupation\"] = \"other\""
]
},
{
"cell_type": "code",
"execution_count": 89,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" age_received \n",
" education_level \n",
" age_crime \n",
" occupation \n",
" prior_record \n",
" num_of_vic \n",
" main_crime \n",
" type_of_crime \n",
" weapon \n",
" co_defendants \n",
" race_vic \n",
" vic_kid \n",
" vic_male \n",
" vic_female \n",
" vic_police \n",
" age \n",
" race \n",
" county \n",
" last_statement \n",
" time_spent \n",
" \n",
" \n",
" \n",
" \n",
" count \n",
" 566 \n",
" 566 \n",
" 566 \n",
" 566 \n",
" 566 \n",
" 566 \n",
" 566 \n",
" 566 \n",
" 566 \n",
" 566 \n",
" 566 \n",
" 566 \n",
" 566 \n",
" 566 \n",
" 566 \n",
" 566 \n",
" 566 \n",
" 566 \n",
" 564 \n",
" 565 \n",
" \n",
" \n",
" unique \n",
" 3 \n",
" 5 \n",
" 3 \n",
" 2 \n",
" 3 \n",
" 2 \n",
" 5 \n",
" 2 \n",
" 3 \n",
" 2 \n",
" 5 \n",
" 2 \n",
" 2 \n",
" 2 \n",
" 2 \n",
" 3 \n",
" 4 \n",
" 113 \n",
" 454 \n",
" 2 \n",
" \n",
" \n",
" top \n",
" twenties \n",
" some_highschool \n",
" twenties \n",
" other \n",
" yes \n",
" one \n",
" murder_robbery \n",
" gun \n",
" gun \n",
" no \n",
" white \n",
" no \n",
" yes \n",
" yes \n",
" no \n",
" 35-45 \n",
" white \n",
" Harris \n",
" none \n",
" 10+ \n",
" \n",
" \n",
" freq \n",
" 308 \n",
" 222 \n",
" 299 \n",
" 360 \n",
" 298 \n",
" 354 \n",
" 263 \n",
" 324 \n",
" 324 \n",
" 328 \n",
" 299 \n",
" 460 \n",
" 356 \n",
" 329 \n",
" 513 \n",
" 245 \n",
" 252 \n",
" 128 \n",
" 101 \n",
" 284 \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" age_received education_level age_crime occupation prior_record \\\n",
"count 566 566 566 566 566 \n",
"unique 3 5 3 2 3 \n",
"top twenties some_highschool twenties other yes \n",
"freq 308 222 299 360 298 \n",
"\n",
" num_of_vic main_crime type_of_crime weapon co_defendants race_vic \\\n",
"count 566 566 566 566 566 566 \n",
"unique 2 5 2 3 2 5 \n",
"top one murder_robbery gun gun no white \n",
"freq 354 263 324 324 328 299 \n",
"\n",
" vic_kid vic_male vic_female vic_police age race county \\\n",
"count 566 566 566 566 566 566 566 \n",
"unique 2 2 2 2 3 4 113 \n",
"top no yes yes no 35-45 white Harris \n",
"freq 460 356 329 513 245 252 128 \n",
"\n",
" last_statement time_spent \n",
"count 564 565 \n",
"unique 454 2 \n",
"top none 10+ \n",
"freq 101 284 "
]
},
"execution_count": 89,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"death_row.describe()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Now the data is ready to analyze/visualize/play with "
]
},
{
"cell_type": "code",
"execution_count": 90,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['age_received',\n",
" 'education_level',\n",
" 'age_crime',\n",
" 'occupation',\n",
" 'prior_record',\n",
" 'num_of_vic',\n",
" 'main_crime',\n",
" 'type_of_crime',\n",
" 'weapon',\n",
" 'co_defendants',\n",
" 'race_vic',\n",
" 'vic_kid',\n",
" 'vic_male',\n",
" 'vic_female',\n",
" 'vic_police',\n",
" 'age',\n",
" 'race',\n",
" 'county',\n",
" 'time_spent']"
]
},
"execution_count": 90,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"column_names = list(death_row.columns)\n",
"column_names.remove(\"last_statement\")\n",
"column_names"
]
},
{
"cell_type": "code",
"execution_count": 91,
"metadata": {},
"outputs": [],
"source": [
"def get_value_counts(df, column): \n",
" new_df = pd.DataFrame(df[column].value_counts())\n",
" new_df.columns = [\"count\"]\n",
" new_df[\"category\"] = new_df.index \n",
" new_df.reset_index(drop = True, inplace = True)\n",
" return new_df"
]
},
{
"cell_type": "code",
"execution_count": 92,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" count \n",
" category \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" 308 \n",
" twenties \n",
" \n",
" \n",
" 1 \n",
" 218 \n",
" thirty+ \n",
" \n",
" \n",
" 2 \n",
" 40 \n",
" teens \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" count category\n",
"0 308 twenties\n",
"1 218 thirty+\n",
"2 40 teens"
]
},
"execution_count": 92,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"age_received_df = get_value_counts(death_row, \"age_received\")\n",
"age_received_df"
]
},
{
"cell_type": "code",
"execution_count": 116,
"metadata": {},
"outputs": [],
"source": [
"from wordcloud import WordCloud, ImageColorGenerator\n",
"from PIL import Image\n",
"import matplotlib as mpl\n",
"import matplotlib.pyplot as plt \n",
"from matplotlib import cm \n",
"from colorspacious import cspace_converter\n",
"import seaborn as sns"
]
},
{
"cell_type": "code",
"execution_count": 117,
"metadata": {},
"outputs": [],
"source": [
"#What the function does: creates a bar graph\n",
"#Input: the df and title of the graph \n",
"#Output: the bar graph\n",
"def category_bar_plot(df, title, rotation): \n",
" with sns.plotting_context(\"talk\"):\n",
" graph = sns.barplot(y = \"count\", x = \"category\", data = df, \n",
" palette = \"GnBu_d\")\n",
" plt.title(title)\n",
" plt.xlabel(\"Category\")\n",
" plt.ylabel(\"Count\")\n",
" plt.xticks(rotation = rotation)\n",
" return plt"
]
},
{
"cell_type": "code",
"execution_count": 118,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 118,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ8AAAEtCAYAAADX4G3qAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3de7xmY/3/8debIXKYYaaUfL8mUYgS6fRVBkORsygho5RjX6ScvvkZkkJKKkWpQYrUjEPkbJAa5xxmGDJGiDBjZhyHmfn8/riu26xZs/be971n73Xvvef9fDzW4973tT7rWtd92PdnXWtday1FBGZmZnVaot0NMDOzxY+Tj5mZ1c7Jx8zMaufkY2ZmtXPyMTOz2jn5mJlZ7Zx8zHqYpJA0ps1tGC9pajvb0JMkDc/v6+hFqGNErmNUz7XMusvJxwCQtJKk1/I/557tbk+DpDG5TY1prqRnJV0uaZN2t28gKL2/IWmOpKck/UXSVu1unw1Mg9rdAOsz9gCWBh4DvgL8tr3NWcgBwEukNr4f+BrwGUkjI+KmtrZsYcsCc9vdiBb9Azgt/70UMBzYF7ha0i4RMbZdDbOBycnHGr4C3AhcCpwu6T0R8Wib21T0x4h4vvFE0k2ktn4T6FPJJyJea3cbuuGpiFhgg0PSn4B7gb2BTpOPpBUi4sVebJ8NMN7tZkjaENgAOBe4AHgD2KeD2CUlHSvp8byb7j5Jn5c0Ou+yGV6Kf6ekn0v6l6TXJf1b0tmS3r6Izb4+P65V0UZJOkDSXZJekfSipBslbdbBa9olz5+R4ydLOkPS0t2ps3jMJ79fT0m6u4N175fjdyyUvUXSMZIm5vd4Rt7N+KGK5VeS9EtJz0t6OR/r2airN69J/86Pr5fWOTWv50OSrpY0E7iv1fZLWkLS/0m6WdIz+fvxr/x9GdpMAyV9On8Wt0haqVC+g6R78vqfkHQCqUdXVccwST/Lca/nx58V2yBpdVUcc5J0TS4/tFR+m6RJheeN3ceD8+t7NrftVkkfbea1DjgR4Wkxn4CfkXZpLZefjwWeAJaoiP05EMANwNeBE4BpwJ25fHgh9r+Bp4DngO8DXwVOBmYBjwCDm2jbmFzvsFL5B3L53yqW+S1pt9dFwMHA4cDdwBxg+1Lsd3M9E4HjSLvzTgb+CQzpZp0BjCk8PyWXrVfR1lvz+7NUfr4UqQc6G/gVaXfjUcCjwCvAhwvLLgXcnus+DzgQOBt4Ibd/apOffwBXA8Py9A7go8Cf8+v7TCl+KjAlr+fs/J59oxvtXwaYAZyT38/989+vA/cDSxdih+d2ji6U7U3aUBoLLFMo3wmYl9t4DHAE8GD+vAIYVYgdDDyc43+V38Nf5ucPAisUYqcAtxSeLw28nL8XlxfKV8zv208rvscTgMvzd+g4YCbp/2eFZj6rgTS1vQGe2vwFSD8A00s/ljvkf5StS7Hvz+VXUUhMwPr5H7CcfC4FngVWK9Xz4fzPObqJ9jX+ad+bfxhXBUaSdgcFcGApfqdc/rVS+SBSgnwMUC77CPMT6TKleBXimq4zl5eTT+N9O6W0/Hty+RmFssNy2adLsSsC/wLGF8q+lmOPL8UemsunNvkdiA6m6ZQSa46fmufvWzGvlfYLWLaijq/kOnYrlA2nkHxICS2AM0vfxSXzep6nsMFCSjKPs3DyaWx8lL9HB+Xy7xTKfkVKjI2NtE/lmPNJG1SDcvl2uXzniu/xmaX17JrL92vXb0C7prY3wFObvwDwxfzl36xQNgj4D3BxKfZIKpJSnnclheST/9nn5n/YYRXTQ1T0WirqbfzTlqcZwDcr4v+UfwjeXrHO4/Ky782xP87PP9pFG5quM8cvkHxy2Z2kXmDxh/L4HLtRoewu0hZ31Xt2DilpL1t4z+cAK5bW9RbSFvXUJr8DjS3ykXn6NKmX+g9Sb6WcSKaSttaXrKir6faXllsSGJLj3p3bdFph/vBcdgLw0/z3tyvqaWxQnFox72gWTj6TSBtIg0qxg0g90gcq/lc+nZ+PJv2ffDiXfzyX/5D03V+54nu8Vmk9Q3P5D9r9W1D35AEH9hXSP9mTktYslF8L7CppWMw/0P/u/Di5op7JwNaF5+8jHVP8Sp6qTGmhnbuQEsCKpJ7ZnqReW9k6wAqkH4WOrELa1bIW6R//3i7W3UqdHTmPlOxGAtfksj2BiRFxV2ldy5I+k44MI+0WXQN4OiJmFWdGxGxJU4CVqhbuwPMRcV2xQNJFpN2jv8wDUN4ozH40IqpG9LXSfiTtRtrl9iEWPiZT1f5DSZ/F/0XESRXz18iPD1XMm1RR9m7gzoiYUyyMiDmSJgMbFopvyI+bk3ZTbk7axXg3aRfk5sDf8+O9ETG9Yn0LfOcjYpokSEloseLksxiT9G5gM9Luj45+OPcETm8s0kr1+fG3pIEMVV5tob6bC0lwrKRXge9Iuisi/lJa73OkrdSOPFCIjSbW3UqdHfkd8APgS8A1kj5J+qE8smJd9wPf6KSu5wqxHbW/lc+qUkTMkvR3UrJfiwV/vF/pZL1NtV/SzqRjaLcDh5AS0mukXtBVVA+Iupa0u2s/SRdGRHkDpvG6q96XRXpPIuIZSQ8Cm0t6K+m42NcjYp7S6MstJP2CdDzyhx3U0dEQ/EX+vPobJ5/F2z6kL/1XSbuxyk4k9Voayeex/Pg+Fu61vK/0/J+kH4Cly1vUPeRo4PPADyVdU/infoR0fGhCRLzURR2Tgc+Qfixu7ySulTorRcTzkq4EdpK0PCkJzWPh86keAd4G3BAR87qo9lFgK0krFns/kt5C2qJ/oTttLWn0RlZoMr6V9u9FSjabRcSbyUzS2p0scz/w/0ijHW+StHlEPFKY3zg9YJ2KZavKpgDvkzSo2PuRNIj0mZe/5zeQBlFsRxpw0Bh1eT1p42Jr0v/UDVinPNR6MSVpCWAUcH9E/Coi/liegN8D60naOC92eX48JC/fqGt90nGCN0XENNIxiZ0lfaxi/ZL0tu62PyJeAM4A1gZ2L8w6j/S9/l7VcpJWKTz9XX48Kf9gL9TGbtTZmXOBt5J6k7sC10bEv0sx55FGm1X2HErrupTUSzi8FHYAaffkIsmfzydICaJql1WVVtrfGKRS/C4J+HZnK4iIicAI0mu/qZSs7gKeBPaRNKxQ74qk0XRll5CS5b6l8q/m8nGl8htye48D/hXzz4W7gXSs7WjSca1bOnsNhgccLK4TaYs/gOM6iVkvx/yiUHYWnQ+1Xr0Q+1+kEUavkwYeHJSX+RFpi3J0E+0cQ8VQ6zxvJdJxoIcpHPwGfp2XuZX0Y/BV0sH9a4AppTq+n2MfAI7NsSflOod0s86FBhzk8qVJo7Bm5pjdK2KWIh1PCFLy/iZpVNuJpOMJN5bqu4v5Q60PoPtDre8hJcU9SUOYj2X+qLZjSvFTKYxaW4T2fyHH3U4aenwY6YThO8rvIdVDrdci7ap7Bnh/ofxzzB9qfTTwLboeaj03v3eN93Au6bjRCqXXtxLzk+ZvSvOepuPh/2OA6OT9X+j7MtCntjfAU5s+eLg4f+nX7yJuMmmXXGOE1ZLkrT7SuRz3AbuRdjkE8PbS8sOAU/M/+Gu5rvtJB9/XbaKdY+gg+eT538vz9y6V70Xa+pyV1zuVdD7I5yvq2J2UVF4knbfxEGlX49LdqbOzHxPgJ3n+TCpGfeWYQcD/5h/hl/P0COkE4K1KsSuTRpFNy3HjSaOvxrNoQ61nATcDX6iIn0oHyacb7f8qqVf1Wv7xPju/pi6TTy5fI7fnWeADhfKdSaP1ZpMS1HeALSklnxz7NtKQ7SdJ5w09STr3raPvXCPh71UqvyCXn9jR97iT97/y+zKQp8Z5DGaLRNLlpFE+K0bHB1XNzAAf87EWSVq2ouwDpAOtNzjxmFkz3POxlkjanzRS6wrSkNm1Sfv0lwD+JyLuaWPzzKyfcPKxlkj6CGn/+QakffMvAn8lXeLlrs6WNTNrcPIxM7Pa+STTLkiaQ9qlNKurWDMze9OKwLyIqMwz7vl0QdI8QIMHD253U8zM+o2ZM2dCGl5eObDNPZ+uzRo8ePDgGTOqrj5jZmZVhgwZwsyZMzvcY+Sh1mZmVjsnHzMzq52Tj5mZ1c7Jx8zMaufkY2ZmtXPyMTOz2jn5mJlZ7Zx8zMysdm07yVTSJ0g3JVsPGEq6QOX9wKkR8ZdS7Jaki1l+MMeNA46MiBmluOVJd6HcFRgCTAROiIjLevfV2ECx65jr2t2EAe/iUSPb3QTrA9rZ81mJdJfMw0m3dP4a6a6DV0r6QiNI0gjS7XifALYj3ZZ3e+AKSeX2jwP2IN0D/rOkOySOk7RNr74SMzNrSdt6PhFxBemeMG/Kd8N8jJSILszFpwAPkG5VPC/HPQ1cQ+rhXJTLtgFGAjtHxLhcdiPpNrunkRKYmZn1AX3qmE9EzCHd2/4NAEnvAjYGzm8knhx3LfAUsEth8Z3yspcW4gI4F1hb0rq9/gLMzKwpbU8+kpaQNEjSqpKOB94L/CjPXi8/PlCx6P2F+Y3YScUkld1XqsvMzNqsL1zV+g/M78HMAnaLiKvy86H5cXrFctOBDQvPhwIPdxBXrGsBkrq6XLXvpWBm1sPa3vMBjgA+QhpEcCXwB0m7l2I6uulQubyzmxP5xkVmZn1E23s+ETEFmJKfXp4HHfxM0kXAtFxe1WtZmQV7RNM6iYPq3hMRMaSz9uWekXs/ZmY9qC/0fMpuJw3DfhvpPB2oPl6zPgseC5oIrFMx/Hr9/Fh13MjMzNqgTyUfSQJGADOAaRHxJHAnsEcxqUjaAngXMLaw+DjSiaXblar9EjA5Iib1YtPNzKwF7bzCwQXA48BdwPPAO4G9gc2Br+dh1wBHks7p+b2ks4FVgZOB24CLC1VeCdwInCNpKOl8ob2BTYAdev0FmZlZ09p5zOfvpKsR7Ec6pjKT1MvZPiIubwRFxA2StgWOJ52U+iJwCXBERMwtxIWkHUmX1zmJ1AuaRDrp9M36zMys/dp5hYOfAj9tMvYq4Kom4mYBB+fJzMz6qD51zMfMzBYPTj5mZlY7Jx8zM6udk4+ZmdXOycfMzGrn5GNmZrVz8jEzs9o5+ZiZWe2cfMzMrHZOPmZmVjsnHzMzq52Tj5mZ1c7Jx8zMaufkY2ZmtXPyMTOz2jn5mJlZ7Zx8zMysdk4+ZmZWOycfMzOrnZOPmZnVzsnHzMxq17bkI2kLSWMkTZb0iqQnJY2VtH4pbrykqJgurKhzeUlnSHpa0quS7pS0fX2vyszMmjGojeveHxgK/Ah4EFgFOAK4Q9KIiJhQiH0E+FJp+ecr6hwHbJjreQwYBYyTtF1EXNmzzTczs+5qZ/I5KCKeLRZIuoaUNL4F7FKY9UopGS1E0jbASGDniBiXy24E1gBOA5x8zMz6iLbtdisnnlw2g9TLWa0bVe4EzAQuLdQXwLnA2pLW7WZTzcysh/WpAQeS3gasBzxQmvU+SS9ImiPpEUnflrRUKWY9YFJEzCuV31eYX7XOGZ1NwOBFfV1mZragdu52W4AkAWeTEuIPCrNuAS4EHgKWB3YETgA2IvV2GoYCD1dUPb0w38zM+oA+k3yAU0mJZZ+IeLBRGBHHluL+LOk/wDGSNomIvxbmRSf1V86LiCGdNcq9HzOzntcndrtJ+i5wOHBIRIxpYpFz8+PHC2XTqO7drJwfp1fMMzOzNmh78pF0AnAMcEREnNHkYo12F4/vTATWkVR+TY3zhsrHkczMrE3amnwkHQccCxwbEae2sGjjnJ/i8OtxwBBgu4rYyRExqdsNNTOzHtW2Yz6SDgdGA38GrpP0scLs2RFxj6RPAkcBfwIeB5YDdgD2AS6OiFsLy1wJ3AicI2ko6XyhvYFN8jJmZtZHtHPAQaOHsm2eih4HhgNP5+cnAMNIu9kmA98AflJcICJC0o7ASXkaAkwinXR6eS+038zMuqltySciRjQR80/gsy3UOQs4OE9mZtZHtX3AgZmZLX6cfMzMrHZOPmZmVjsnHzMzq52Tj5mZ1c7Jx8zMaufkY2ZmtXPyMTOz2jn5mJlZ7Zx8zMysdk4+ZmZWOycfMzOrnZOPmZnVzsnHzMxq1877+ZiZ9aiTrru23U0Y8I4ZuWWP1OOej5mZ1c7Jx8zMaufkY2ZmtXPyMTOz2jn5mJlZ7dqWfCRtIWmMpMmSXpH0pKSxktaviN1S0gRJr0p6VtJZkoZUxC0v6QxJT+fYOyVtX88rMjOzZrWz57M/8N/Aj4CtgW/k53dI+lgjSNII4ErgCWA74JvA9sAVksrtHwfsAXwb+CwwCRgnaZtefSVmZtaSdp7nc1BEPFsskHQN8BjwLWCXXHwK8ADw+YiYl+OeBq4BdgUuymXbACOBnSNiXC67EVgDOI2UwMzMrA9oW8+nnHhy2QzgEWA1AEnvAjYGzm8knhx3LfAU8xMUwE7ATODSQlwA5wJrS1q3F16GmZl1Q58acCDpbcB6pJ4O+W8Kz4vuL8xvxE4qJqnsvlJdZmbWZn3m8jqSBJxNSog/yMVD8+P0ikWmAxsWng8FHu4grlhXeb0zumja4C7mm5lZi/pM8gFOBXYE9omIB0vzooNlyuUdxXU1z8zMatQnko+k7wKHA4dExJjCrGn5sarXsjIL9oimdRIH1b0nImKhIdults3AvR8zsx7V0jEfSVM6O29G0raSprRY5wnAMcAREXFGafbE/Fh1vGZ9FjwWNBFYp2L4deO8oarjRmZm1gatDjgYDizfyfzlgNWbrUzSccCxwLERcWp5fkQ8CdwJ7FFMKpK2AN4FjC2EjwOGkM4FKvoSMDkiJjXbLjMz6109vdttFeCVZgIlHQ6MBv4MXFc8sRSYHRH35L+PJJ3T83tJZwOrAicDtwEXF5a5ErgROEfSUNL5QnsDmwA7dPcFmZlZz+sy+Uj6FDCiULSzpDUrQlcGvgD8o8l1N3oo2+ap6HFSL4uIuEHStsDxwBXAi8AlpN10cxsLRERI2hE4KU9DSFc42DkiLm+yTWZmVoNmej6bAcflvwPYOU9V/gkc1syKI2JEM3E59irgqibiZgEH58nMzPqoZpLP6cAYQMAU4FAKVxHIAngpIipHlJmZmRV1mXwiYibpsjVI2gx4sOrSOGZmZs1qacBBRNzUWw0xM7PFR8uj3ST9N7AfsBbppE6VQiIituiBtpmZ2QDVUvKRtDXpfJqlSaPOfIzHzMxa1mrP53vA88COEXFnL7THzMwWA61e4WBt4HQnHjMzWxStJp/ngNd7oyFmZrb4aDX5nM+Cdw81MzNrWavHfMYAm0m6FPgx6fppc8tBEfGvRW+amZkNVK0mn4dIVzMQC1+PrWjJbrfIzMwGvFaTzwn4jqBmZraIWr3CweheaoeZmS1GWh1wYGZmtshavcLBp5qJi4ibu9ccMzNbHLR6zGc8zR3z8YADMzPrUKvJZ58O6ngPMAqYCpy1aE0yM7OBrtUBB+d2NE/SqcDdi9wiMzMb8HpswEFEvAD8Cjiip+o0M7OBqadHu70ArNHDdZqZ2QDTY8lH0jLAXsAzPVWnmZkNTK0Otf51B7NWBj4OvA34Vgv1rZbjNwI2AJYDNouI8aW4qcDqFVWcHBFHlWJXAU4BPgssSzoOdWRE/K3ZdpmZWe9qdbTbqA7KpwMPA4dFxO9aqG9NYHdSgrge2L6T2JuBI0tlTxWf5N7X9cDywNeBacChwPWSPhER97TQNjMz6yWtjnbr6WNEN0fE2wEk7UjnyeeFiJjQRX1fBt4PbBQRd+d6bwIeBE4Ctl70JpuZ2aJq6+V1ImJeD1e5E3B/I/HkdcwGfg9sKWmFHl6fmZl1Q6u73QCQtCIwkvkj26YA10bEiz3VsAqbS3oJWBqYDJwJ/CIiildcWA+4sWLZ+0hXXVgHuL04Q9KMLtY7uNstNjOzSi0nH0n7AqeRjqsoFwfwkqRvRMQ5Pdi+hj8Dd5KS3FBgT1LyeS9wWCFuKOn4U9n0wnwzM2uzVke7bQ+cTUoC/w94IM96P+kA/9mSno2Iy3uykRFxcKlonKQLgP+VdHpEPF4M76yqirqHdLbu3DNy78fMrAe12vM5gnTw/qMR8VKh/HpJvwEmkEak9Wjy6cC5wBeBjwCN5DON6t7NyvmxqldkZmY1a3XAwQeBMaXEA0A+3nNujqlDo+3FQQsTScd9ytYH5pJuA25mZm3WndFu6mRenbfY/hIp8dxRKBsHrC9pg0aBpKVJ5xJdFxGzamyfmZl1oNXdbvcCe0v6WUS8XJwhaXnSSaj3tlKhpM/lPzfOj5tKGga8HBF/kbQ7sANwBfAkaRfansCOwKkR8a9CdecABwFjJR1N2s12CLAqsFsr7TIzs97TavL5ATAWuFvSGcCkXN4YcLAmsHOLdV5cej46Pz4ODAceA4aRLpkzFJgN3A+MKt/iISJek7Q5cCrwc2AZ0tUTtoyIu1psl5mZ9ZJWr3BwiaSDgZOBnzB/N5uAl4GDI+LSFuvsbDce+aoGI1uo7xnSBU7NzKyPavk8n4g4U9LvgC2Bd5MSz6Okk0xn9nD7zMxsAOrWFQ4iYgYL7y4zMzNrSpej3SQtKen7kvbvIu4ASSdJ6nQ3mpmZWTNDrfck3XPnji7ibiedYLr7ojbKzMwGtmaSz26kc2Q6HS2W51+Nk4+ZmXWhmeSzEXBdk/XdCHy4+80xM7PFQTPJZ2Xg2Sbre47511EzMzOr1EzyeZF0kmczhgILXffNzMysqJnkMxHYqsn6tszxZmZmHWom+YwFRkraobOgfK+fLYE/9UTDzMxs4Gom+ZwF/BP4g6TvShpenClpuKQTgT8AD+d4MzOzDnV5hYOIeFXSZ0m3sj4aOErSi8AsYAVgRdIldiYD20bEa73YXjMzGwCaup9PRPwT2IB0e4K/AnOAd5Bu0HZLLt8wIh7tpXaamdkA0vS13XKP5id5MjMz67bu3MnUzMxskTj5mJlZ7Zx8zMysdk4+ZmZWOycfMzOrnZOPmZnVrq3JR9Jqkn4s6a+SXpIUkkZ0EPtFSfdKek3Sk/nuqstUxK0i6VxJz0t6WdItkj7R6y/GzMya1u6ez5qkm8+9BFzfUZCkPYELgFuBrYGTgIOAMaW4ZXI9mwJfB3YiXZX7ekkf6vnmm5lZdzR9kmkvuTki3g4gaUdg+3KApCWBU4HLIuLAXHyjpDeAsyX9KCJuy+VfBt4PbBQRd+flbwIeJCWsrXv11ZiZWVPa2vOJiHlNhH2MdCmfc0vlFwBvALsUynYC7m8knryO2cDvgS0lrbBoLTYzs57Q7t1uzVgvPz5QLIyIV4BHC/MbsQvEZfcBSwLr9EYDzcysNe3e7daMoflxesW86YX5jdiO4ijFAiBpRhfrH9xVA83MrDX9oefTEE2WdxTX1TwzM6tJf+j5TMuPQwt/N6wMPFaKXah3k+OgolcUEUM6W3nuGbn3Y2bWg/pDz2difiwe20HSW4H3sOAxnonluGx90r2HHuqNBpqZWWv6Q/KZADwD7FUq3x1YChhbKBsHrC9pg0aBpKVz7HURMauX22pmZk1o+243SZ/Lf26cHzeVNAx4OSL+EhFzJB0FjJH0U+CPpFFrJwN/jIgJherOIZ18OlbS0aTdbIcAqwK71fByzMysCW1PPsDFpeej8+PjwHCAiDhX0lzgSOCrwPPAL4DjigtGxGuSNiedlPpzYBngbmDLiLirl9pvZmYtanvyiQg1Gfdb4LdNxFXtojMzsz6kPxzzMTOzAcbJx8zMaufkY2ZmtXPyMTOz2jn5mJlZ7Zx8zMysdk4+ZmZWOycfMzOrnZOPmZnVzsnHzMxq5+RjZma1c/IxM7PaOfmYmVntnHzMzKx2Tj5mZlY7Jx8zM6udk4+ZmdXOycfMzGrn5GNmZrVz8jEzs9o5+ZiZWe36RfKRNEJSdDCtXYrdUtIESa9KelbSWZKGtKvtZma2sEHtbkCLjgRuLpVNbfwhaQRwJXAJ8G1gVeBkYD1Jn4yIefU008zMOtPfks/DETGhk/mnAA8An28kGklPA9cAuwIX9X4TzcysK/1it1szJL0L2Bg4v9jDiYhrgaeAXdrVNjMzW1B/Sz5nSZojaaakP0vaqDBvvfz4QMVy9xfmm5lZm/WX3W4zgdOB8cB0YB3gKOBWSZtGxG3A0Bw7vWL56cCGVRVLmtHFugd3p8FmZtaxfpF8IuIe4J5C0S2SLiP1cr4LjCyGd1RNLzXPzMxa1C+ST5WIeEbSNcD2uWhafhxaEb4y1T0iIqLTYdi5Z+Tej5lZD+pvx3zKlmB+j2Zifqw6trM+1ceCzMysDfpt8pH0DmBLYAJARDwJ3AnsIWmJQtwWwLuAse1op5mZLaxf7HaTdAEwBbgbeAFYm3TC6bLA0YXQI0nn9Pxe0tnMP8n0NuDiOttsZmYd6xfJhzRU+gvA14HlSMd3xgMnRsSbu9Mi4gZJ2wLHA1cAL5KudnBERMytu9FmZlatXySfiPg+8P0mY68CrurdFnVs5IFHtWvVi5Xrzmzq62BmfVS/PeZjZmb9l5OPmZnVzsnHzMxq5+RjZma1c/IxM7PaOfmYmVntnHzMzKx2Tj5mZlY7Jx8zM6udk4+ZmdXOycfMzGrn5GNmZrVz8jEzs9o5+ZiZWe2cfMzMrHZOPmZmVjsnHzMzq52Tj5mZ1c7Jx8zMaufkY2ZmtXPyMTOz2g245CNpeUlnSHpa0quS7pS0fbvbZWZm8w245AOMA/YAvg18FpgEjJO0TVtbZWZmbxrU7gb0pJxgRgI7R8S4XHYjsAZwGnBlG5tnZmbZQOv57ATMBC5tFEREAOcCa0tat10NMzOz+ZR+mwcGSX8n5ZtPlMo/CkwAPh8RfyjNm9FFtYMBBg8e3FQbXn71tabba9233LLL9Eq9r7w+p1fqtfneunTv7XCZPcefX297y6DmPr+ZM2dC+j2u7OQMqN1uwFDg4Yry6YX53REzZ86c1c1l+7pGVp3Z1la0aObrs9vdhL6i331+M19tdwv6jH732QG0sHm9IjCvo5kDLfkAdNaVW2heRAzpxbb0eY2e3+L+PvRX/vz6r8X9sxtox3ymUd27WTk/Tq+YZ2ZmNRtoyWcisI6k8utaPz8+UHN7zMyswkBLPuOAIcB2pfIvAZMjYtF32UUAAA14SURBVFL9TTIzs7KBdsznSuBG4BxJQ4HHgL2BTYAd2tkwMzObb0Aln4gISTsCJ+VpCOkKBztHxOVtbZyZmb1pQJ3nY61b3Efc9Hf+/Pqvxf2zG2jHfMzMrB9wz8fMzGrnno+ZmdXOycfMzGrn5GNmZrVz8ulnJH1M0mhJi+UImb6kr38WkvaXNKqifJSkkDS89kb1cR19pvn9Or2J5UdLaupAuqRlcvyIbja3X3Py6X8+BhxHOofJ2quvfxb7A6Mqyq8APg48XWtr+odF/Ux/RXpvm7FMXteIbq6rX3PyMVvMRMRzETEhInxfih4WEU9GxITOYiQtIWmp3li/pOG5lzaiN+rvSU4+/Yik0cCP8tPH8pcs8hduCUmHSbpf0muSnpd0nqR3VNSzl6Q7JL0iaaakSyStVYoZL+kfeTfErTl2iqSjihdulbSkpG9LeljSq5JekHSPpH169c1os04+i3GS7irF3pznbVYo2z6XrVMoW0fSxfmzmy3pPklfLNXV2GX2KUln5dhpksZKWrUQNxX4ILBpoW3jS3UML9XdzPdiQ0lXSHo2t/HJHLdSt9/MPqKz/69CzChJD+X36F5J25brKO92a+yyk3SIpH8CrwN7AC/kkOMK6xot6RhJcyStVtHGsZIe08IXT+5/IsJTP5mA1Uj/HEG6ZfjH8vQW0q3CXwO+C2xJ2t3yBPAQsFyhjuOBucDPgM8Anydd7ftZ4J2FuPHAc6Sb830NGAmcmdf9pULc0cDLwOGk3QfbAN8EDm/3+9Wmz+KQ/P4OzXHLAbOBV4ATC8ufAfy78PwDwIvAHcDuwFbAL3P9XynEjcpljwKn57h9SbcLuaEQ96H82d1daNu6pTqGt/K9AJYn3bbkWmBHYNPc1l8Xvzv9deri/ytI14qcAOwKbE26juQbwBqFOkaTrvRVrDeAp4Dbgc/l93f1/D8VpF11jXWtBgwDXgVOqGjfG8CRnbyG4bnOEe1+P7t8v9vdAE8tfmBwaMUPxydy2YGl2A1IdxI8KD//7/zlPaUUtyopgZxaKBufl92wFDsRuLrw/M/AuHa/L33os1g7l+2an3+GlHxOB/5eiJsEnF94fk3+cVuutI5xwDPAEvl5I3H8uBT3rVxe3ID4BzC+ot2NOoa38r0APpyX+2C73/s6P9Nc3kggxQ25VUgJ++hCWUfJZxqwYql8SJ43uqIdvyYdk1uqUPYd0gbmsELZEqRrdDam9+Q6tyiVL9nu97Y89f+um0HqbcwDLpQ0qDGRtlyfIm2hQtpKHgRcUIp7lrSFvGmp3qci4u5S2X2krbaG24BtJJ2SdwW9tWdfWv8SEQ8B/yZt1ZIf/w5cBmwsaXDePbYOcD2kUU/AZsBYYHbps7mS9CO3dmlVl5We35cfV6d1zX4vHiHtKvqVpL0lvbsb6+rPboiIlxtPIuI/pPeomff8+oiY1cK6fgK8g9QDIx8j2he4KCKeL8T9mrTh0Jj+mcuvK5Vf38K6azGgrmq9GFuFtAU0rYP5wwpxkLaIqzxWel5V32zSKJ2G75F2EexJ2t32uqSrSbsGHuqi3QPV9cxPPlsAfwJuJf0IbMr8kVSNH4ShpP/Fb+SpyrDS8/Jn0xg8sAyta+p7EREzJW0KHEvqyQ2R9BhpV90PI2+KD2DN/D90pKWRhRFxj6S/AgcCfwB2ISWjn5VCRwM/LTx/J2nDZH+geOzxxVbWXwcnn4HheVLPZxPSD1zZi4U4SPvrn6qIa3n0U0TMAX4A/EDp3IhPAycDV0savhj8IFW5HthL0sakg/4HRsRsSbeSktFKwCMR8USOf4H0+f0G+EUHdU7uxfY2/b2IiPuB3SSJdJxqf9Ln/wJpK9yqdef/4CfARZLWJSWhOyPi9gUqjZgKTG08LwyOmBwRd3anoXVx8ul/Gj8EyxbK/gIcBbwjIsZ1suw1pH3Ua0TEpT3dsIiYQfpnWZu0RTaE+SN6BqKqzwLm92i+S0r8jR+M60g9xJUo7DaLiFck3UQ6RvePnNB7qn3ltlVp+XuRNyrulXQwaXfQB7vdyr6lo8+0HesaS9oYOAP4JDCgRpA6+fQ/D+THgyX9ltTTmQCMAc6T9BPgr6QDk+8iHUu4MiL+GBGPSfoOcLKkNUijlmaRuur/AzwUET+lBZIuy226k7QFvSawH3BbRAzkxAPVn8V9EfGkpIdJow4vi4i5Oe560m7Kxt9FhwK3AOMlnQX8i5S81wY+EhG7dLN9e0jalbTr7MWIWKgH1ez3Ig8rPgC4JNe3JGnI8JLAVd1oX19U+Zn2xooi4lVJU4DtJF0LzCCNgPx3nj9H0s+BE0mjGS/sjXa0TbtHPHhqfSL9gD1N2loN0vBKkX707yQN632JtKvmbOC9peV3BW4mbZW/Shq2+1tg40LMeNJWeHndY4CpheeHA38jJZ7ZpF0AZwJvb/f71K7PIpc3hqV/vRC7BOlHZB55KHaprjWB80gDFl4njXK7ETigEDMq17tBadkRlIbYkkaxXZu/C0Ee+UbFUOtmvhfA+4Df5/JXSb3aW4Fd2v059PZnmh9Pr4idCowpPB9N9Wi3hZbN87YA7s3/OwuNfGP+6LVTmmx7o60jmolv5+T7+ZiZ9VGSvgGcCqwZEeUBQf2ad7uZmfUxktYH1gD+D/jDQEs84DuZmpn1OfnySO8AbgL2jIjn2tuinufkY2ZmtfMVDszMrHZOPmZmVjsnHzMzq52Tj5mZ1c7Jx6wJkt4q6VBJt0iaLukNSf+RdGW+wVi3TlvIyx7a0+016+s82s2sC5LWBK4A3ku6Pts1pCs6vJ109eqRpHveHNGNuseTrjQwvKfaa9Yf+CRTs05IWpZ0w7w1SJeRGVsKOTlfvXrj2hvXJvmK1stFxEvtbov1X97tZta5fUnXNDutIvEAEBF3RMSZjeeStpJ0kaQpkl6VNEPSNfleOBTippLu77O6pChMIwoxa0k6X9LTkl6XNFXSqZKWK7dD0qaS/p7X+YykH0t6f65zdCl2OUnfk/SopNk5/jxJq5fiRuTlR0k6SNIk0kVrvynpMkkvS1qxoi0fycsd2+U7bIsl93zMOve5/Hh2C8uMAlYmXST0SdLVxfcFrpe0WUTckuMOJV3EchhwWGH5BwEkbQTcQLra8Vmky+t/EPhf4H8kbRoRb+TYTUi7A18Avp+X2Y10VeoF5ONTV+d5fwROA9YiXbF6K0kfjognS4sdSrrp3S9JFzx9gnQR2+2A3XP7ir5MuoDqmC7eK1tctfvKpp489eWJdPfKWS0us1xF2Sqk40RXlsrHU7hKeGnevcBDwAql8p1IVy4eVSi7ndQjWaNQthTpqtMLXC0Z+CoVV0oGPpvLzy+Ujchl0yldqZx0K4V/AbeXyt8KzCy/Vk+eipN3u5l1bkXSvW2aFhEvN/6WtLykoaTL898GfLSZOvKFJT8A/A54i6RhjYl0v6aXga1y7CqkY06XRsSUQjveAH5cUf1OpF7J94qFEXEF6VbaO0gq/zacFxHPluLnku5eunFub8PnSO/bOc28Vls8OfmYdW4WsEIrC0h6j6QLJb1AujfO88BzwDaku5g2Y538eHxetjg9CyxH6k0BvDs/Vt1qu6rs3aSbllXd7G8i6fUOK5U/3EE7zyEl1q8Uyr6S23hZ5RJm+JiPWVceAD4laY1ir6IjkpYn3ZBtOeB04H5SApoHHA1s3uR6lR9Po+O7hL5Qim1Wq/GQblC4kIh4QtJVwJ6SjiDdwO5TwA9yz8uskpOPWef+RPox3Rc4pon4LYBVgS9HxG+KMySdWBHf0Yl2j+THuRFxXRfrbCTF91XMqyp7FPiMpCERMaM0b11Sb+/5LtZZdDbpeNGOwIdymXe5Wae8282sc78i7br6pqQdqgIkbSTpwPx0bqO4FLMV1cd7XgJWyufOFN1D6nXtL2mNinUOkrQyQET8hzTybIdirKSlgEMq1nkJ6X//qFKdW5OSx2URMa/qtXbgCtJIvP2AvYFbI+KhFpa3xZB7PmadiIhXJG1L+oG9RNI1wLWkUXBvAzYDPg2ckhf5K2ko8mmShpOGWm8A7EXaBVc8MA8wAdgW+Kmkv5GS1w0R8aykvUhDre+T9GvS8Zi3AmsCO5N2443J9Xwzt+tvks4kjTbbDVi68VIK6xxDShJH5jbenOs8EPgPzfXwiu/RXEm/Ab6di1pa3hZT7R5u58lTf5hIP/qHkZLLC8AbpB/qK0iJZclC7AdIx2kaAw7GA58k/ehHqd7lSLuo/kNKPAGMKMxfHfgFMBV4nZT07iKNVPuvUl2bk5LZa7m+H5N6WwEcUbHe75F22b1OGiBwPrB6KW4EpWHdHbw/q+f2z6JiqLknT+XJ13YzG8Ak7UI6kXT3iLiwF9fzTtKJp+dExH69tR4bOHzMx2wAULJMqWwp4BvAHFLvqzcdQDrptJUrQdhizMd8zAaGtwCPS7qANEBiKPB50i7AkyPimd5YqaQvkIZXfwu4OiLu6o312MDj3W5mA4CkJUnXXdsUeCdptN1k4OwoXPS0F9YbpGNMtwD7RMRTvbUuG1icfMzMrHY+5mNmZrVz8jEzs9o5+ZiZWe2cfMzMrHZOPmZmVjsnHzMzq93/BwbUc00xLHu3AAAAAElFTkSuQmCC\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"category_bar_plot(age_received_df, \"Age Received Breakdown\", 0)"
]
},
{
"cell_type": "code",
"execution_count": 119,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" count \n",
" category \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" 222 \n",
" some_highschool \n",
" \n",
" \n",
" 1 \n",
" 173 \n",
" highschool \n",
" \n",
" \n",
" 2 \n",
" 94 \n",
" no_highschool \n",
" \n",
" \n",
" 3 \n",
" 41 \n",
" unknown \n",
" \n",
" \n",
" 4 \n",
" 36 \n",
" college \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" count category\n",
"0 222 some_highschool\n",
"1 173 highschool\n",
"2 94 no_highschool\n",
"3 41 unknown\n",
"4 36 college"
]
},
"execution_count": 119,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"education_level_df = get_value_counts(death_row, \"education_level\")\n",
"education_level_df"
]
},
{
"cell_type": "code",
"execution_count": 120,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 120,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ8AAAGsCAYAAAACDKqXAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3dd7gcZfn/8feH3gNJKIJCQBBQUaRYUCEQQFE6CiJdRRRBEAVEUQIoiIiI2OAnXwOIiiBBegsdBSkivQgEpBkhJKGFkty/P57ncCab3XPOJufMbPm8rmuvPTvz7Oy9c2b33nnaKCIwMzMr0zxVB2BmZt3HycfMzErn5GNmZqVz8jEzs9I5+ZiZWemcfMzMrHROPtaQpHGS2qYvvqTRkkLSnlXH0g4kjcr7a2zVsQwWSXvm9zR6LrYxNm9j1KAFZrNx8ulAhS/hRrc3q45xTklaO385jKo6lkbyPr6o6jgGU4NjarqkRyX9TtKaVcdo7WW+qgOwIfVH4JI6y2eWHcggWhs4ArgWmFiz7npgYeCNckPqKsVjamHgfcCXgB0krRURj1cWmbUVJ5/OdkdE/L7qIMoSETOB6VXH0eFmO6YkPQycBGwPnNjXkyUtHhEvDmF81iZc7WZIWkjS8ZKelvSqpH9I2rxB2YmSrq2zvG57i6QFJB0i6U5Jr0iaKuk2SfsVyiwv6YRc5oVcnXOfpEMlzVsoNxb4XX54TaH6Z1w/MSwq6VhJj0h6TdKzks6QtFKj9yBpL0n35vKPSzqkiV06YJJ2knSjpBfz/rlF0mcK6+eV9JSkOxo8f58c87aFZQtK+k6Of7qkKZIulPSBoXgPwNP5/vVCDG+1J+X3eLukV4GTC2XeJunXkp6Q9Ho+/k6VtEzNexzQ8dEXSd/N8ZwsaZ68bB5Jh0l6LG/zbkm79LGN90kaL+n5QgyH1Byjs7U5SZpf0kt5+dqF5YtLekPSrwrLJkq6VtIaki7Ox8VUSedKWm4g77Vd+Mynsy0iaWSd5a9HxLTC4z8C2wIXApcD7wTOAx6bmxeXtEDe3mjgCuD3pDOTtUi/kn+Ri74vPx4PPALMD2wB/AhYBdgnlzsPeBvwZeAY4P68/JE+Ypgvx/BR4FzgBGA14KvA5pLWi4gna572FWBZ4DRgCrArcJykJyPiD03uhoYk/QD4LnAZ8D1Sdeh2wDmS9ouIX0bEDElnAQdLem9E3FOzmd2B54CL8zbnz9vbADiTtI+HAXsDN0naMCJum4uwi8fUwsB7gR/mGP5Sp/y2wNeBXwO/AablOFcE/g4sQNrPjwCrkv4vG+f/y9S8jYEeH7PJieYXebuHRcSPCqt/ChxAqq49EVgG+CXwaJ3trAdcR6rS/SXwLLAVcBzwfqAnaU3I92NIVcMAHwIWJf1/xwB35uUbkr6Dr655uRXyc8cDB+ft7wMsAdT9UdiWIsK3DruRvuyjj9tFhbKb52XjaraxbU/5muUTgWv7eM09C8sOycuOqVN+nsLfCwOqU+ZMYAbwtsKyPfM2Rw8whr3zsh/XlP10Xn5mnec/DSxZWL4I8D/g7wPc/7Ps4wZl1ulj35xP+pJePD9+T4P38M68/OeFZd/Iyz5RU3YJ4Ini/w4YlcuOnctj6l5gjZryPdt+A1izzvb+CkwC3l6zfD3gzWJMc3p85OeNJ52R7V7z3NVJyWACMG/N/2Vm3saowvKbclzvKywT8Odcdkxh+b+BmwqPv5+Pn0uBSwrLT8ivNbLm8xXAjjXx/jIvX6N2P7TrzdVune1UYLM6t+8WyvRU1xxffGJEnA88OJevvwvwAnBU7YpI7TM9f78aPZ/mVE03PP+6vpxUNbzeXMSwHekDfmzN619M+gW6TU81TMHvImJKoewrwM2kM6bBsgvpy+R0SSOLN+ACYHHgI/n17wVuB3apiXX3fH96YdmuwAPA7TXbXAC4EviYpIXnIu7iMbUVcCgwErikthozuzgi7i8ukDQM2DK/z+k1cU4kfXm/9Qt/Do+P4fn9bgpsFRFn1KzfhpQ8fhoRMwqvdUd+XjHeZUhnkhdExF2FskE6A4d0nPW4Glhf0mL58SbANcBVwMfz2SnAxsBdEfFcTWxPR8Sfa5b1nB2tWue9tiVXu3W2hyPiqn7KrEL6cn6ozrr7Sb8Q59RqwJ0R0WcngFw19m3Sl+mqpC+FoqXmIoaVSR/mF+qsu5fUe24k6Vd4j9mqXYDngRFzEUetNUnv84E+yixb+PsMUqP+pqQqTEiJ5t6IuL1muwuTfmk3MhL4T7MBZ7XH1EWSriMl5+OAz9WUr3dcrU5KGl/Mt3re+h/M4fExDlgM2DAibqyzfpV8X2//38es1Vsr5/t7G5SdWdgepESxNynRXAt8GDgQuAX4CfBBSfeRqtNOqrPNRscfDO4xWCknH6v9IPe3rtGg00bH0kAGqf4U2B84m9R+MIlUXbMO6Qttbs7Q+3p/jczov8hcE2nfbNHH6xW/7P5A+uLaHbhC0sdJX3iH1tnu3cBBfbx2X4mpaRFxi6SppF/4tV6ps6znf/J7Zj1rK3q18PecHB9nA3sB35e0TUS8WrO+J4Z6x2ftMdPsMdRzlrJJjnPBvOxhUhIZQ/phMQ+zt/dA38ffnBzPLcnJxx4h/cp7F7P/slujTvnJpCqNWqvUWfYQsKakBSPitT5i2A24PiJm+dUsqV4VQ7MzLjwCfFLSksWqtOzdpLaV2mqPMjwMfBJ4orZaqp6IeE7SJcB2uTpnd9Iv7tqu9A8DSwNXF6s2SzAf6Ut2IP5N+j8uMIAzc2ju+OhxFqk950zS2dlWufq0R08nlTWZ/UyjdsBsz/r31HmdNUhJ5K1tRMQkSfeSksybwJMR8VCO+dq8fGlSkrm+j/fQ0dzmY3/N9wcXF+auu/Wq3B4C1pC0QqHsgsDX6pQ9i1QlcnjtCknFX3AzqPlFJ2lRUuN5rZfyfb0EWM/5pOP82zXb3wL4AKkev4pBt2fm+2PqdReu7W6cnU7q/LAr8Fngyoh4uqbMGcByNDjzkbRsveVzQ9JmpN5ct/dXFiAinicNVN1e0ofrbE+Sli4saub4KL7On4CdgY8DlxbaYCC1NwVwUE1X6XVIVZvF7UwC/gZsJem9xTiBw/LD8TUvfzWpWm07Zj27uZpUDbcFcFvM2uu0q/jMp7OtI2nXBuvOj4iXIuJySRcCe0gaTuqm+05S1857SF1pi35Bqte/StJvSA3Zu1G/euUkUqP04ZLWJ7VVTCf9glyd3g/5ucA+ks4mNcouC3yB3nruoltJv/i/K2kp4GXgsYi4pcH7HAfsARyqNCXP9aR2g32B/wLfafC8ubWqpNmSbnZiRNwq6QjgSOBOSeeQetm9DVgX+BRp3xZdTNonx5F6r9WrsjqJ1BngeEmbkL7spgErkn5xTyc1dM+p4jG1IOl/uTepeqnR+63nq8CNwPWSzgD+SfqRsAqpM8AZwNhctpnjYxYRca6kN0i90i6XtEVETIuIByT9EtgPuFrSX0hdrfcD/kX6YVJ0AKmr9Q35ec+SOk18AvhDREyoKX81qapwdWbt7HI16f/6zhxT96q6u51vg3+j/67WAaxaKL8wqdvns6S69ltJH6px1HS1zuX3IPWEe500FugQUv32LN2cc9mFSL3r7iV98U3J29+3UGYRUm+7x3OZh0lnKmMabHMPUkPv6xS6iVOnq3VevijpC+DR/JxJpDOPlRrstz3rvOe6+6LB/u9v3y9XKPtpUq+tycBrpI4AlwJfbbDtk/M2pgILNygzH2lsza2k5Pxy3qdnAZsXyo1i7rpaz8j78jxg/Zry/W6b1PHheNLZdM+xcTcpgb57To4PGnTFz/t5OqljxJJ52Tz52Hw87/t7SL0Qx1LT1TqXfz/pTLrnf3U/6dift857W5JU5RbAO2rWPZmXb1rneRMZ4FCGdr8pvzEzM7PSuM3HzMxK5+RjZmalc/IxM7PSOfmYmVnp3NW6H0pX/ZyHPBuvmZkNyBLAzIiom2fc260fkmYCGjZsWNWhmJm1jalTp0IanlC3hs1nPv2bNmzYsGFTptTOzGJmZo0sueSSTJ06tWGNkdt8zMysdE4+ZmZWOicfMzMrnZOPmZmVzsnHzMxK5+RjZmalc/IxM7PSOfmYmVnpPMjUbAh8dtxVVYcw6M7Zc9P+C5kNkM98zMysdE4+ZmZWOicfMzMrnZOPmZmVzsnHzMxK5+RjZmalc/IxM7PSOfmYmVnpnHzMzKx0Tj5mZlY6Jx8zMyudk4+ZmZXOycfMzErn5GNmZqWrLPlIGiNpnKQHJb0i6UlJ50laq07ZzSTdLOlVSZMknSJpyTrlFpP0c0nP5LK3Sdq6nHdkZmYDVeWZz1eAFYETgS2Ag/LjWyV9uKeQpNHAJcB/gK2AbwFbAxdLqo1/PLALcDjwaeA+YLykTw3pOzEzs6ZUeTG5r0XEpOICSVcAjwEHAzvkxT8G7gF2ioiZudwzwBXAZ4Gz87JPAZsC20fE+LzsGmAV4ARSAjMzsxZQ2ZlPbeLJy6YADwNvB5C0ArA+cGZP4snlrgSeojdBAWwHTAX+WigXwOnAGpLePQRvw8zM5kBLdTiQtDTwXtKZDvlvCo+L7i6s7yl7XzFJZXfVbMvMzCpWZbXbLCQJOJWUEH+SF4/I95PrPGUysE7h8QjgoQblituqfd0p/YQ2rJ/1ZmbWpJZJPsDxwLbAXhFxf826aPCc2uWNyvW3zszMStQSyUfSD4FvAgdExLjCqufzfb2zluHMekb0fB/loP7ZExExW5ftmtim4LMfM7NBVXmbj6SjgO8Ah0TEz2tW35vv67XXrMWsbUH3AmvW6X7dM26oXruRmZlVoNLkI+kI4HvA9yLi+Nr1EfEkcBuwSzGpSBoDrACcVyg+HliSNBaoaHfgwYi4b5DDNzOzOVRZtZukbwJjgYuAq4oDS4HXIuKf+e9DSWN6/ijpVGB54DjgFuCcwnMuAa4BTpM0gjReaA/gY8A2Q/hWzMysSVW2+fScoWyZb0WPA6MAIuJqSVsCRwIXAy8C55Oq6Wb0PCEiQtK2wDH5tiRphoPtI+LCIXwfZmbWpMqST0SMbqLsZcBlAyg3Ddgv38zMrEVV3uHAzMy6j5OPmZmVzsnHzMxK5+RjZmalc/IxM7PSOfmYmVnpnHzMzKx0Tj5mZlY6Jx8zMyudk4+ZmZXOycfMzErn5GNmZqVz8jEzs9I5+ZiZWemcfMzMrHROPmZmVjonHzMzK52Tj5mZla6yy2ibWXc4+IIrqw5h0B2/9WZVh9D2fOZjZmalc/IxM7PSOfmYmVnpnHzMzKx0Tj5mZlY6Jx8zMyudk4+ZmZXOycfMzErn5GNmZqVz8jEzs9I5+ZiZWemcfMzMrHROPmZmVjonHzMzK52Tj5mZla7S5CPp7ZJOknSjpJckhaTRdcpNzOtqbz+qU3ZZSadLek7Sy5JukLRBKW/IzMwGpOqLya0K7AzcAUwAtu6j7PXAoTXLnio+kLRQ3s5iwP7A88CBwARJG0TEPwcpbjMzmwtVJ5/rI2IZAEnb0nfyeSEibu5ne18A3gOsGxF35O1eB9wPHANsMfchm5nZ3Kq02i0iZg7yJrcD7u5JPPk1XgP+CGwmafFBfj0zM5sD7dThYJPcLvS6pLslfVWSasq8F7inznPvAuYF1hzyKM3MrF9VV7sN1EXAbcCjwAhgV+BXwLuAbxTKjQAm13n+5ML6WUia0s9rD2s2WDMz61tbJJ+I2K9m0XhJZwFfl/SziHi8WLyvTQ1+dGZm1qx2qnardTop/g8Wlj1PnbMbYHi+n+2sKCKW7OsGTB30yM3Mulw7J5+e2IudFu4ltfvUWguYATww1EGZmVn/2jn57E5KPLcWlo0H1pK0ds8CSQuQxhJdFRHTyg3RzMzqqbzNR9Jn8p/r5/uNJI0EXo6ISyXtDGwDXAw8SapC2xXYFjg+Ip4obO404GvAeZIOI1WzHQAsD+w45G/GzMwGpPLkA5xT83hsvn8cGAU8BowEfkxqz3kNuBvYMyJOLz4xIqZL2gQ4Hvg1sBBp9oTNIuL2IYrfzMyaVHnyiYjasTq1628GNm1ie88Cu81tXGZmNnSaavOR9KikhlPgSNpS0qNzH5aZmXWyZjscjCJN2tnIosBKcxyNmZl1hcHu7bYs8Mogb9PMzDpMv20+kjYERhcWbS9p1TpFhwOfA+4cnNDMzKxTDaTDwcbAEfnvALbPt3r+zaxzrZmZmc1mIMnnZ8A4QKSJPQ8E/lpTJoCXIqLepJ5mZmaz6Df5RMRU8vxmkjYG7o+ISUMdmJmZda6mxvlExHVDFYiZmXWPpgeZSloR2AdYjTTjQO0g0YiIMYMQm5mZdaimko+kLUiTdy4AvEj9C7eZmZn1qdkzn2OB54BtI+K2IYjHzMy6QLODTNcAfubEY2Zmc6PZ5PM/4PWhCMTMzLpHs8nnTGCHoQjEzMy6R7NtPuOAjSX9FTiJdK2dGbWFai7wZmZmNotmk88DpNkMBGzZR7l55zgiMzPreM0mn6NIycfMzGyONTvDwdghisPMzLrIYF/Px8zMrF/NznCw4UDKRcT1cxaOmZl1g2bbfK5lYG0+7nBgZmYNNZt89mqwjXcCewITgVPmLiQzM+t0zXY4OL3ROknHA3fMdURmZtbxBq3DQUS8APwWOGSwtmlmZp1psHu7vQCsMsjbNDOzDjNoyUfSQsBuwLODtU0zM+tMzXa1/r8Gq4YDHwGWBg6e26DMzKyzNdvbbc8GyycDDwHfiIg/zFVEZmbW8Zrt7eYZEczMbK45mZiZWemarXYDQNISwKb09mx7FLgyIl4crMDMzKxzNZ18JH0JOAFYjHRdH0hT7rwk6aCIOG0Q4zMzsw7UbG+3rYFTSWc63wfuyaveA+wPnCppUkRcOKhRmplZR2m2zecQ4H5g7Yg4KSIm5NvPgXVIVzo9dKAbk/R2SSdJulHSS5JC0ugGZT8v6V+Spkt6UtKP8tii2nLLSjpd0nOSXpZ0g6QNmnyfZmY2hJpNPu8HxkXES7UrcnvP6bnMQK0K7Ay8BExoVEjSrsBZwE3AFsAxwNeAcTXlFsrb2Yh0JrYd8CIwQdIHmojLzMyG0Jx0OFAf65q9xPb1EbEMgKRtga1nezFpXuB44IKI2DcvvkbSG6RqvhMj4pa8/AukKsB1I+KO/PzrSGdrx5ASl5mZVazZM59/AXtIWrR2haTFSINQ/zXQjUXEzAEU+zCwHOmsqugs4A1gh8Ky7YC7exJPfo3XgD8Cm0lafKCxmZnZ0Gn2zOcnwHnAHZJ+DtyXl/d0OFgV2H7wwgPgvfn+nuLCiHhF0iOF9T1lr6mzjbtIF7hbE/jHIMdnZmZNanaGg/Ml7QccB5xMbzWbgJeB/SLir4MbIiPy/eQ66yYX1veUbVSOmrIASJrSz+sP6y9AMzNrTtNtPhHxK0l/ADYDViYlnkdIg0ynDnJ8s7z0AJf31e7UbJuUmZkNgTma4SAipgDnDHIsjTyf70cU/u4xHHispuxsZze5HNQ5K4qIJft68Xxm5LMfM7NB1G+HA0nz5jE1X+mn3FclHSOpr95wc+LefF9s20HSIsA7mbUt6N7actlawAzSOCQzM6vYQHq77Uq6Rs+t/ZT7B2mA6c5zG1SNm0kXqNutZvnOwPykDhA9xgNrSVq7Z4GkBXLZqyJi2iDHZmZmc2Ag1W47kr64b++rUETcLuly0hf9gK/pI+kz+c/18/1GkkYCL0fEpRHxpqRvA+Mk/QI4l9Rr7Tjg3Ii4ubC500iDT8+TdBipmu0AYPn8PszMrAUMJPmsS5pIdCCuAQ5qMobatqOx+f5xYBRARJwuaQbpzGpv4DngN8ARxSdGxHRJm5AGpf4aWAi4A9isv+RpZmblGUjyGQ5MGuD2/kdv4/6ARMSA2ogi4vfA7wdQrl4VnZXgU4efWHUIg+6SH3yj6hDMOtJA2nxeBEYOcHsjSPO0mZmZNTSQ5HMvsPkAt7cZvb3TzMzM6hpI8jkP2FTSNn0Vytf62Qz4y2AEZmZmnWsgyecU4N/AnyX9UNKo4kpJoyT9APgz8FAub2Zm1lC/HQ4i4lVJnwYuAg4Dvi3pRWAasDiwBGmKnQeBLSNi+hDGa2ZmHWBAl1SIiH8Da5PGzNwIvEm6zMEM4Ia8fJ2IeGSI4jQzsw4y4Lnd8hnNyflmZmY2x5q9mJyZmdlcc/IxM7PSOfmYmVnpnHzMzKx0Tj5mZlY6Jx8zMyudk4+ZmZXOycfMzErn5GNmZqVz8jEzs9I5+ZiZWemcfMzMrHROPmZmVjonHzMzK52Tj5mZlc7Jx8zMSufkY2ZmpXPyMTOz0jn5mJlZ6Zx8zMysdE4+ZmZWOicfMzMrnZOPmZmVzsnHzMxK5+RjZmalc/IxM7PSOfmYmVnp2iL5SBotKRrc1qgpu5mkmyW9KmmSpFMkLVlV7GZmNrv5qg6gSYcC19csm9jzh6TRwCXA+cDhwPLAccB7JX08ImaWE6aZmfWl3ZLPQxFxcx/rfwzcA+zUk2gkPQNcAXwWOHvoQzQzs/60RbXbQEhaAVgfOLN4hhMRVwJPATtUFZuZmc2q3ZLPKZLelDRV0kWS1i2se2++v6fO8+4urDczs4q1S7XbVOBnwLXAZGBN4NvATZI2iohbgBG57OQ6z58MrFNvw5Km9PPaw+YkYDMza6wtkk9E/BP4Z2HRDZIuIJ3l/BDYtFi80WaGKDwzM2tSWySfeiLiWUlXAFvnRc/n+xF1ig+n/hkREdFnN+x8ZuSzHzOzQdRubT615qH3jObefF+vbWct6rcFmZlZBdo2+UhaDtgMuBkgIp4EbgN2kTRPodwYYAXgvCriNDOz2bVFtZuks4BHgTuAF4A1SANOFwYOKxQ9lDSm54+STqV3kOktwDllxmxmZo21RfIhdZX+HLA/sCipfeda4AcR8VZ1WkRcLWlL4EjgYuBF0mwHh0TEjLKDNjOz+toi+UTEj4AfDbDsZcBlQxuRmZnNjbZt8zEzs/bVFmc+rWyjnfaqOoRBd93Zv6s6BDPrcD7zMTOz0jn5mJlZ6Zx8zMysdE4+ZmZWOnc4MDMrya//PqHqEAbdVz8yZo6e5zMfMzMrnZOPmZmVzsnHzMxK5+RjZmalc/IxM7PSOfmYmVnpnHzMzKx0Tj5mZlY6Jx8zMyudk4+ZmZXOycfMzErn5GNmZqVz8jEzs9I5+ZiZWemcfMzMrHROPmZmVjonHzMzK52Tj5mZlc7Jx8zMSufkY2ZmpXPyMTOz0jn5mJlZ6Zx8zMysdE4+ZmZWOicfMzMrnZOPmZmVzsnHzMxK13HJR9Jikn4u6RlJr0q6TdLWVcdlZma9Oi75AOOBXYDDgU8D9wHjJX2q0qjMzOwt81UdwGDKCWZTYPuIGJ+XXQOsApwAXFJheGZmlnXamc92wFTgrz0LIiKA04E1JL27qsDMzKyX0ndzZ5D0d1K+2aBm+YeAm4GdIuLPNeum9LPZYQDDhg2ru/KlV16Z43hb1WKLLDJHz3t5+muDHEn1Fl1owTl63iuvvznIkVRvkQXmrKJk+pudty8Wmm/O9sXrMzpvXywwb/19MXXqVEjfx3VPcjqq2g0YATxUZ/nkwvo5EVOnTp02h88dLD3Zb+pQv1A+aFpZefvitelD/RJzq7x98epQv8JcK21ftMHPrNL2RR+HxRLAzEYrOy35APR1KjfbuohYcghjGTQ9Z2jtEu9Q8r7o5X3Ry/uiVzvsi05r83me+mc3w/P95DrrzMysZJ2WfO4F1pRU+77Wyvf3lByPmZnV0WnJZzywJLBVzfLdgQcj4r7yQzIzs1qd1uZzCXANcJqkEcBjwB7Ax4BtqgzMzMx6dVTyiYiQtC1wTL4tSZrhYPuIuLDS4MzM7C0dNc6nk7VD75WyeF/08r7o5X3Rqx32Rae1+ZiZWRvwmY+ZmZXOZz5mZlY6Jx8zMyudk4+ZmZXOycfMzErn5GNmZqVz8jEzs9J11AwHZp1I0u7NlI+IM4YqFmtdkpYFDgI2Is3uv21E3CtpX+CWiLi90gBreJxPi5P0MWAXYCVgoZrVERFjyo/KyiSp4QW56oiImHfIgmkBklZspnxEPDFUsbQKSasCNwGLAncAHwXWj4g7JJ0MDIuIpn7EDDWf+bQwSXsBp5GuQ/QQs19AUaUHVZL8hTvQX0YREZ18LK9cdQAtZiIDPzYAOjoZZ8cDk4DNgOeA1wvrbgKOriKovnTyB7YTHAKcA+weEW1w5d5BdRTNfcF0rIh4vOoYWswX8LFRa2Ng74h4VlJtsn0GWL6CmPrk5NPaVgL278LEQ0SMrTqGVibpXcBoUt3+88A1EfFwpUGVJCLGVR1DC5ofmNpg3RLAmyXGMiBOPq3tAWCZqoNoJZIWApYCXoiI6VXHU7Z8ld7fAF9k1mrXmZJOjYh9q4msejkhjwCej4iHqo6nZPcCWwJX1Fm3GfDPcsPpn7tat7bDgcMkLVd1IFWTtJGkm4AXgSeBFyXdIOmjFYdWtkNJieckYB3gbfn+JGAfSQdXGFslJO0i6T/A/cCNwP2SnpC0U8WhlelkYF9JxwLvzsuWl3QA8OW8vqW4t1sLk3QesC4wnNSD5fmaIhERO5QeWMkkbQhcBfyP1AbWU4e9PbA0sElE/K26CMsj6SHgrxExW5KRdDywdUSsXn5k1cgXjzyP9Pn4Pb3HxudJSXnbbrmQpKQjgcNIHSxEahebAfwgIo6qMrZ6nHxamKSJ9N2wGhGxSknhVEbSNaQ67U2LVW25Cu4q4PWI2KSq+Mok6TXg0xFxVZ11mwIXRURtl/yOJekfwDMRsU2ddRcAy0TEh8uPrBqS3gFsDixL6vV2RURMrDSoBtzm08IiYlTVMbSI9YHdatt4ImK6pJ8Cp1cTViUmA+8iJd1aa+T13eS9wJEN1p1COlPuGhHxH9LwjJbn5GPtotEZYDMDMDvBRcAPJD0WEZf2LJT0KVL39K76siWNZ1m0wbrFmHW8S8fqZ+DtTGBqRLxYVjwD4Wq3Fibp76RfuFcDN0VEV3yQakm6llSHvWlEvFFYvgAwAXgzIjauKLxSSRoJXEc6y5kKPAssBwwj9XgaHRFdc/Yj6WLSkITREfFcYfnSwDXAY5M1RusAABwCSURBVBGxVVXxlWWAg7L/DRzbKl3VnXxaWO5wsBGpa/F00kjlCfl2W3TJP0/SxqQupM8A59L7hfsZUt32ZhFxfXURlkvSwsCepHE+w0kdUa4Gzui27ueS1gZuyA+vpPfY2Iz0i/9jEXF3ReGVRtLewHeAl4E/A/8l7YcdgYWBX5P2yRhgl4j4U0WhvsXJp8VJEqnNY1PSgbMBsADpV++1EbF9heGVRtIY4BhgPXp78twCfCcirq0wNKuYpHcDRzB7Mj4qIh6oMLTSSDoGWIvU2zEKywVcCNwdEYdJ+gvw9oj4UEWhvsXJp81I+ggwlvQrpuMnkawlaRF6B5m+UnU8VamZ4eA50g+RrpjhwGYn6Ulgn4i4uM66rYDfRMQKkrYnnSEvVnqQNdzhoMVJWoV0xrMpaf6mEaRJRn9Fqn7rNjMLt67jGQ4a6/IZDkYw+6z3PXpmBYH0Q6UlJiT2DActTNJjwMPA90ltPt8CVoyINSNiv4gYX2mAJfIMB2/xDAc1PMMBAHeSZkMZVlwoaUnSwNM786IVSO1ilXO1WwvLPVheBf5C6vV2VUQ8XW1U5fMMB708w8GsPMNBkq/7dQWpa/lVpA4Hy5JqTBYg9RT9Wx4XN39E7F9ZsJmTTwuTNIrejgabACNJVW5X5ds1ETGtqvjK4hkOenmGg1l5hoNekt4HfA/YkN6OF9cBP4yIu6qMrR4nnzaSD64xwNakA2xGRCxQbVRDT9JLpBkOZqtmzA2op0fE4uVHVj5JzwBHR8Sv6qzbj9T7r+Wu3TJUJL0CfLZBQ/ungXMiYpHyI7P+uM2nDSj5ELAVKfF8hNRo2E29vTzDQdIzw8EWxYWFGQ46voqphmc4qCFpDUkfk9Rov7QEn/m0MElfI1W7jSZdEOp14O/0DjS9NSJmVBZgSTzDQS/PcDArz3DQS9JewA9JbT0A60fEHZLOBa6MiFOqi252Tj4tTNKbpIbUnmRzY7eNYAfPcFDLMxz08gwHiaSdgbOA84FLSZOqrpeTzyHAJyJiTJUx1nLyaWGSloyIKVXH0Qo8w4E14hkOQNK/gJsjYh9J8wJv0Jt8tiYNMm2ptkAnnzbR5QPo3uIZDsxmJ2k6sGVEXFUn+WxIuq5PS/WCdIeDFucBdLOKiFci4qluTTyS5pd0uKT7Jb0iaUbN7c2qY7RKvEg666tnRdLMBi3F0+u0sDyA7kxSu88JzDqA7g+SXumGAXTw1pinnUiNy7W/4CIivlh2TBU5FvgGqV5/PPBateFULw+w3IXGx0ZLtXUMkWuBb+axTT2dciJPx7QP9S8+WClXu7UwD6BL8niN80jXpp/E7F+4XXE5cQBJTwD/FxFjq46lFeQeXqeRruD6EHWScTf0hJS0BvAP0iwg5wEHkfbL2sBqwLoR8Wh1Ec7OyaeFeQBdIulO0pfL5yJiUtXxVEnSi6QpdK6pOpZWIOl+4C5g94jo6rPAPAj9J6SOF/ORevtdBxzYij3+XO3W2jyALlkN2L7bE092I/B+0hgWS1Vt+3d74gHIU+hsLmlBUuekFyLi1YrDasgdDlrbTcD388DCt+QBdN+jd3xDp3uClGwNDgC+LGlrSf7xCA8Ay1QdRCuJiNci4ulWTjzgareW5gF0iaQ9SI2mm3TbIEoASS8w6/RCCwELAjOAl2qKR0SMKCu2quVphY4jDTRuiUsFlEXS95soHhFx9JAFMwecfFpctw6gy1O/F21Lmtn6atI+KIqI+GYpgVVA0jgaz203m4jYa+iiqZ6k82oWrUv6bNxB/WNjh1ICK1m+5MpAtdxVj518rCW1+wfLho6kiQw8GXdNT8h24+RjZmalc4Nli/MAOiuSdBSwfER8qc663wJPegyQtQP3dmtheQDd9cBngSVJE2oWb13x/5O0iaQvNFi3l6TRJYdUpZ1Il9Wo56a8vmtI2jHP2lxv3SGSPlN2TGWRNLPO9EqNbi037ZLPfFrbIcA5eADdkaTefvUsT7q8wEalRVOtdwCPNFj3KGker25yMHB2g3Vv5PXnlhdOqY6iiY4orcbJp7V5AF3yHtLlFOq5jTSVSLd4FXhbg3Vvp3sGHvd4F3Bng3V3kXqKdqR2r17timqbNuYBdMlCpGrGeuYFOn6KoYK/A9/I0+a/JT8+gMZVcp1qXhoPQF6c1D2/q0haSNLbJLXUJRRqOfm0tsOBwyQtV3UgFXsI2KLBuk8B/y4xlqr9kDRZ5F2SDpK0k6Rvkn7lvx9oqYGEJbibdEXbenYkXVq8K0jaSNJNpMsrPAm8KOkGSR+tOLS6XO3W2r4ELAE8LKmrBtDV+B1wgqRngFMi4nlJI4Cv5NvBlUZXooj4e77Uxi9Ik0j2eBTYJiK67cznl8AZeRLeU0hfum8nHRc7AR094LZHvmDclaRZrX9J7+VXtgcmSNokIv5WYYiz8TifFjaAwXRdMYBOkkjXp/8caX+8DixAqor7A7BbdOGBnK9uOxL4X0Q8XHU8VZF0DKlzTrFqdiZwXEQcXk1U5ZJ0DamKcdPiFFS56u0q4PWI2KSq+Opx8rG2IWkj4BPkL1zgsojolslV+yRpWERMrTqOqkhamTTnYc+xcWVETKw0qBJJeon0I2x8nXXbA6dHxOLlR9aYq91amKTFI+LFPtavHhEPlhlTlSLiOtL1SbpWnmR1eEScmB+vDlwGrCjpZlLVW8tdMnmoRcRjwKlVx1GxRmcSzUxVVRp3OGht4xtNmy9pFVrw0rhDQdIqeYbvnsfzSxorabykvauMrQIHMGv10nH5/khgFB3ctbgeSetL+kTh8RKSxkn6p6Qf5irbbnAbqRfkLL37JC0AfDOvbyk+82lta5AuhbtHcaGkdwATgKerCKoCvwAeJn3xAnwf+A7wOLC1pJkRcVpVwZVsFHAfgKSFSdWQu0fEOZKeJPWQ3L+68Ep3PPA34PL8+Bh6Z4H4FjAll+l0RwJXAI9IOpfey698BliWVCXZUnzm09q2BLaV9IOeBbnb9QRgGumLpxuszazVbV8Ajs6dLU4CvlpJVNVYCHgl/70eqZG554v3YRoPQO1UawK3AEiah9Qp5du5cf1oYPcKYytNvqz6J0m93A4AfpTvnwQ+ERHXVxheXU4+LSwi7iSNVThE0t65e/EEUh3uphExpdIAyzMcmAQgaQ3SL7rf53UXAatWFFcV/gOsk//eErgrIqblxyNJYzy6yTB6hyCsBSxF73Q6N5DOFLtCREyIiA+RBte+A1g8IjaIiGurjaw+J58WFxGXk8Ys/IpUlbAwMCYi/ldpYOWaTKo6gDSH26SI6BlYOh/ddRyfCRwt6S/A1+lNwpDOhB6qJKrqTCJNQwUwBvhPRDyVHy9Kutprx5P0/3oushcRr0TEUxHxSl53jqTfVBvh7Nzm02IkLVFn8bmkX3WfJ1W1vdhTrvCrt5PdABwq6XXgQODiwrpVSVUL3eIY0hfqBqTZDn5WWPde4C9VBFWhy4EjJA0nzfF3TmHdGqR2wW6wKfC9BuvG04IzX3icT4vJV/Bs9E9R7bpuuIJn7tl3KbAaaUbnTSLiP3ndtcAjEfHF6iK0qkgaSRqAvAGp7WfHiJic190G3BIRX6swxFJImk5q25ltKEIeH3dZRCxcfmSN+cyn9bT1NOlDISIeBVaXNCIiaqcY2p/Us8e6UB7T1KjjzSbA9AbrOs0UYBXqj4N7J/BSueH0z2c+Zm1G0q70fXXbd5YflVVJ0tmkXqEfLM50IWkYcCvwr4j4bFXx1eMzH2sLkhYnzWDd6Au35eq0h4KkQ4FjSWN97gS6/VpPSBpFGtvT6NjohirZscA/SJMQ/wl4ijTB6o6kTkrbVhdafT7zaXH+YIGkD5E6GQxvUCS6oe0LQNIjwKURsV/VsbQCSZ8GziNd12cSsyfjrph8F0DSB4CfAh8j7Y8ZwPXAN/OwjZbi5NPC/MFKJP2N1G32i6RxLd12tc63SHoZ2Coirq46llYg6U5SV/zPRcSkquNpBXnmi6WAycUZrluNq91a2w+Bm/AHay3g8xHRcvNTVeCfpIZlJ59kNWD7Lv98zCIiXiVdbr2lOfm0Nn+wkq6bpbkP3wROl3RrRPyr6mBawBM0voy2tTAnn9bmD1byS+DLwIVVB1KFfBXbouHA7ZKeov7VbdctJ7KW8CPgm5IubuUqJpudk09r69oPlqSvFx6+AbwnDxq8mPpfuCeXFlz5pjHr2K+uvWgcgKSf1ixajtTL62rqHxvfLCcya4Y7HLSw/CHbhnTJ6K76YOWZHgaqa3q7mY+NTuHk08IG8CHr2A+WpJX6L9UrIrplDi+zjuDkY9ZGJG3Yx+qZpCq5ByLijZJCMpsjTj5mbaSfiWd7vAz8NCLGDn1EZnPGHQ5a2EC+aDq12q1I0mM03g89v/ZvBU6KiPtLC6waWwMnAw8AfwT+S7rW0eeB1UmXGP84cLik5yLiF1UFWoZ+PiNBOjZuA47zwNzW4jOfFiZpLLN/sJYGNifNenBGRBxZdlxlkzQOGE26RPRN9H7hfhR4mjTH2QakbukbRsTtlQRaAkm/AhaJiD3rrDsdmB4R+0g6FfhwRLyv7BjLlD8je5D+9xeSjo3lSFd5fRG4gHStmzWALSLiymoitVo+82lhjapNJC1AuohWtww+nQB8GFi15zo+AJJWBK4Azgf2BK4FjiR98XSqzwK7Nlj3B9KVTfchXV58t7KCqtCLwDPAZhHxcs9CSYsBV5Im2Fw7//3dfG8toJsuP9wx8txmJ5Ou3NgNvg2MLSYegIh4gnT9o2/naeRPJJ0BdbJFgJEN1i2T10OqbnqzlIiqtS/wk2LiAYiIl4CfAPtGxJvAb4B1KojPGnDyaV+vkqqhusE7aTyw8gVgVP57Ir1fvp3qJuAoSasWF0pajXTWd2NetDLpV3+nW4E0CLmeN0hVcJDOjuYvJSIbECefNiRpaeBg4MGqYynJ48DuDdbtSZqGCPJMvmUEVKEDgWHA/ZJuk3RxnvnhPmDxvB5gReDMimIs04PA/pJm6XiTH3+d3s/I0sD/So7N+uA2nxbWoJfXgqTqlZmknk/d4CfAKZKWB86ht8PBjqROB1/O5UYDHdvZACAi7pO0FqnKdUPgXaSZL34K/CwinsnljqouylJ9H/gL8JCk8fQeG9uREvAOudwngFsqidDqcm+3FpZ7edX+g6aTqpfOjoiJJYdUGUlfJlUrLVtY/CxwRET8v1xmeVJvr04/+7ECSZ8Ejia16Yj0mbkN+H5EXJ7LzEOaEcRfeC3CycfaRv4CWZ00q/PzwIP+MrEekhYhVb2+EBGvVB2P9c3Jx6zF5dma942IB/LffYmIGFNGXGZzw20+1pIk7Q5cHBHP57/7FBFnlBBWVVT4ex76nvVCfazrCJK+D/w2Ip7Of/clIuLoMuKy5vjMx1pSnjblwxHxj26e3dtm52OjM/jMx1rVyqSxGT1/mwEQEfPU+9vai898zNqMJAEfBFYCFqpd3+FVkA1JWob6++OJOsWtYk4+Zm1E0rtIk2WuRv32na6qZpK0BGmM087USTzQHTO/tyNXu1nLkzQ/cCiwC+nX/oI1RSIiuuVY/iWwMLATcBfwWrXhVO5E0uUkTsP7o610ywfW2tuxwDeAS4HxdPcXzAeBL0fEuVUH0iI+DRwWET+rOhBrjpOPtYMdgaN9ZU4gXaW00SSr3Whh0hmPtRn3FLF2sBRwXdVBtIjTgc9VHUQLuRT4WNVBWPPc4cBanqRLgcu7tWpFUnEC2QWA44B/ka7c+Xxt+Yi4oKTQKpE7GfRYnjSx6Ck03h/TSgrNmuDkYy0v9/A6n3RRuUvyxcG6Rh5IGfROmtnXLAYd39utsD/eWkQfsz50+v5oV27zsZYk6QVm/UJZiNTZYIakl2qKR0SMKC248m1cdQAt5ij6nmLI2oDPfKwlNbicREMRsdfQRdO+8rx4F0bEC1XHYlbk5GPWofLVPF8H1o+IO6qOx6zIvd2so0iaV9IMSetUHUuL6PhZrq09OflYJ/IXrlmLc/IxM7PSOfmYmVnpnHzMzKx0Tj5mZlY6Jx8zMyudk49Zh4qIGaTZER6sOhazWk4+1mlmkmZ+fq7qQIaKpPdIOlvSs5Le6BnTJOlISWOKZSPiuoh4uZpIzRrz3G7WNiRtRvolP4I0e/GEiJhQLBNpyo6OnWpH0nqky0tMBq4kXcWzx0LAV4AJdZ5q1lI8vY61PEkLkWa13ow0gPQ10qW0A7gM2D4iuuLqppKuAuYHPgG8SZo+Z72IuEPSZ4EfR8TKVcZoNhCudrN2cBTpjOcbwPCIWBgYDhwIjAHGVhda6T4MnBAR05l94tX/AsuWH5JZ85x8rB3sBBwZET+PiCkAETElIk4GjgZ2rjS6cs0EZjRYNwJ4tcRYzOaYk4+1g+WAWxqsuwV4W4mxVO0OGl9Gezsa7yezluIOB9YOngXWp35D+geBZ8oNp1I/Bi6UNB9wFqnqbT1Ju5HOADevMjizgXLysXZwLnCEpKnAWRExTdISwK7A4cAvKo2uRBFxiaS9gZ8AO5I6YPwGmAbsHRHXVBmf2UC5t5u1PEmLABcBo0m/9Ht6uwm4Ctg6N8B3jbxPPkLqYPAccJPH81g7cfKxtiBJwCdJvd6WIo3zuToirqg0MDObI04+1lYkLUMaTDmLiHiignAqI2l1YCXq74sLyo/IrDlu87GWJ2lx4ERSg/psX7bZvOVFVB1JKwPnAB/oWVRTJOiSfWHtzcnH2sHPSNPInAbcRWrz6Va/BVYgDbi9nzTDgVnbcbWbtTxJzwI/ioifVR1L1ST19Go7u+pYzOaGB5laO1iYdMZjMAl4qeogzOaWk4+1g0uBj1UdRIv4ObCvJH92ra25zcfawVjgL5KmABeSulnPIiKmlR1UFSLi55LeAdwj6QrSpRVqisTRFYRm1hS3+VjLkzQz/9nwYI2IrujhlS8Wdz6waIMi0S37wtqbz3ysHRxFH4mny5wI/Bs4APd2szbmMx+zNiLpVdLF8y6tOhazueFGS7P28m9gkaqDMJtbTj5m7WUs8F1JS1cdiNnccJuPWXvZBRgJPCrpdur3dtuh/LDMmuM2H7M2ImkifXe+iIhYpaRwzOaYk4+ZmZXObT5mZlY6t/mYtRlJCwK7ky6sN4I048ME4MyI8LgfawuudjNrI5KGA9cAawFTgWeB5YBhwD+BMRExpboIzQbG1W5m7eVYYBSwbUQsFRFrRsRSwDbAKsAxVQZnNlA+8zFrI5KeBo6JiF/UWbc/cFhELF9+ZGbN8ZmPWXsZATzQYN39wPASYzGbY04+Zu3lCWDTBus2z+vNWp57u5m1l9OBsZIEnEVvh4NdgYOAwyuMzWzA3OZj1kYkzQucRupqXfzwKi//cvhDbW3AycesDUlaExhNauN5Hrg6Ih6qNCizJjj5mLURSesDwyPi8vx4GHAS8H7gEuBwn/lYO3CHA7P2cjywUeHxD4GdgBeAg4FvVRGUWbOcfMzay5rALQCS5gE+B3w7IjYhXW589wpjMxswJx+z9jKM1MYDaYqdpYBz8+MbSLMfmLU8Jx+z9jIJWCn/PQb4T0Q8lR8vCsyoJCqzJnmcj1l7uRw4Ik8wehBwTmHdGsDjlURl1iT3djNrI5JGkgaXbkBq+9kxIibndbcBt0TE1yoM0WxAnHzMOoSkJYDpvqaPtQMnHzMzK507HJiZWemcfMzMrHROPmZmVjonH7MBkLSIpAMl3SBpsqQ3JP1X0iWS9pQ0R8MW8nMPHOx4zVqdOxyY9UPSqsDFwLuAq4ArgOeAZUgXdtsUOD4iDpmDbV8LjIqIUYMVr1k78CBTsz5IWhi4CFgF2CEizqspclyeaXr90oOrSL6Q3aIR8VLVsVj7crWbWd++BKwOnFAn8QAQEbdGxK96HkvaXNLZkh6V9KqkKZKukFScjRpJE0kzVK8kKQq30YUyq0k6U9Izkl6XNFHS8ZIWrY1D0kaS/p5f81lJJ0l6T97m2Jqyi0o6VtIjkl7L5c+QtFJNudH5+XtK+pqk+4DpwLckXSDp5Ty+qDaWD+bnfa/fPWxdyWc+Zn37TL4/tYnn7Em6yNsZwJPACqQkNkHSxhFxQy53IHAsMBL4RuH59wNIWhe4GpgCnAI8Rbpuz9eBj0raKCLeyGU/RqoOfAH4UX7OjsBHa4PL7VOX53XnAicAqwFfBTaXtF5EPFnztAOBEcD/I126+z/AbcBWwM45vqIvADOBcf3sK+tWEeGbb741uJFmkJ7W5HMWrbNsWVI70SU1y68FJjbYzr+AB4DFa5ZvR7qE9p6FZf8gnZGsUlg2P3BTLju2sHzvvOzHNdv9dF5+ZmHZ6LxsMrBMTfl5gSeAf9QsXwSYWvteffOteHO1m1nflgCmNfOEiHi5529Ji0kaQZpt+hbgQwPZhqS1gPcBfwAWlDSy5wbcCLwMbJ7LLktqc/prRDxaiOMN0lVOa21HOis5tibui4E7gW3ytYKKzoiISTXlZwD/B6yf4+3xGdJ+O20g79W6k5OPWd+mAYs38wRJ75T0J0kvAC+Sznj+B3yKdP2dgVgz3x+Zn1u8TSJdPmHZXGblfP9gne3UW7Yy8HREvFBn3b2k9zuyZvlDDeI8jZRYv1hY9sUc4wUNnmPmNh+zftwDbChpleJZRSOSFgOuJyWHnwF3kxLQTOAwYJMBvq7y/QnAZQ3KvFBTdqCaLQ/wSr2FEfEfSZcBu0o6BFgR2BD4ST7zMqvLycesb38hfZl+CfjOAMqPAZYHvhARvyuukPSDOuUbDbR7ON/PiIir+nnNnqS4ep119ZY9AnxS0pIRMaVm3btJZ3vP9fOaRaeS2ou2BT6Ql7nKzfrkajezvv2WVHX1LUnb1CsgaV1J++aHPVcSVU2Zzanf3vMSsFQeO1P0T9JZ11ckrVLnNefLF5QjIv5L6nm2TbGspPmBA+q85vmkz/63a7a5BSl5XBARM+u91wYuJvXE2wfYA7gpIh5o4vnWhXzmY9aHiHhF0pakL9jzJV0BXEnqBbc0sDHwCeDH+Sk3kroinyBpFKmr9drAbqQquGLDPMDNwJbALyT9jZS8ro6ISZJ2I3W1vkvS/5HaYxYBVgW2J1Xjjcvb+VaO62+SfkXqbbYjsEDPWym85jhSkjg0x3h93ua+wH8Z2BlecR/NkPQ74PC8qKnnW5equrudb761w430pf8NUnJ5AXiD9EV9MSmxzFso+z5SO01Ph4NrgY+TvvSjZruLkqqo/ktKPAGMLqxfCfgNMBF4nZT0bif1VHtHzbY2ISWz6Xl7J5HOtgI4pM7rHkuqsnud1EHgTGClmnKjqenW3WD/rJTjn0adrua++VZ789xuZh1M0g6kgaQ7R8SfhvB13kYaeHpaROwzVK9jncNtPmYdQMlCNcvmBw4C3iSdfQ2lr5IGnTYzE4R1Mbf5mHWGBYHHJZ1F6iAxAtiJVAV4XEQ8OxQvKulzpO7VBwOXR8TtQ/E61nlc7WbWASTNS5p3bSPgbaTedg8Cp0Zh0tMheN0gtTHdAOwVEU8N1WtZZ3HyMTOz0rnNx8zMSufkY2ZmpXPyMTOz0jn5mJlZ6Zx8zMysdE4+ZmZWuv8PsYrDzH3gjr8AAAAASUVORK5CYII=\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"category_bar_plot(education_level_df, \"Education Level Breakdown\", 90)"
]
},
{
"cell_type": "code",
"execution_count": 121,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" count \n",
" category \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" 299 \n",
" twenties \n",
" \n",
" \n",
" 1 \n",
" 180 \n",
" thirty+ \n",
" \n",
" \n",
" 2 \n",
" 87 \n",
" teens \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" count category\n",
"0 299 twenties\n",
"1 180 thirty+\n",
"2 87 teens"
]
},
"execution_count": 121,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"age_crime_df = get_value_counts(death_row, \"age_crime\")\n",
"age_crime_df"
]
},
{
"cell_type": "code",
"execution_count": 122,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 122,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ8AAAEtCAYAAADX4G3qAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deZgcVb3/8feHRZEAiUmQRa9ERAUEN0RRUcISriBCAEWRLQgqIIqCsnjlR+CyCIgCKgpXNICoLCYswmUNkeUaFgHZwxo0CEK2CWvYvr8/zmlSqdTMdE9mqmcmn9fz1NPdp06dOl1d3d86p05XKSIwMzOr01LtroCZmS15HHzMzKx2Dj5mZlY7Bx8zM6udg4+ZmdXOwcfMzGrn4GP9mqQJkgbF/wEkjZR0tqR/SQpJU2pc96i8zvF1rXMwkjRF0vTFLGN6nZ99f+Xg00aS3irppfyjsGu769MTksY2+4MmaXx+r81ME/q25m1xEvAl4FfAbsAx3S0gaRlJX5V0taRnJL0saZak6yR9S9LyfV3pOjQOMkrTHEl3SjpY0lvaXUfrXcu0uwJLuF2ANwGPAXsBv2tvdXpkLLAHML6JvBOBh0tpP82P3y2lP5Ifvwbs09PK9TNjgCsj4qhmMktaGbgE2Ai4GTgZeBIYBnyGtO0+DezURHGPA28BXm292rXaF3guPx8BbAccD3wqP7dBwsGnvfYCrgMuBk6W9O6IeKSbZQasiLgLuKuYJunoPK8y8EbEK8ArfV+7WqwKzG4moyQBF5ICz7cj4melLD+R9F7gC92Us2JEPBvpUiYv9aDOdbswImY2Xkg6FbgV2FbSWyNiTmcLSloWWDoiBsL7XOK5261NJH0E+BBwFnAu6Qd2z07yLi3pcEmP5266uyR9qdCNNaqUfzVJv5T0j9xN8y9JZ0h6W5N1+1juBnlQ0guSnpV0k6TtS/mmkFo9lLpLxrW2NbqsyyLnfApdNCPy85m5jhdJWjXn+bqk+/P2ekBS5VFz3o435uVfkHSzpC5/0EvLD5F0nKRHJM2X9FQ+r7NGIc/4/B4E7NHkdtqG1Lo5ryLwABARD0bEsYX1TMnnE9aUdKGk2cC8PG+Rcz7FNEk75S6uFyU9LGnPnOedjbLyNvqdpBUrtsNi7XOdyUHzqfzyjYOQwr7/fkk/kTSDFFw3KuTZQtJVkuYWvjeLtKIlbSnpPEmP5vc/Ny+3STN1zPvhXyV1SNq8kP4fks7P6fMkXSrp3V2Us7ek23MdOnIdNi7lWeSck6Sv5G1xZyl935z+sfx6dGO/k7SnpHvzPvu4pIObea+9yS2f9tkLeB74U0Q8L+ky0g/T/4uI10t5f07qeroO+DGwMnAaqbtuIZLeCfyV1J13Jqn7ai1Sd8amkj4aER3d1G17YG3gfFJ3zQhSkJkoaZeI+H3OdwzpAObTpHMYDf/XxPvvDVcAM4D/R3qP3wYmSZoIfJ30/l/K6RdKem9EvLHNlFpd/5XLORx4nfTeL5C0f0T8oquVS1oGuJLUJXQh6ZzOe0jbesu8rWewoLvxHOAG4IxcRFfbqREAz+giT5UVgL8AN+X31syP/zak/es0UstsL+A3kl4GjgUmAz8ANgS+StqmezcW7qV9rmG4pDeeA9sCnwXOjYjnKvKfC7xI2vZB6pZE0tdJ59amkvbT50ndnr9U6mH4fqGMcXldZ5P2p7fn93etpE0j4obOKqt04HclsCKwSUTcmdOHAdcD/5HrcR+wCek7vMj5K0nHAwcDt5C29Yqkffg6SdtFxOU562TgSC3cS7IZad/9gKSVI+KZQvo84G+l1e0DrEL6rOYCuwLHS5pR+G73vYjwVPMELEf6kk8opG1H+vJsVcr7/px+BbBUIX194LU8b1Qh/WLgaeAdpXI+SurvH99E/YZUpC0PTAPuK6VPIB+g9nBbTAemdzF/kfIbacAvSuk/yen/AFYqpH8gpx9XSPtITju2Yp0Xkb60K3ZT96/lMk4opX8up59TSo/iZ95N2X/L+Ye3sC2n5GWOrpg3Ks8bX5H2PLBGIX1lUoB5HTiwVM5E4GVghV7e5xqfadV0OrBMKf/4PG9KxbzVcv1/X7GeU/L35t3d7O+rADOByyu28fT8/EOkYPcAhe9gnndsrt+epfSTG/UupL0vb+sbgTcV0lcnBYfppO5EgI3z8l8r5HuUdGATwE45TcAzwCWFfKNznn8Bwwrpy+e8f231+7s4k7vd2mMH4K2kLreGy0hf4K+W8m6TH0+JQosoIu4mHXG9QdLQnP8S4CWlob0jJY0k7cAPA1t2V7mIeL5Q5vKSRpB20MnAOpJWauZN1uDk0uvGEerZETGvkRjpXNM8UqukYRfSF/Gs4nbK2+oS0pHnJ7pZ//akH43jiokRcRlwJ7CdpJ5+xxrbeF6Xuar9uMX8F0XE440XkY6cp5HeW7n1dwOwLClw9do+V7AjqYUyBvgy8BtSkO+sBXhyRJQHUXwBeDNwZsVneymptf5G91hpf18h7++vkQZ5fLxqpZK2ILVspgOfiojppSxjgX+TWlNFx1cUtx0pWJwQES8X6vUvUlBeA/hwTr6ZdLCwWa7HGsC7gD8A9xTe1/rASNJ3tuy3ETG3sJ4XSC3E91Tk7TPudmuPvUhHGjMkrVVIvxr4oqSRseCk67vy47SKcqYBWxVev4/0xdorT1Ue7a5yuZ/+aNKXoqrbZhg9+1HsbeX30jgZvUh3ZJ43ovB6HdIX/oEuyl+lm/W/C/hXVJ8Ev5d0ZDySdFDRqsb2XZEF76sZzxR/WJpUtU/MAZ6MiPkV6bBgW/bKPldwfWHfBzgvd//tI+n8iLiilP/BijLWyY/XdLGeNz7bfB7mGOA/Sft2UdV/zFYBLid1pW2ef7zL1gRujYjXFios4klJ5c+n8R2/t6Kcewrl3RYRr0i6Edg0p29Oal1eTwo0W+f0zfJjVfCp+jxmsfD3o885+NRM0rtIO46o/uJA6oNtHNWrkzyVxefH37Fwq6roxW7qJ+Aq0he4MdKog3QkuCfwFfrJQJXyF7ugs3SVngcpeHeWv+rHoLPyets9pK7BD1P9A9KZqh/C7rS6HWHBe1/sfa4JV5LOU2xG6n4uqnq/jTrtTj4HVOFRSC0d0g/3ENJ37m7gWVKr7zAW/IgXzQZuJ3Wv7gL8Tyfr6OzP0eX9ptX9aDLwn5Len+t3a0Q8J2ky8O18Dm4zUrfh3RXLd/W51sbBp357kna2r5H6c8uOJh1BNoJP4yj+fSx6xPK+0uuHSTv8myKiq6O+rnwA+CBwVEQcUZwhae+K/AP16gMPkU5k/yMi7u9hGY8An5U0rKK1sS6p9TJz0cWa8ifSj+fetBZ86tYb+1x3ls2Pi4yy68RD+XFmE3XanHRu5asR8dvijDwgpcorpK7z84DTJS0bEaeV8jwKvFfS0sWDJEmrAUNLeRsDB95feN6wbqG8hsb+sDkpyJyZX08hBZYxpJGSV0U+qdMf9Ysj2CVF7v8fB9wdEb+OiAvLE6nvdj1JG+bFLs2PBxTPH0han9RN8IaImEXqDthB0kaUKFm5m2o2vigLHY1JWo90jqPsuTx/eDfl9jfn5MdjJS1dnqnmhghfRPoOHVpaditSi+WSWHTkYrMuJR2R7yxpv6oMktaSdFgPy+8VvbTPdWdsfiyP2urM+cB80qiwqpFlQyW9Ob/sbH/fkk7O98Ab/z/biTTK8ReSDihluZjUPbd7Kf2QiuIuIQXw7yv9V6lRh9VIB6uPA3cU8t9O6v7chzS4YnKuU0eedyApwPXngxa3fGq2JWno5Zld5PkTaSTPXqTm9L2SziANu7xG0iTSaKRvknbIDVi49bEvadTM9ZLOznmWIvUZb0c6ATq+i/XfT+puOljp0i3TgPcC32BBV1DRVGB/4LQ8XPwV4OYoDGnujyLiVklHAEcCd0q6gDQKaDXSNt2aNHS4KxNIQ9APyUNurycNMd6PdLL5B4tRv1D6v9GlpB+33Ug/Uk+RzktsTBqG/KeerqMXLe4+V/QFSY0h1cNJ35nPkbqPmroCSETMkLQv8GvgfknnkH7AVyadiB9LalFMz/V+Cjgpf4YzSOfqdsvrXL+L9bwqaWfSPn+ypGUi4qQ8+wRSF/X/SNqA9J0aTRrEMrNUzjRJJ5KGWl8v6TwWDLVeAdil2HqKiNclXU/ati+x8JD9ySwIcP06+NQ2rM5TAFxAChTrd5NvGqlL7i359dLAEaQhxPNJVwnYiTSqKYC3lZYfCZxIOqf0Ui7rbtIw03WbqOcaua7PkPrUbyG1esaz6NDupXI9ZrBg6Pe4FrbJdHo41Loi7+jO1p/XM6Ui/XOkcwqz87b9J/C/wL5N1n8IabTbo6QhyE+TWlVrVORteqh1YZllSQci15B+tF4hnRyeTApybynkndLZtqTrodbjK/JXlkVquQcwupf3uQksOsR6fi7veGBoKf8i+2JFmZ8CJuXP5GXSwcV1wEHAcoV8HyCdS5pDOt8zhfTftap9b5HtQvoONOp/WCH9naSW0bxc7qXAu7vYF79GCtwv5WWuBj7dyXv7Vl7ftaX0MTl9Rovfj0Xea19Pyiu2AUjSpaQ+35Wi85PvZmb9js/5DACd9Ft/gDRSa7IDj5kNNG75DABK16PanfRH1GdIl775Oung4VMRcUcXi5uZ9TsOPgOA0oUB/5t0InQ4qf/4RuDIiGh2BJCZWb/h4GNmZrXzUOtuSHqV1L3VHy4nY2Y2UKwEvB4RlXHGLZ9uSHod0NCh5T8lm5lZZzo6OiAN364c2OaWT/fmDR06dOjcua1eq9HMbMk1bNgwOjo6Ou0x8lBrMzOrnYOPmZnVrm3BR9InJV0p6Qml+6s/I2lyvihjOe8YSVOV7m3+tKTT821qy/lWkHSqpCdz3tskbVvPOzIzs2a1s+XzVtI1zA4iXdr+66RrOV0u6cuNTJJGk66a+0/g88D3SBdUvKziLpGTSPfX+CHpml33AZMkbY2ZmfUb/Wq0m6RlSPeveSgiGreJvYV0ccUNIl+eXtIY0g3PvhwR5+W0rUlXANghIiblNJFu+zsiItYpr6/JOs31gAMzs9bkAQcdEbFILxX0s3M+ke7F3kG6ci+S3g5sCJwThfuiRMTVwBOk+703bJ+XvbiQL0h3V1xb0rqYmVm/0PbgI2kpSctIWl3SkaR7x/w0z14vP95TsejdhfmNvPfFojfvuqtUlpmZtVl/+J/P+SxowcwDdoqIxn3aR+TH2RXLzWbhG5uNIN37oypfsayFSOquP83/LjUz62X9IfgcTLpZ1KqkO/+dL2mPiPhDIU9nJ6bK6V2dwOo/J7es3/rihGvaXYVB74JxW7S7CtYPtD34RMSjpLtAAlyab5D2i3wr2Vk5varVMpyFW0SzusgH1a0nOjsZ1pBbRm79mJn1oraf86lwC2kY9sqk+55D9fma9Vn4XNC9wDoVw68b92CvOm9kZmZt0K+CTx4aPZp0//dZETEDuA3YpRhUJG0OvB2YWFh8EjCM9F+got2BaRFxXx9W3czMWtC2bjdJ5wKPA38DZgKrAXsAmwHfysOuAQ4h/afnD5LOAFYnnSO6GbigUOTlwHXAmZJGkP4vtAewMbBdn78hMzNrWjvP+fyVdDWCb5DOqXSQWjnbRsSljUwRMVnSNsCRpD+RPgtcBBwcEa8V8oWkscCxeRpGusLBDsXyzMys/doWfCLi58DPm8x7BXBFE/nmAfvnyczM+ql+dc7HzMyWDA4+ZmZWOwcfMzOrnYOPmZnVzsHHzMxq5+BjZma1c/AxM7PaOfiYmVntHHzMzKx2Dj5mZlY7Bx8zM6udg4+ZmdXOwcfMzGrn4GNmZrVz8DEzs9o5+JiZWe0cfMzMrHYOPmZmVjsHHzMzq52Dj5mZ1c7Bx8zMate24CNpc0kTJE2T9IKkGZImSlq/lG+KpKiY/lhR5gqSTpX0pKQXJd0madv63pWZmTVjmTauex9gBPBT4H5gFeBg4FZJoyNiaiHvQ8DupeVnVpQ5CfhILucxYBwwSdLnI+Ly3q2+mZn1VDuDzzcj4uligqSrSEHj+8COhVkvlILRIiRtDWwB7BARk3LadcCawEmAg4+ZWT/Rtm63cuDJaXNJrZx39KDI7YEO4OJCeQGcBawtad0eVtXMzHpZvxpwIGllYD3gntKs90maI+lVSQ9J+qGkZUt51gPui4jXS+l3FeabmVk/0M5ut4VIEnAGKSD+uDDrBuCPwAPACsBY4ChgA1Jrp2EE8GBF0bML86vWO7ebqg3tru5mZtaafhN8gBNJgWXPiLi/kRgRh5fy/VnSv4EfSNo4Im4szIsuyu9qnpmZ1ahfdLtJOgY4CDggIiY0schZ+fEThbRZVLduhufH2RXziIhhXU2k80hmZtaL2h58JB0F/AA4OCJObXKxRr2L53fuBdaRVH5Pjf8Nlc8jmZlZm7Q1+Eg6AjgcODwiTmxh0cZ/forDrycBw4DPV+SdFhH39biiZmbWq9p2zkfSQcB44M/ANZI2KsyeHxF3SPo0cCjwJ+BxYAiwHbAncEFE3FRY5nLgOuBMSSNI/xfaA9g4L2NmZv1EOwccNFoo2+Sp6HFgFPBkfn0UMJLUzTYNOBD4WXGBiAhJY4Fj8zQMuI/0p9NL+6D+ZmbWQ20LPhExuok8DwOfa6HMecD+eTIzs36q7QMOzMxsyePgY2ZmtXPwMTOz2jn4mJlZ7Rx8zMysdg4+ZmZWOwcfMzOrnYOPmZnVzsHHzMxq5+BjZma1c/AxM7PaOfiYmVntHHzMzKx2Dj5mZlY7Bx8zM6udg4+ZmdXOwcfMzGrn4GNmZrVz8DEzs9o5+JiZWe0cfMzMrHYOPmZmVru2BR9Jm0uaIGmapBckzZA0UdL6FXnHSJoq6UVJT0s6XdKwinwrSDpV0pM5722Stq3nHZmZWbPa2fLZB3gn8FNgK+DA/PpWSRs1MkkaDVwO/BP4PPA9YFvgMknl+k8CdgF+CHwOuA+YJGnrPn0nZmbWkmXauO5vRsTTxQRJVwGPAd8HdszJJwD3AF+KiNdzvieBq4AvAufltK2BLYAdImJSTrsOWBM4iRTAzMysH2hby6cceHLaXOAh4B0Akt4ObAic0wg8Od/VwBMsCFAA2wMdwMWFfAGcBawtad0+eBtmZtYD/WrAgaSVgfVILR3ycwqvi+4uzG/kva8YpLK7SmWZmVmbtbPbbSGSBJxBCog/zskj8uPsikVmAx8pvB4BPNhJvmJZ5fXO7aZqQ7uZb2ZmLeo3wQc4ERgL7BkR95fmRSfLlNM7y9fdPDMzq1G/CD6SjgEOAg6IiAmFWbPyY1WrZTgLt4hmdZEPqltPRMQiQ7ZLdZuLWz9mZr2q7ed8JB0F/AA4OCJOLc2+Nz9Wna9Zn4XPBd0LrFMx/Lrxv6Gq80ZmZtYGbQ0+ko4ADgcOj4gTy/MjYgZwG7BLMahI2hx4OzCxkH0SMIz0X6Ci3YFpEXFfL1ffzMx6qG3dbpIOAsYDfwauKf6xFJgfEXfk54eQ/tPzB0lnAKsDxwM3AxcUlrkcuA44U9II0v+F9gA2Brbrw7diZmYtauc5n0YLZZs8FT0OjAKIiMmStgGOBC4DngUuInXTvdZYICJC0ljg2DwNI13hYIeIuLQP34eZmbWopeAj6VHgOxFxSSfztwFOjYg1uysrIkY3u96IuAK4ool884D982RmZv1Uq+d8RgErdDF/CLBGj2tjZmZLhN4ecLAK8EIvl2lmZoNMt91ukj4DjC4k7SBprYqsw4EvA3f2TtXMzGywauacz6bAEfl5ADvkqcrDwHd7oV5mZjaINRN8TgYmAAIeBb5D4crRWQDPRUTlVQTMzMyKug0+EdFBulUBkjYF7q+6HYKZmVmzWhpqHRF/6auKmJnZkqPlP5lKeifwDeA9pAt5qpQlImLzXqibmVlLjr3m6nZXYdD7wRZjeqWcVv9kuhXpGmpvIl1pwOd4zMysZa22fI4DZgJjI+K2PqiPmZktAVr9k+nawMkOPGZmtjhaDT7PAC/3RUXMzGzJ0WrwOQfYsS8qYmZmS45Wz/lMADaVdDFwCumeOa+VM0XEPxa/amZmNli1GnweIF3NQCx6D56ipXtcIzMzG/RaDT5HkYKPmZlZj7V6hYPxfVQPMzNbgvT2/XzMzMy61eoVDj7TTL6IuL5n1TEzsyVBq+d8ptDcOR8PODAzs061Gnz27KSMdwPjgOnA6YtXJTMzG+xaHXBwVmfzJJ0I3L7YNTIzs0Gv1wYcRMQc4NfAwc0uI+kdkk6RdKOk5ySFpNEV+abneeXpRxV5V5F0lqSZkp6XdIOkTy7WmzMzs17V8v18ujEHWLOF/GsBO5NaTNcC23aR93rgkFLaE8UXkpbL5awAfAuYRbrt97WSPhkRd7RQNzMz6yO9FnzyD/9uwFMtLHZ9RLwtLz+WroPPnIiY2k15XwXeD2wQEbfncv8C3A8cC2zVQt3MzKyPtDrU+jedzBoOfAJYGfh+s+VFxOutrL8J2wN3NwJPXsd8SX8ADpG0YkQ828vrNDOzFrXa8hnXSfps4EHguxHx+8WqUec2k/Qc6S6q04DTgF9FRHHo93rAdRXL3kUa/r0OcEtxhqS53ax3aI9rbGZmlVod7dauKyL8GbgNeBQYAexKCj7vBb5byDeC6lt7zy7MNzOzNuvtAQd9IiL2LyVNknQu8G1JJ0fE48XsXRVVUfawrtadW0Zu/ZiZ9aIeBR9JKwFbsGBk26PA1TWfTzkL+ArwMaARfGZR3boZnh+rWkVmZlazloOPpL2Bk0jDmZWTA3hO0oERcWYv1q8rjS7A4qCFe0nnfcrWJ9307oG+rpSZmXWvpXM4krYFzgCeAQ4ExuTpu8DTwBmSPt/blezE7qTAc2shbRKwvqQPFer8JtJ/ia6JiHk11c3MzLrQasvnYNJ/Zj4eEc8V0q+V9FtgKumPoJc2W6CkL+SnG+bHTSSNBJ6PiP+VtDOwHXAZMIPUhbYrMBY4sXTL7jOBbwITJR1G6mY7AFgd2Kmld2pmZn2m1eDzQeCoUuABICKelXQWcHiLZV5Qej0+Pz4OjAIeA0YCJ5DO58wH7gbGla81FxEvSdoMOBH4JbAc6eoJYyLiby3Wy8zM+khPBhyoi3kt32I7Iroqj3xVgy1aKO8p0pUWzMysn2r1fzt/B/aQNKQ8Q9IKpD+h/r0X6mVmZoNYqy2fHwMTgdslnQrcl9PfT7qQ51rADr1XPTMzG4xavcLBRZL2B44HfsaCbjYBzwP7R8TFvVtFMzMbbFo+5xMRp0n6PWmI9btIgecR0p9MO3q5fmZmNgj16AoHETGXRUepmZmZNaXbAQeSlpb0I0n7dJNvX0nHSupy9JqZmVkzo912Jd2j59Zu8t1C+oPpzotbKTMzG9yaCT47kS5N0+WfNPP8K3HwMTOzbjQTfDYArmmyvOuAj/a8OmZmtiRoJvgMJ100tBnPsOD2BWZmZpWaCT7Pkq6t1owRwCLXfTMzMytqJvjcC2zZZHljcn4zM7NONRN8JgJbSNquq0z5Xj9jgD/1RsXMzGzwaib4nA48DJwv6RhJo4ozJY2SdDRwPvBgzm9mZtapbq9wEBEvSvoc8GfgMOBQSc8C84AVgZVIl9iZBmwTES/1YX3NzGwQaOqWChHxMPAh0l1BbwReBVYFXgNuyOkfiYhH+qieZmY2iDR9bbfcovlZnszMzHqs1ZvJmZmZLTYHHzMzq52Dj5mZ1c7Bx8zMatfW4CPpHZJOkXSjpOckhaTRneT9iqS/S3pJ0ox8j6HlKvKtIuksSTMlPS/pBkmf7PM3Y2ZmTWt3y2ct0i0YngOu7SyTpF2Bc4GbgK2AY4FvAhNK+ZbL5WwCfAvYnnRtumslfbj3q29mZj3Ro9to96LrI+JtAJLGAtuWM0haGjgRuCQi9svJ10l6BThD0k8j4uac/lXg/cAGEXF7Xv4vwP2kgLVVn74bMzNrSltbPhHxehPZNiL9ofWsUvq5wCvAjoW07YG7G4Enr2M+8AdgjKQVF6/GZmbWG9rd7daM9fLjPcXEiHgBeKQwv5F3oXzZXcDSwDp9UUEzM2tNu7vdmjEiP86umDe7ML+Rt7N8lPICIGluN+sf2l0FzcysNQOh5dMQTaZ3lq+7eWZmVpOB0PKZlR9HFJ43DAceK+VdpHXDglt7L9IqiohhXa08t4zc+jEz60UDoeXTuDNq8dwOkpYH3s3C53juLefL1iddgfuBvqigmZm1ZiAEn6nAU8BupfSdgWVJd1ptmASsL+lDjQRJb8p5r4mIeX1cVzMza0Lbu90kfSE/3TA/biJpJPB8RPxvRLwq6VBggqSfAxeSRq0dD1wYEVMLxZ1J+vPpREmHkbrZDgBWB3aq4e2YmVkT2h58gAtKr8fnx8eBUQARcZak14BDgK8BM4FfAUcUF4yIlyRtRvpT6i+B5YDbgTER8bc+qr+ZmbWo7cEnItRkvt8Bv2siX1UXnZmZ9SMD4ZyPmZkNMg4+ZmZWu7Z3uw02W+x3aLursES45rQftbsKZrYY3PIxM7PaOfiYmVntHHzMzKx2Dj5mZlY7Bx8zM6udg4+ZmdXOwcfMzGrn4GNmZrVz8DEzs9o5+JiZWe0cfMzMrHYOPmZmVjsHHzMzq52Dj5mZ1c7Bx8zMaufgY2ZmtXPwMTOz2jn4mJlZ7Rx8zMysdgMi+EgaLSk6mdYu5R0jaaqkFyU9Lel0ScPaVXczM1vUMu2uQIsOAa4vpU1vPJE0GrgcuAj4IbA6cDywnqRPR8Tr9VTTzMy6MtCCz4MRMbWL+ScA9wBfagQaSU8CVwFfBM7r+yqamVl3BkS3WzMkvR3YEDin2MKJiKuBJ4Ad21U3MzNb2EALPqdLelVSh6Q/S9qgMG+9/HhPxXJ3F+abmVmbDZRutw7gZGAKMBtYBzgUuEnSJhFxMzAi551dsfxs4CNVBUua2826h/akwmZm1rkBEXwi4g7gjkLSDZIuIbVyjgG2KGbvrJg+qp6ZmbVoQASfKhHxlKSrgG1z0qz8OKIi+3CqW0RERJfDsHPLyK0fM7NeNNDO+ZQtxYIWzb35serczvpUnwsyM7M2GLDBR9KqwBhgKkBEzABuA3aRtFQh3+bA28DvbL8AAA/BSURBVIGJ7ainmZktakB0u0k6F3gUuB2YA6xN+sPpW4DDClkPIf2n5w+SzmDBn0xvBi6os85mZta5ARF8SEOlvwx8CxhCOr8zBTg6It7oTouIyZK2AY4ELgOeJV3t4OCIeK3uSpuZWbUBEXwi4kfAj5rMewVwRd/WyMzMFseAPedjZmYDl4OPmZnVzsHHzMxq5+BjZma1c/AxM7PaOfiYmVntHHzMzKx2Dj5mZlY7Bx8zM6udg4+ZmdXOwcfMzGrn4GNmZrVz8DEzs9o5+JiZWe0cfMzMrHYOPmZmVjsHHzMzq52Dj5mZ1c7Bx8zMaufgY2ZmtXPwMTOz2jn4mJlZ7QZd8JG0gqRTJT0p6UVJt0natt31MjOzBQZd8AEmAbsAPwQ+B9wHTJK0dVtrZWZmb1im3RXoTTnAbAHsEBGTctp1wJrAScDlbayemZllg63lsz3QAVzcSIiIAM4C1pa0brsqZmZmCyj9Ng8Okv5KijefLKV/HJgKfCkizi/Nm9tNsUMBhg4d2lQdnn/xpabraz035C3L9Um5L7z8ap+Uawss/6a+63CZ/6o/v7725mWa+/w6Ojog/R5XNnIGVbcbMAJ4sCJ9dmF+T0RHR8e8Hi7b3zWiakdba9Gijpfnt7sK/cWA+/w6Xmx3DfqNAffZAbRweL0S8HpnMwdb8AHoqim3yLyIGNaHden3Gi2/JX07DFT+/AauJf2zG2znfGZR3boZnh9nV8wzM7OaDbbgcy+wjqTy+1o/P95Tc33MzKzCYAs+k4BhwOdL6bsD0yLivvqrZGZmZYPtnM/lwHXAmZJGAI8BewAbA9u1s2JmZrbAoAo+ERGSxgLH5mkY6QoHO0TEpW2tnJmZvWFQ/c/HWrekj7gZ6Pz5DVxL+mc32M75mJnZAOCWj5mZ1c4tHzMzq52Dj5mZ1c7Bx8zMaufgM8BI2kjSeElL5AiZ/qS/fxaS9pE0riJ9nKSQNKr2SvVznX2meXud3MTy4yU1dSJd0nI5/+geVndAc/AZeDYCjiD9h8naq79/FvsA4yrSLwM+ATxZa20GhsX9TH9N2rbNWC6va3QP1zWgOfiYLWEi4pmImBoRvi9FL4uIGRExtas8kpaStGxfrF/SqNxKG90X5fcmB58BRNJ44Kf55WN5J4u8wy0l6buS7pb0kqSZks6WtGpFObtJulXSC5I6JF0k6T2lPFMk3Zm7IW7KeR+VdGjxwq2Slpb0Q0kPSnpR0hxJd0jas083Rpt18VlMkvS3Ut7r87xNC2nb5rR1CmnrSLogf3bzJd0l6SulshpdZp+RdHrOO0vSREmrF/JNBz4IbFKo25RSGaNKZTezX3xE0mWSns51nJHzvbXHG7Of6Or7VcgzTtIDeRv9XdI25TLK3W6NLjtJB0h6GHgZ2AWYk7McUVjXeEk/kPSqpHdU1HGipMe06MWTB56I8DRAJuAdpC9HkG4ZvlGe3ky6VfhLwDHAGFJ3yz+BB4AhhTKOBF4DfgF8FvgS6WrfTwOrFfJNAZ4h3Zzv68AWwGl53bsX8h0GPA8cROo+2Br4HnBQu7dXmz6LA/L2HZHzDQHmAy8ARxeWPxX4V+H1B4BngVuBnYEtgf/J5e9VyDcupz0CnJzz7U26XcjkQr4P58/u9kLd1i2VMaqV/QJYgXTbkquBscAmua6/Ke47A3Xq5vsVpGtFTgW+CGxFuo7kK8CahTLGk670VSw3gCeAW4Av5O27Rv5OBamrrrGudwAjgReBoyrq9wpwSBfvYVQuc3S7t2e327vdFfDU4gcG36n44fhkTtuvlPdDpDsJfjO/fmfeeU8o5VudFEBOLKRNyct+pJT3XuDKwus/A5PavV360Wexdk77Yn79WVLwORn4ayHffcA5hddX5R+3IaV1TAKeApbKrxuB45RSvu/n9OIBxJ3AlIp6N8oY1cp+AXw0L/fBdm/7Oj/TnN4IIMUDuVVIAfuwQlpnwWcWsFIpfVieN76iHr8hnZNbtpD236QDzJGFtKVI1+hsTO/OZW5eSl+63du2PA38pptBam28DvxR0jKNiXTk+gTpCBXSUfIywLmlfE+TjpA3KZX7RETcXkq7i3TU1nAzsLWkE3JX0PK9+9YGloh4APgX6aiW/PhX4BJgQ0lDc/fYOsC1kEY9AZsCE4H5pc/mctKP3NqlVV1Sen1XflyD1jW7XzxE6ir6taQ9JL2rB+sayCZHxPONFxHxb9I2amabXxsR81pY18+AVUktMPI5or2B8yJiZiHfb0gHDo3p4Zx+TSn92hbWXYtBdVXrJdgqpCOgWZ3MH1nIB+mIuMpjpddV5c0njdJpOI7URbArqbvtZUlXkroGHuim3oPVtSwIPpsDfwJuIv0IbMKCkVSNH4QRpO/igXmqMrL0uvzZNAYPLEfrmtovIqJD0ibA4aSW3DBJj5G66n4S+VB8EGvm+9CZlkYWRsQdkm4E9gPOB3YkBaNflLKOB35eeL0a6cBkH6B47vHZVtZfBwefwWEmqeWzMekHruzZQj5I/fVPVORrefRTRLwK/Bj4sdJ/I/4TOB64UtKoJeAHqcq1wG6SNiSd9N8vIuZLuokUjN4KPBQR/8z555A+v98Cv+qkzGl9WN+m94uIuBvYSZJI56n2IX3+c0hH4VatJ9+DnwHnSVqXFIRui4hbFio0YjowvfG6MDhiWkTc1pOK1sXBZ+Bp/BC8pZD2v8ChwKoRMamLZa8i9VGvGREX93bFImIu6cuyNumIbBgLRvQMRlWfBSxo0RxDCvyNH4xrSC3Et1LoNouIFyT9hXSO7s4c0HurfuW6VWl5v8gHFX+XtD+pO+iDPa5l/9LZZ9qOdU0kHQycCnwaGFQjSB18Bp578uP+kn5HaulMBSYAZ0v6GXAj6cTk20nnEi6PiAsj4jFJ/w0cL2lN0qileaSm+qeAByLi57RA0iW5TreRjqDXAr4B3BwRgznwQPVncVdEzJD0IGnU4SUR8VrOdy2pm7LxvOg7wA3AFEmnA/8gBe+1gY9FxI49rN8ukr5I6jp7NiIWaUE1u1/kYcX7Ahfl8pYmDRleGriiB/Xrjyo/075YUUS8KOlR4POSrgbmkkZA/ivPf1XSL4GjSaMZ/9gX9Wibdo948NT6RPoBe5J0tBqk4ZUi/ejfRhrW+xypq+YM4L2l5b8IXE86Kn+RNGz3d8CGhTxTSEfh5XVPAKYXXh8E/B8p8MwndQGcBryt3dupXZ9FTm8MS/9WIe9SpB+R18lDsUtlrQWcTRqw8DJplNt1wL6FPONyuR8qLTua0hBb0ii2q/O+EOSRb1QMtW5mvwDeB/whp79IatXeBOzY7s+hrz/T/HhyRd7pwITC6/FUj3ZbZNk8b3Pg7/m7s8jINxaMXjuhybo36jq6mfztnHw/HzOzfkrSgcCJwFoRUR4QNKC5283MrJ+RtD6wJvBfwPmDLfCA72RqZtbv5MsjrQr8Bdg1Ip5pb416n4OPmZnVzlc4MDOz2jn4mJlZ7Rx8zMysdg4+ZmZWOwcfsyZIWl7SdyTdIGm2pFck/VvS5fkGYz3620Je9ju9XV+z/s6j3cy6IWkt4DLgvaTrs11FuqLD20hXr96CdM+bg3tQ9hTSlQZG9VZ9zQYC/8nUrAuS3kK6Yd6apMvITCxlOT5fvXrD2ivXJvmK1kMi4rl218UGLne7mXVtb9I1zU6qCDwARMStEXFa47WkLSWdJ+lRSS9KmivpqnwvHAr5ppPu77OGpChMowt53iPpHElPSnpZ0nRJJ0oaUq6HpE0k/TWv8ylJp0h6fy5zfCnvEEnHSXpE0vyc/2xJa5Tyjc7Lj5P0TUn3kS5a+z1Jl0h6XtJKFXX5WF7u8G63sC2R3PIx69oX8uMZLSwzDhhOukjoDNLVxfcGrpW0aUTckPN9h3QRy5HAdwvL3w8gaQNgMulqx6eTLq//QeDbwKckbRIRr+S8G5O6A+cAP8rL7ES6KvVC8vmpK/O8C4GTgPeQrli9paSPRsSM0mLfId307n9IFzz9J+kitp8Hds71K/oq6QKqE7rZVrakaveVTT156s8T6e6V81pcZkhF2iqk80SXl9KnULhKeGne34EHgBVL6duTrlw8rpB2C6lFsmYhbVnSVacXuloy8DUqrpQMfC6nn1NIG53TZlO6UjnpVgr/AG4ppS8PdJTfqydPxcndbmZdW4l0b5umRcTzjeeSVpA0gnR5/puBjzdTRr6w5AeA3wNvljSyMZHu1/Q8sGXOuwrpnNPFEfFooR6vAKdUFL89qVVyXDExIi4j3Up7O0nl34azI+LpUv7XSHcv3TDXt+ELpO12ZjPv1ZZMDj5mXZsHrNjKApLeLemPkuaQ7o0zE3gG2Jp0F9NmrJMfj8zLFqengSGk1hTAu/Jj1a22q9LeRbppWdXN/u4lvd+RpfQHO6nnmaTAulchba9cx0sqlzDD53zMunMP8BlJaxZbFZ2RtALphmxDgJOBu0kB6HXgMGCzJter/HgSnd8ldE4pb7NazQ/pBoWLiIh/SroC2FXSwaQb2H0G+HFueZlVcvAx69qfSD+mewM/aCL/5sDqwFcj4rfFGZKOrsjf2R/tHsqPr0XENd2ssxEU31cxryrtEeCzkoZFxNzSvHVJrb2Z3ayz6AzS+aKxwIdzmrvcrEvudjPr2q9JXVffk7RdVQZJG0jaL798rZFcyrMl1ed7ngPemv87U3QHqdW1j6Q1K9a5jKThABHxb9LIs+2KeSUtCxxQsc6LSN/9Q0tlbkUKHpdExOtV77UTl5FG4n0D2AO4KSIeaGF5WwK55WPWhYh4QdI2pB/YiyRdBVxNGgW3MrAp8J/ACXmRG0lDkU+SNIo01PpDwG6kLrjiiXmAqcA2wM8l/R8peE2OiKcl7UYaan2XpN+QzscsD6wF7EDqxpuQy/lertf/STqNNNpsJ+BNjbdSWOcEUpA4JNfx+lzmfsC/aa6FV9xGr0n6LfDDnNTS8raEavdwO0+eBsJE+tH/Lim4zAFeIf1QX0YKLEsX8n6AdJ6mMeBgCvBp0o9+lModQuqi+jcp8AQwujB/DeBXwHTgZVLQ+xtppNp/lMrajBTMXsrlnUJqbQVwcMV6jyN12b1MGiBwDrBGKd9oSsO6O9k+a+T6z6NiqLknT+XJ13YzG8Qk7Uj6I+nOEfHHPlzPaqQ/np4ZEd/oq/XY4OFzPmaDgJLlSmnLAgcCr5JaX31pX9KfTlu5EoQtwXzOx2xweDPwuKRzSQMkRgBfInUBHh8RT/XFSiV9mTS8+vvAlRHxt75Yjw0+7nYzGwQkLU267tomwGqk0XbTgDOicNHTPlhvkM4x3QDsGRFP9NW6bHBx8DEzs9r5nI+ZmdXOwcfMzGrn4GNmZrVz8DEzs9o5+JiZWe0cfMzMrHb/HyFRdof2MJUQAAAAAElFTkSuQmCC\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"category_bar_plot(age_crime_df, \"Age at Time of Crime Breakdown\", 0)"
]
},
{
"cell_type": "code",
"execution_count": 123,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" count \n",
" category \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" 360 \n",
" other \n",
" \n",
" \n",
" 1 \n",
" 206 \n",
" laborer \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" count category\n",
"0 360 other\n",
"1 206 laborer"
]
},
"execution_count": 123,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"occupation_df = get_value_counts(death_row, \"occupation\")\n",
"occupation_df"
]
},
{
"cell_type": "code",
"execution_count": 124,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 124,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ8AAAEtCAYAAADX4G3qAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deZgcVb3/8feHzUiABAKCoBJR2QSvgqBXUcISFGQLuCEKcQUFFRUj8oNLREUBeQQU7wVFE9lkMWFLZBMii4KyyJKwiAEUDFtWEkgg5Pv745wmlaJmpnsyUz0z+byep56aPnXq1OlOpb99lqpSRGBmZlanldpdATMzW/E4+JiZWe0cfMzMrHYOPmZmVjsHHzMzq52Dj5mZ1c7Bx6wHSRotKSSNaHdd+jpJI/JnNXo5yvDn3U85+FjTJK0l6VhJd0p6TtLzkqZJOlnS+u2uX13yl+ZYSUPbXZcqkobnL+Ti8qKkxyRdIuk97a6j2SrtroD1D5I2Ba4GNgYmAGcDLwHvBb4OfFbSXhHxl/bVsjYjgOOAccCc0rZzgN8BL9ZbpUrXAr/Nf78G2BT4ErCPpPdHxF/bVjNb4Tn4WJckrQ5cAWwE7BURkwqbz5L0C+A64DJJW0fEU+2oZ18QES8DL7e7HtlDEXFuMUHSLcBlwIFAp8FH0poR8Vwv1s9WYO52s2Z8nvSr+aelwANARNwOHA2sB3y7uE3JFyXdJml+Xu6VdHwp32qSxkj6e+7OmyvpdkmHF/KMk1R5P6jctTSu8LrR9TRW0gGS7pG0UNK/ctoqpf03l/QLSVMLXYp3SPpiKd84UqsH4JFCt9bYvL1yDELSupLOkPTv3AX27/x6WClfY/+dJR0p6Z+SFkl6SNLBVe+9Rf/J62VaZo3PT9Iukm6WNJ/0g6OxfYikEyU9nOvzjKQLJG1SKmdNST/I/97P5rwPS/px/hHTJUkHS3opdxG+ppD+BUkPFMr8OqAOyhgu6RxJT+X8/5R0QrEO6mDMKX/WIWnfUvqTkiYXXk+R9KikDfNnMVvSAklX554C64RbPtaMj+b1LzvJMw44FdgfOLKQfg7pV/ZtwA9J3VSb5zL/B1LgIXXpjQCuAc4FFgJbA/sBP1+Ouu8FHAGcATwJ7E0KHhsDny3kGwF8ELgSeAQYDHyM1LJbNyJ+lPOdCawFjAK+ATyb0+/pqAKShgB/Bt4K/Bq4E3gX8GVgZ0nbV7QwTgBem4+3KOcdJ+nhiLilyfc+SNK6+e/VSD8gfgQ8T/p3KXs36d/vl8D4ivq/Kdd/KvB64CvAbZLeHRGP5ewbAV8Afg+cDywGdgTG5Pf8oc4qLOlo0nlyBvC1iFiS048AfgrcTfqhszrph87TFWVsTGrVDQH+F3iI9O/7XeD9knaJiMXAX4AXgF1I5y+SNgLeBizJ6Zfm9LcD6wPXlw43GLgRuDXX682kbujLJG2VW8JWJSK8eOl0AWYC85rIdy8QwBr59cfz63OAlUp5Vyr8PSbnO6GizGK+cemUrTx2AOMKr4fntJeBbQrpAibmbe8tpA+uOjYwBZgLrFpIH5v3H16xz+i8bUQh7Yc57SulvIfl9O9X7H8XsFohfSNSELqgiX+HxnuvWv4NvK+Dzy+AXSu2nUb6kv6vUvrGwLzS575a8bMqpH8/l799IW1EThudP+sz8uujS/sOBRYA04DVC+lvAOZXfN7n5bQ9SuWcnNM/X0i7Dni88PqgfM6cD0wrpH8171s8l6bktDGl43w7p3+oHf9f+8vibjdrxlqkL+CuNPIMyesD8/rIyL9gG0qvDwRmA8t0xVXk645rI+LOQnkBnJRfjiqkL2j8LWlQ7g5bh9QSW4vUWuuuUcAzwFml9DNJLadRr9oDfhERr3SNRcQTpF/wb2vhuJcBI/OyB/A1Unfb5ZLeVZH/7oi4rpggSaR/nxuBJ3L34bq5RbWA9It/t0I9X4yIl/K+q0haO+dtlFs1024QcAlpMsToiDihtH03UkvnjIh4vnCsx0mBpljflUit27siYjLL+hGpRVP8vK8HNpK0WX69M3AHqeW2haTX5/SdSOfo30tlLgFOL6U1Wket/FutcNztZs2YR/oC7kojTyMIvQ2YEV1PQHgb8PeIWNjN+nXm/oq0aXn9yniFpDVILZqPA2+s2Gft5ajDm4HbI3X1vCIiFkt6ENimYp/pFWkzSa2NZj1eEUwuBx4kdUe9t5T/oYoy1gOGkQLAMx0cZ5kfCJK+AhwKvJ1XjytXfY4nAWsCB0bE+RXbG/9OD1Rsm1Z6vR6wBqlrcBkRMUvSjEJ5sDRQ7Ez6XHYCLgBuILVedpZ0AanrcErFj6H/VJy3M/N6GNYhBx9rxn3AByW9NSIersqQB3I3Ax6NiPmNZNJ/4GY0k6+jyQadncfNHv98YE9S6+RGYBZpvGIP0thO3b0EHY0VVA6wNysiHpP0APAeSYOLLT7SWFBHx7sOOLGr8iV9EziF1GI8nTTB4UVSt+E4qj/HS0ljTd+WdHVEzCxtb9Sh6t+y/Hm0+vn8jfTjamdJ15LGta7Pgepu0rjP/aRWcHm8Bzqf2bhc/1YDnYOPNWMCaTD+C8BRHeQ5iNTfP6GQ9iDpmpL1u2j9PETq4nhNRCzqJN8sAEnrRMSsQvomHeQH2LKTtOm5vKGkwHNORBxazChp14r9W30C43RgM0mrFFs/OWhuSnUrpzetmtdrkLrOOvMMaZLIWuVWVAc+AzwK7F5sJUj6cCf7XE+6bmwScIOkXSOiOJHgn3m9Ba8OAFuUXj8NPEdqdS1D0tqkiRKvdJ1FxMuSbiK1eHYlBcqb8+Y/kiadNFpRVcHHusljPtaMXwEPA9+o+hKRtA2pP/0Z0qBuQ6M//qTcF1/cR6V8awPHVJRdzNfoFioHhG91UveRuX7F8sbkl5fmdePX6zK/VHN//xcqymy07Nbp5LhFl5K6g8plfTGnT2yynOUmaUtSwHuiie7QxpjbecD2kj5alUfS6wovXyYFZxW2r0LHP1oax/kT8GHSZIkpkjYobL6WNOHhsNJU6TcAn6qo7xXAuyrO1aNI33nlz/t6UhfZ14BbC+NK15NaQp8DnoyIchefLQe3fKxLEbFA0t7AVcAkSb8nzfRZDGxP+rU7H9g3Ip4s7HexpAtJraK35fGG2aQvvw8BW+Wsp5GmRB8jaTtSl81C0q/XzVgabC4gTUE+S9LmpL713YHGdOIqdwPXSzoDmAHsk8s7J/LdGCLiOUnXAJ+W9AKpK2Zj4BDStOty3/2teX2ipPNyXe+LiPs6qMNJpF/QZ+RAeBdp2vHnSa3DkzrYb3ltKunT+e9VgbeQ3tMqwHdaKOf/Ae8HLpJ0Een9v0j6jPYgDdCPznkvIf0Q+YOkCaRxwE+R7obRqYi4WdJupPNsiqSdI+I/ETFb0rHAT4A/S/otaQLCocA/SJ9l0dGkSRaXKl0A/TCp5f4JUpfq+FL+RotmC+DCQvqNpHN8S9K5Zz2p3dPtvPSfhTSL7X9I3RbzSb9GHyB9KWzQwT4rkaYU30kaU3iOdE3McaV8g0hfclNJX+ZzSEGgPD35PcAtOc+zpDGaoXQ81XoscEA+5iLSVOPjKU0HJgWwX5HGKBaSpo1/kYqp0zn/GFJ32UuN4+T0jvKvB/wCeDzv8zhpavG6pXyV++dtU0hjal39OzXee3FZQuq2vBoYWbHPMp9fxfbVgWPz5/JC/ne8n3RN0HsK+VYmXU/zcP68HyMF1y2Kn1POOyKnjS4d6925rv8A3lhIP4QUrBfl8o8gXatV9Xm/mTTF/2lSoJxO+uGyesV7E6nVHsAHSttuyelfaPbfo3jutfv/bF9elD8sswFF0nBSq+V7ETG2rZUxs1fxmI+ZmdXOwcfMzGrn4GNmZrXzmI+ZmdXOU627IGkxqYU4r911MTPrR9YClkREZZxxy6cLkpYAGjJkSJd5zcwsmTt3LqR7+VYO77jl07V5Q4YMGTJnTvlpyWZm1pGhQ4cyd+7cDnuMPOHAzMxq5+BjZma1c/AxM7PaOfiYmVntHHzMzKx2Dj5mZlY7Bx8zM6udg4+ZmdWubReZSnofcBzpaZbDSA+nuhc4OSL+UMg3BdixoogLI+KTpTLXID0w6mOkB4xNBY6PiMt74z20Yo9jftruKlgfNPkH32h3Fczaop13OFib9FTC3wBP5tdfAiZLOiAiflfI+w/So5iLnq0ocyKwDekpk4+Qngo5UdJeETG5Z6tvZmbd1bbgExGTgEnFNElXkILGl4Bi8Hk+Im7trDxJewC7AvtFxMScdgOwCXAK4OBjZtZH9Kkxn4hYDMwlPeO+VaPyvpcVygtgPLC5pC17pJJmZrbc2h58JK0kaRVJG0r6HrApUB4g2UzSbEmLJf1D0jGSVi3l2QqYFhFLSun3FLabmVkf0Bfuan0RsH/+ex7w8Yi4qrD9JlIX3APAGsC+wPHAtqTWTsMw4KGK8mcVtr+KpK5uV+1nKZiZ9bC+EHzGACcCGwCfAi6SdHBEXAAQEceW8l8p6SngaEk7RMTNhW2dPZzIDy4yM+sj2t7tFhHTI+JvEXFFRBwAXA2cIamzuo3P6/8upM2kunWzTl7PqthGRAztbCGNI5mZWQ9qe/Cp8FfStOv1OsnTqHdxfGcqsEVF0No6r+/rmeqZmdny6lPBR5KAEcAcUkumI41rforTryeSLizdqyLvgxExrYeqaWZmy6mddzg4D3gMuIN0wejrgYOBnYGvRsRiSR8AjgJ+n/MOBvYBPgtcHBG3FIqcDNwAnC1pGOl6oYOBHfI+ZmbWR7RzwsFfgAOBQ0gzyuYCtwN7R8QVOc+MvD4eWJfUzfYg8E3gZ8XCIiIk7Uu6vc4JpFbQNNJFp1dgZmZ9RjvvcPBz4Odd5HkY+EgLZc4DDs+LmZn1UX1qzMfMzFYMDj5mZlY7Bx8zM6udg4+ZmdXOwcfMzGrn4GNmZrVz8DEzs9o5+JiZWe0cfMzMrHYOPmZmVjsHHzMzq52Dj5mZ1c7Bx8zMaufgY2ZmtXPwMTOz2jn4mJlZ7doWfCS9T9LVkp6QtFDSM5Kul7R7Rd6Rkm6V9IKkpyWdKWloRb41JJ0uaUbOe7ukvet5R2Zm1qx2tnzWJj0S+1vAh4EvAYuAyZI+2cgkaQQwGfg3sBdwJLA3MElSuf4TSY/mPob0BNRpwERJe/TqOzEzs5a08zHak4BJxTRJVwCPkALR73LyScB9wCciYknONwO4BvgYcGFO2wPYFdgvIibmtBuATYBTSAHMzMz6gD415hMRi4G5wEsAkjYCtgPOaQSenO9a4Alg/8Luo/K+lxXyBTAe2FzSlr3+BszMrCltDz6SVpK0iqQNJX0P2BT4ad68VV7fV7HrvYXtjbzTikEqu6dUlpmZtVnbut0KLmJpC2Ye8PGIuCq/HpbXsyr2mwVsU3g9DHiog3zFspYhaU4X9RvSxXYzM2tR21s+wBhge9IkgsnARZIOKOWJDvYtp3eUr6ttZmZWo7a3fCJiOjA9v7wiTzo4Q9KFwMycXtVqWYdlW0QzO8kH1a0nIuJVU7aLcsvIrR8zsx7UF1o+ZX8lTcNeD5ia06rGa7Zm2bGgqcAWFdOvt87rqnEjMzNrgz4VfCQJGAHMAWZGxOPA7cCBxaAiaRdgI2BCYfeJwFDStUBFBwEPRsS0Xqy6mZm1oG3dbpLOAx4D7gCeBV4PHAzsDHw1T7sG+A7pmp4LJJ0FbAicCNwGXFwocjJwA3C2pGGk64UOBnYA9un1N2RmZk1r55jPX0h3IziENKYyl9TK2TsirmhkiojrJe0JfI90UepzwKXAmIh4uZAvJO0LnJCXoaQ7HOxXLM/MzNqvnXc4+Dnw8ybzXgVc1US+ecDheTEzsz6qT435mJnZisHBx8zMaufgY2ZmtXPwMTOz2jn4mJlZ7Rx8zMysdg4+ZmZWOwcfMzOrnYOPmZnVzsHHzMxq5+BjZma1c/AxM7PaOfiYmVntHHzMzKx2Dj5mZlY7Bx8zM6td24KPpF0kjZP0oKTnJT0uaYKkrUv5pkiKiuV3FWWuIel0STMkvSDpdkl71/euzMysGe18jPahwDDgp8D9wPrAGOBvkkZExK2FvP8ADirt/2xFmROBbXI5jwCjgYmS9oqIyT1bfTMz6652Bp/DIuLpYoKka0hB49vA/oVNz5eC0atI2gPYFdgvIibmtBuATYBTAAcfM7M+om3dbuXAk9PmkFo5b+hGkaOAucBlhfICGA9sLmnLblbVzMx6WJ+acCBpPWAr4L7Sps0kzZa0WNI/JB0jadVSnq2AaRGxpJR+T2F71THndLYAQ5b3fZmZ2bLa2e22DEkCziIFxJ8UNt0E/A54AFgD2Bc4HtiW1NppGAY8VFH0rMJ2MzPrA/pM8AFOJgWWz0bE/Y3EiDi2lO9KSU8BR0vaISJuLmyLTsqv3BYRQzurlFs/ZmY9r090u0n6IfAt4OsRMa6JXcbn9X8X0mZS3bpZJ69nVWwzM7M2aHvwkXQ8cDQwJiJOb3K3Rr2L4ztTgS0kld9T47qh8jiSmZm1SVuDj6TjgGOBYyPi5BZ2bVzzU5x+PREYCuxVkffBiJjW7YqamVmPatuYj6RvAWOBK4HrJL23sHlRRNwl6QPAUcDvgceAwcA+wGeBiyPilsI+k4EbgLMlDSNdL3QwsEPex8zM+oh2TjhotFD2zEvRY8BwYEZ+fTywLqmb7UHgm8DPijtEREjaFzghL0OBaaSLTq/ohfqbmVk3tS34RMSIJvI8DHykhTLnAYfnxczM+qi2TzgwM7MVj4OPmZnVzsHHzMxq5+BjZma1ayn4SJre2cPZJO0pafryV8vMzAayVls+w0k39+zIYGDjbtfGzMxWCD3d7bY+8HwPl2lmZgNMl9f5SPogMKKQtJ+kt1ZkXQf4JPD3nqmamZkNVM1cZLoTcFz+O4D98lLlYeAbPVAvMzMbwJoJPqcC4wAB04EjKDyqOgtgfkT4sQVmZtalLoNPRMwF5gJI2gm4PyKe7u2KmZnZwNXSvd0i4k+9VREzM1txtHxjUUlvAg4B3kZ6cqhKWSIidumBupmZ2QDVUvCRtDvpoW2rAc/hR1ObmVk3tNry+RHwLLBvRNzeC/UxM7MVQKsXmW4OnOrAY2Zmy6PV4PMM8GJPHFjSLpLGSXpQ0vOSHpc0QdLWFXlHSrpV0guSnpZ0pqShFfnWkHS6pBk57+2d3YvOzMzao9Xgcw6wfw8d+1DgTcBPgd1Jj8Z+E/A3Se9tZJI0ApgM/Jv06O0jgb2BSZLK9Z8IHAgcQ3oC6jRgoqQ9eqjOZmbWA1od8xkH7CTpMuA04BHg5XKmiPhXE2UdVr5eSNI1ucxvszTInQTcB3wiIpbkfDOAa4CPARfmtD2AXYH9ImJiTrsB2AQ4hRTAzKzk25df2+4qWB908t4je7X8VoPPA6S7GQjYs5N8K3dVUNWFqhExR9I/gDcASNoI2A74ViPw5HzXSnqCFKAuzMmjSBfDXlbIF5LGA2dJ2jIipnVVLzMz632tBp/jScGnV0haD9gKuCAnbZXX91Vkv7ewvZF3WjFIZfcUt1ccc04X1RrSxXYzM2tRq3c4GNtL9UCSgLNI41A/ycnD8rrqeqJZwDaF18OAhzrIVyzLzMzarOU7HPSik4F9gc9GxP2lbR21tsrpnbXKKrdFxKtmzRXllpFbP2ZmPajVOxx8sJl8EXFji+X+EPgW8PWIGFfYNDOvq1ot67Bsi2hmJ/nAd2MwM+szWm35TKG5MZ8uJxw0SDoeOBoYExGnlzZPzeutSLPbirYG/lzKu7+klUrjPo3rhqrGjczMrA1aDT6f7aCMtwCjgUeBM5stTNJxwLHAsRFxcnl7RDwu6XbgQEmnFqZa7wJsBEwoZJ8IfJ50LVDxeUMHAQ96ppuZWd/R6oSD8R1tk3QycGezZUn6FjAWuBK4rnhhKbAoIu7Kf3+H1Oq5QNJZwIbAicBtwMWFfSYDNwBnSxpGul7oYGAHYJ9m62VmZr2vxyYcRMRsSb8CxgAdBqmCvfJ6T159zdBjwPBc7vWS9gS+B0wi3U37UlI33SsXuOZrevYFTsjLUNLU6v0i4oruvi8zM+t5PT3bbTbpjgJdiogRzRYaEVcBVzWRbx5weF7MzKyPavXebh2SNAj4DPBkT5VpZmYDU6tTrX/dwaZ1gP8G1iPdl83MzKxDrXa7je4gfRbp7gLfiIjzl6tGZmY24LU6263HuunMzGzF5WBiZma169ZsN0lrkZ6d05jZNh24NiKe66mKmZnZwNVy8JH0BdLD2dYgPdcH0i135kv6ZkSc3YP1MzOzAajV2W57kx57MB34H5beL+3twFdJD2172hd1mplZZ1pt+YwB7gfeExHzC+l/lPQb4FbS7XAcfMzMrEOtTjj4L2BcKfAAkMd7xuc8ZmZmHerObDd1sq3XHrFtZmYDR6vB527gYEmDyxskrUG6CPXuHqiXmZkNYK2O+fyE9AydOyWdTrprNCydcPBWYL+eq56ZmQ1Erd7h4FJJh5Oep/MzlnazCVgAHB4Rl3W0v5mZGXTjOp+I+IWk84GRwJtJgeefpItM5/Zw/czMbADq1u11ImJORFwcESdFxIkRcUl3Ao+kN0g6TdLNkuZLCkkjKvI9mreVlx9X5F1f0nhJz0paIOkmSe/rzvs0M7Pe0WXwkbSypB9LOrSLfF+WdIKkzmbDlb0VOACYD/yxi7w3kh7bUFzOKNVhUC5nR9IY1CjSk0//KOldLdTLzMx6UTPdbp8mPaNn+y7y/RX4OemuB80+VuHGiHgdQH4E9t6d5J0dEbd2Ud7nSJMfto2IO3O5fyJdGHsCsHuT9TIzs17UTLfbx4HrIuKOzjLl7VeTWjJNiYglzeZt0ijg3kbgycdYBFwAjJS0Zg8fz8zMuqGZ4LMtcF2T5d0AvLv71enUznlc6EVJ9+ZuvnIX31Ysvd9c0T3AysAWvVQ3MzNrQTPdbusATzdZ3jM5f0+7EriddEPTYaSuwF8AmwLfKOQbRnqqatmswvZlSJrTxbGHtFpZMzPrXDPB5zlg3SbLG0aaPNCjIuLwUtJESecBX5N0akQ8VszeWVE9XTczM2tdM91uU4HdmixvZM5fh/Gk+hcnQsykonXD0tbYq1pFETG0swXwtUtmZj2smeAzAdhV0j6dZcrP+hkJ/L4nKtaERt2LkxamksZ9yrYGXgYe6O1KmZlZ15oJPmcCDwMXSfqhpOHFjZKGS/oBcBHwUM5fh4NIgedvhbSJwNaS3lmo32qkGXjXRcS8mupmZmad6HLMJyJekPQR0qD/d4GjJD0HzAPWBNYi3WLnQWDPiFjYSgUkfTT/uV1e7yhpXWBBRPxB0gHAPsAk4HFSF9qngX2BkyPiX4XizgYOAyZI+i6pm+3rwIakKeNmZtYHNHVvt4h4OLcmvgh8lHQh5wakAHQTqavtVxHxQjfqcHHp9di8fgwYDjxCmvBwEmk8ZxFwLzA6IsaX6rlQ0s7AycD/AoOAO4GRXV2nZGZm9Wn6xqK5RfOzvPSYiOj0djz5rga7tlDek8BnlrdeZmbWe7p1Y1EzM7Pl4eBjZma1c/AxM7PaOfiYmVntHHzMzKx2Dj5mZlY7Bx8zM6udg4+ZmdXOwcfMzGrn4GNmZrVz8DEzs9o5+JiZWe0cfMzMrHYOPmZmVjsHHzMzq52Dj5mZ1a6twUfSGySdJulmSfMlhaQRHeT9lKS7JS2U9LikH0saVJFvfUnjJT0raYGkmyS9r9ffjJmZNa3dLZ+3AgcA84E/dpRJ0qeB84BbgN2BE4DDgHGlfINyOTsCXwVGAc8Bf5T0rp6vvpmZdUfTj9HuJTdGxOsAJO0L7F3OIGll4GTg8oj4Sk6+QdJLwFmSfhoRt+X0zwFvB7aNiDvz/n8C7icFrN179d2YmVlT2tryiYglTWR7L7ABML6Ufh7wErB/IW0UcG8j8ORjLAIuAEZKWnP5amxmZj2h3d1uzdgqr+8rJkbE88A/C9sbeZfJl90DrAxs0RsVNDOz1rS7260Zw/J6VsW2WYXtjbwd5aOUFwBJc7o4/pCuKmhmZq3pDy2fhmgyvaN8XW0zM7Oa9IeWz8y8Hlb4u2Ed4JFS3le1bnI+qGgVRcTQzg6eW0Zu/ZiZ9aD+0PKZmtfFsR0krQ68hWXHeKaW82VbAy8DD/RGBc3MrDX9IfjcCjwJfKaUfgCwKjChkDYR2FrSOxsJklbLea+LiHm9XFczM2tC27vdJH00/7ldXu8oaV1gQUT8ISIWSzoKGCfp58AlpFlrJwKXRMStheLOJl18OkHSd0ndbF8HNgQ+XsPbMTOzJrQ9+AAXl16PzevHgOEAETFe0svAd4AvAs8C/wccV9wxIhZK2pl0Uer/AoOAO4GREXFHL9XfzMxa1PbgExFqMt+5wLlN5KvqojMzsz6kP4z5mJnZAOPgY2ZmtXPwMTOz2jn4mJlZ7Rx8zMysdg4+ZmZWOwcfMzOrnYOPmZnVzsHHzMxq5+BjZma1c/AxM7PaOfiYmVntHHzMzKx2Dj5mZlY7Bx8zM6udg4+ZmdWuXwQfSSMkRQfL5qW8IyXdKukFSU9LOlPS0HbV3czMXq3tTzJt0XeAG0tpjzb+kDQCmAxcChwDbAicCGwl6QMRsaSeapqZWWf6W/B5KCJu7WT7ScB9wCcagUbSDOAa4GPAhb1fRTMz60q/6HZrhqSNgO2Ac4otnIi4FngC2L9ddTMzs2X1t+BzpqTFkuZKulLStoVtW+X1fRX73VvYbmZmbdZfut3mAqcCU4BZwBbAUcAtknaMiNuAYTnvrIr9ZwHbVBUsaU4Xxx7SnQqbmVnH+kXwiYi7gLsKSTdJupzUyvkhsGsxe0fF9FL1zMysRf0i+FSJiCclXQPsnZNm5vWwiuzrUN0iIiI6nYadW0Zu/ZiZ9aD+NuZTthJLWzRT87pqbGdrqseCzMysDfpt8JG0ATASuBUgIh4HbgcOlLRSId8uwEbAhHbU08zMXq1fdLtJOg+YDtwJzAY2J11w+lrgu4Ws3yFd03OBpLNYepHpbcDFddbZzMw61i+CD2mq9CeBrwKDSeM7U4AfRMQr3WkRcb2kPYHvAZOA50h3OxgTES/XXWkzM6vWL4JPRJTgraMAAAvvSURBVPwY+HGTea8CrurdGpmZ2fLot2M+ZmbWfzn4mJlZ7Rx8zMysdg4+ZmZWOwcfMzOrnYOPmZnVzsHHzMxq5+BjZma1c/AxM7PaOfiYmVntHHzMzKx2Dj5mZlY7Bx8zM6udg4+ZmdXOwcfMzGrn4GNmZrUbcMFH0hqSTpc0Q9ILkm6XtHe762VmZksNuOADTAQOBI4BPgJMAyZK2qOttTIzs1f0i8doNysHmF2B/SJiYk67AdgEOAWY3MbqmZlZNtBaPqOAucBljYSICGA8sLmkLdtVMTMzW0rpu3lgkPQXUrx5Xyn9PcCtwCci4qLStjldFDsEYMiQIctVtwULFy3X/jYwDR70mnZXgYWLF7e7CtYHDVpl+TrG5s6dC+n7uLKRM6C63YBhwEMV6bMK27sj5s6dO6+b+9qyGlF8bltr0UfMXbSw3VWwpXxuFvTAz+W1gCUdbRxowQegs6bcq7ZFxNBerIuVNFqa/tytr/G5Wa+BNuYzk+rWzTp5Patim5mZ1WygBZ+pwBaSyu9r67y+r+b6mJlZhYEWfCYCQ4G9SukHAQ9GxLT6q2RmZmUDbcxnMnADcLakYcAjwMHADsA+7ayYmZktNaCCT0SEpH2BE/IylHSHg/0i4oq2Vs7MzF4xoK7zsb7PM4qsr/K5Wa+BNuZjZmb9gFs+ZmZWO7d8zMysdg4+ZmZWOwcfMzOrnYOP9QhJ75U0VtKrZgpJCkmntqNe1r/lc6rlgWlJj0q6tDfqZD3Dwcd6ynuB40jXVpmZdcrBxwYESe1/MI6tUHrinFuRz1sHH2uKpJ0k/UnSgrxMkbRj3jYW+GnO+kjuZgtJw0tljJb0gKTnJd0tac+K42wh6WJJz0paJOkeSZ+qKCckjZR0rqRZwAO98b6tb5F0mKSbJD0jab6kv0v6csXNhBv5PynpfkkL87l3YEWed0qaJGmupBck/U3SqFKeTs85n7etG1C317HeIWkX4GrS02APysnfAq6TtBvwK9KDuI4A9gNm5DwzCsXsQ+qaOxaYD4wBJkraLCKm5+O8A7iF9B/yq6RHZHwMOE/SayPi7FLVfgP8HvgE8Noee8PWl20CnAM8CrwMbA/8BNiQdG4VvRt4B6k7eDZwCHCupJcaTzSW9HbgZuBfwKGkc/NLwARJB0XEOaUyX3XO+bztpojw4qXTBbgNeBwYVEh7LfAf4C/59RGkh/UNr9g/gCeAwYW09UlfHt8tpF1Duhns4NL+E4EngZXy69G5zF+2+7Px0uvn3tj0NVW5bSXSD+hjSM/qUmHbo6SnaG5Ryj+VdIf7RtqFwAJg/UKagDvyOdvlOefztnuLu92sU5IGA9sBl0TEK898jogXgIuB7SWt3kRR10fEgsL+TwFPAxvn4wwCdgImAIskrdJYSHcrXx/YvFTmxO6/M+uPJG0jaYKk/wAv5eX7wNrA60rZ746I+xsvImIJcBGwqaQNcvJOwLX5fGzkC+BcUmtq01KZy5xzPm+7z8HHurI26ZfgkxXbZpDOobWbKGdmRdoiYFD+exjpV+w3Wfql0ljOynnWrTi+rSDyGOJNwBuBI4EPkH4Y/TBnKXdhVZ2zjSDTeOLxOh3km1HKV06nsN3nbTd4zMe6MpvUVbBBxbbXk7o2ZvfQcZaQ+sP/r4M8D5Ze+8aEK5Z9gNWB/SPiX41ESR09q6vqnF0/r2cW1h2d28V8DeVzzudtNzn4WKciYoGk24CPSjqq0fWWuxv2B26LiOclLcq7dGsANZfxJ+CdwN8jYnFP1N8GlMaX9ouNhHwefqaD/O+QtEWj6y3PiPs48FBENFo71wN7S1q/0fUmScCnSGM+5cCxbIV83nabg48142jSoOp1kk4hdcN9k9TH3phOel9eHy7pXFK3wz0R8WK5sE4cQepWmSLpTNIMpKGkPvPtI2L/5X4n1p9dSzqvzpd0ErAmadblSx3knwFcKakx2+1QYEvSLLOG44E9geslfZ+ls93eDRyYx3+64vO2GzzmY12KiBuAkaTZaeeSprouBnaJiBtznpuAH5OmWt8M/I00YNvKce4BtgWmAyeSvmzOBD4MXNcT78X6r9yC+RhpDGUicDJwJem8q3I78P/yMoE0eeAzkadZF8rcgTQ77izgElI33KiIOL/Jevm87QY/z8fMzGrnlo+ZmdXOwcfMzGrn4GNmZrVz8DEzs9o5+JiZWe0cfMzMrHYOPmZmVjsHH7MmSFpd0hH5QWazJL0k6SlJk/NDwrp1t5C87xE9XV+zvs4XmZp1QdJbgUmkK+SvI91q6FnS7YV2zcvJETGmG2VPIT0DaXhP1desP/C93cw6Iem1pFu4bEK6m/KEUpYTJW1HurX/CiHfeHNwRMxvd12s/3K3m1nnvgBsBpxSEXgAiIi/RcQvGq8l7SbpQknTJb0gaY6kayTtWNxP0qPAjsDGkqKwjCjkeZukcyTNkPSipEclnZwf8kepvB0l/SUf80lJp0l6ey5zbCnvYEk/kvRPSYty/t9K2riUb0Tef7SkwyRNAxYCR0q6XNICSWtV1GX7vF/50dZmgFs+Zl35aF6f1WmuZY0mPaTst6THj29ECmJ/lLRTvgkrpLsh/4h0o8xvFPZvPAJgW9It/+eQblT5BPBfwNeA90vaMSJeynl3IHUHzibdaHMO6fEB7y9XLo9PXZ23XQKcArwN+DKwm6R3R8Tjpd2OID047Zekh6/9m3Tjzr2AA3L9ij5Hes7NuC4+K1tRtfs53l689OWF9DCxeS3uM7gibX3SONHkUvoU4NEOyrkbeABYs5Q+ivRsm9GFtL+SWiSbFNJWBW7JeccW0r+Y004qlfuRnH5OIW1ETpsFvK6Uf2XS4wP+WkpfHZhbfq9evBQXd7uZdW4tYF4rO0TEgsbfktaQNIz0OIrbgPc0U4akrYF3AOcDr5G0bmMhPbJiAbBbzrs+aczpsoiYXqjHS8BpFcWPIrVKflSq9yTg78A++cFrRb+NiKdL+V8Gfg1sl+vb8FHS53Z2M+/VVkwOPmadm0d6aFnTJL1F0u8kzQaeI7V4ngH2ANZuspgt8vp7ed/i8jQwmKWPhH5zXlc9dbMq7c3AfyKi6vHnU0nvd91S+kMd1PNsUmD9fCHt87mOl3ewj5nHfMy6cB/wQUmbFFsVHZG0BnAjKTicCtxLCkBLgO8COzd5XOX1KcBVHeSZXcrbrFbzAzxflRgR/5Z0FfBpSWOANwEfBH6SW15mlRx8zDr3e9KX6RdIjxPvyi6kJ7h+LiJ+U9wg6QcV+Tu60O4fef1yRHT1NMxGUNysYltV2j+BD0saGhFzStu2JLX2nu3imEVnkcaL9gXeldPc5WadcrebWed+Req6OlLSPlUZJG0r6Sv55cuN5FKe3age75kPrJ2vnSm6i9TqOlTSJhXHXEXSOgAR8RRp5tk+xbySVgW+XnHMS0n/948qlbk7KXhcHhFLqt5rByaRZuIdAhwM3BIRD7Swv62A3PIx60REPC9pT9IX7KWSrgGuJc2CWw/YCfgQcFLe5WbSVORTJA0nTbV+J/AZUhdccWAe4FZgT+Dnkv5MCl7XR8TTkj5Dmmp9j6Rfk8ZjVgfeCuxH6sYbl8s5Mtfrz5J+QZpt9nFgtcZbKRxzHClIfCfX8cZc5leAp2iuhVf8jF6W9BvgmJzU0v62gmr3dDsvXvrDQvrS/wYpuMwGXiJ9UU8iBZaVC3nfQRqnaUw4mAJ8gPSlH6VyB5O6qJ4iBZ4ARhS2bwz8H/Ao8CIp6N1Bmqn2xlJZO5OC2cJc3mmk1lYAYyqO+yNSl92LpAkC5wAbl/KNoDStu4PPZ+Nc/3lUTDX34qW8+N5uZgOYpP1JF5IeEBG/68XjvJ504enZEXFIbx3HBg6P+ZgNAEoGldJWBb4JLCa1vnrTl0kXnbZyJwhbgXnMx2xgeA3wmKTzSBMkhgGfIHUBnhgRT/bGQSV9kjS9+tvA1RFxR28cxwYed7uZDQCSVibdd21H4PWk2XYPAmdF4aanvXDcII0x3QR8NiKe6K1j2cDi4GNmZrXzmI+ZmdXOwcfMzGrn4GNmZrVz8DEzs9o5+JiZWe0cfMzMrHb/H5rrY7Q80705AAAAAElFTkSuQmCC\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"category_bar_plot(occupation_df, \"Occupation Breakdown\", 0)"
]
},
{
"cell_type": "code",
"execution_count": 125,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" count \n",
" category \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" 298 \n",
" yes \n",
" \n",
" \n",
" 1 \n",
" 254 \n",
" no \n",
" \n",
" \n",
" 2 \n",
" 14 \n",
" unknown \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" count category\n",
"0 298 yes\n",
"1 254 no\n",
"2 14 unknown"
]
},
"execution_count": 125,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"prior_record_df = get_value_counts(death_row, \"prior_record\")\n",
"prior_record_df"
]
},
{
"cell_type": "code",
"execution_count": 126,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 126,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ8AAAEtCAYAAADX4G3qAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deZgdRb3/8feHTSRAAgFB8EpYVBDwqogrQoAEZU9AEQUhoP5AAQEXFhUJXAUBuSLgQq5oEEEBIeyy78gOsoVNMCgIRBKSQNiT7++PqkM6nZ6ZcyYzfWb5vJ6nn55TXV1dZ5nzPVVd3aWIwMzMrE6LtLsCZmY2+Dj4mJlZ7Rx8zMysdg4+ZmZWOwcfMzOrnYOPmZnVzsHHepWkKZKua3c9BiJJIySFpPHtrktPkTQ+P6cRC1HGREm+hqSPc/CxBUgamb8AistLku6StL+kRdtdx84UvsAay1xJ0yVdLWm7dtevHSSNq3hPZ0t6VNKJkv6r3XW0wWWxdlfA+rQ/ApcCAlYBxgEnAOsC/6/JMt4HtOtX6A+Bf5A+52sCewEXSNo1Is5oU53a7UTgjvz3MsCGwD7AWEnvj4gX21YzG1QcfKwzd0fEHxoPJP0KeAj4qqTDIuK5qp0kLQ4sGhGvRsRrPV0pScs0+SX5l4i4s7Dfn4G/AYcAfT74tPA8W3FjRPy58PhXkmYABwKjgEmd1EfAkIh4qYfrZIOQu92saRExC7iF1BJaA+br4lpX0v9Kegp4Ffh43l55zkfSGEk35+68l/Lf21fkmyLpOkkfknS5pJnAfd2s/73A88B7qrZL+oKkmyS9KOllSbdJ+lwHeTeVdImkaZJelfSEpFMlrVDIs5ikgyVNznmmSZokaf1SWW+du8l1uEvSK8BJhTwb5dfoFUnPSToZWLo7r0OFf+f164XjNbpex0naR9Jk0vv6nUKe90g6XdIzkl7P79VxkoaUnt/akn4p6cHCa3uXpK81UzlJi0r6de4+PaiQvmQ+3r/z63K7pC06KWdjSVdKmpnz3y3pK6U8jc/z6oW0d+a0OZKWL6Svk9OLdQqlc06fkHR97tp8XtJvJPXU+zUguOVjTcu/fNfKD58vbT4DeAU4ntTN9kwn5XwD+AXwMPCjnH8ccL6kvSJiQmmXdwPXAOcA59LNL11JywHLAVMrtv0I+D5wGXAYMBcYC5wjad+I+EUh717Ar4Cn8/rJXMdtgXcx77U5A9gJuDLnW5nUxXWLpE9HxD2laowBvpnz/hqYlY/3MeAq4EXgGGAGsDPw+268DMsUAuTSwEeA7wJ/J73GZQcAw4H/A54F/pXrtEHOPwM4Jb8W/53r/ylJm0TEG7mMkcDGwMWkbtAhwOeBCZJWiIijO6qspLeTun+3AnYrtsRz+hjgIuByUtfqefkY5XK2JbXqniV9Rl8kvYa/kbRGRHw/Z70GOBzYDDg1p21O+jwsAmxK+gyS8zT2Kfpgfq6/A87Mz/8ruYxmu6sHvojw4mW+hfTPEqRzJisAKwIfIH0BBXBLIe/4nHYdsFhFWVOA6wqPlwNeIn3ZLVtIXxZ4nPSlMKy0fwBfbaH+jTptnuu/MvAp4Nqcfmwp/4dz+lEVZZ1PCgLL5MfvAl4DJhfrWci/SF6PzmWeBaiw/QPAm6Tur0baiJz3DWCdijL/SmqVvLeQtgRwe95vfBOvybict2q5CVi5g8/AdOAdFeXdS/rxsEwpfWzeb1whbUjV65Q/MzOBxSveuxHA8sDN+TOxRWn/LXK+iaX0MY3nVUhblPQDYQawSuk1vBmYA7ynkDYbOKOQ77fAXfk9/2Uh/VzghcZ7ntOCFGQ+XqrXJfn9Xbrd/999ZXG3m3XmCOA/pJbCvcCewIWkf/CyEyLizSbKHE365XtipG484K0uvZNIv8ZHlfaZTvoV2aqrSPV/hvQF+wlSy+F7pXy7kL40TpO0QnEhPd9l8r6QfrEvARwRETPKB4yIufnPsXn948jfPnn7faRfxRtJWrG0+yUR8VAxQdI78rEviIhHC+W8Dvysideg7EjSezCa9D7+DykgXpJbhmW/j4j5Woq52/ADpF/1byu9XjeRvrzf6v6KiNmFfZeUNJwUWK4g/ehYu+K4q5ECw5rAJhFxRWl74zN4XDExIs4HHinl3YDUMv1tRPy7kPf1vP8iwPaFtJtJLZyGTYGr87J5fh4CNgGuL7znDbdExK2ltGtIPU0jKp7roORuN+vMBFJXV5C+UB6NiOkd5H20g/SyRl/6gxXbHsjrNUrpj0fEnCbLL9on12sp0hfIN4HlKoLkOqTzWA93UtZKed04X1TuMitbnfQL+KGKbQ+QvuxWJwXHhqrXsPFaVNVtchd1qHJ/RFxVeHyBpAeBPwEHkwZjFFXVaZ28PiIvVRqvF/lcx3hSF2TVkO6qoHcR6fvpAxHx94rta5Be36r6PUQaZdnQ6mfuGmC0pHVIrdwROe3twL6SViX1BgynuqvyiYq0aXk9vGLboOTgY515rPRF1ZmXm8ynbtSj2bLLbo95o90ulPQccLSkeyLi16U6BbAlqQumyoOFvND18PGeep6dHa87x6hyeV5vVrGtszodTzpHVuWFwt9nAtuQfszcQGrJvkk6j3Mg1QOfziQNjT9M0h4VrYvOnnt5W6uvUyOgbEYKPm8AN5JavHOZ151bzFvU2Q+lnnrP+j0HH6vb43m9Lqkbo+j9eV31y7EnHE868fsjSWcWuv0eAz4L/LPc7VWh0aXzobxfRx4HPkNqJZRH5zWe5wInxjsoB+a1Noqq0rpj8bxepsn8jec9p6sfJ5KGkQLP6RGxd2lbuXu16Cek84LHAYtJ2q3U+n2c1LX3XhZs0ZS78YqfubKqz9xdpHNRm5OCz22563C2pHty+vKk7uiq1pQ1wed8rG5Xkrrw9pP01pdd/ns/0mCEK3vjwJFGXx1F6vr4ZmHT6Xl9lCru3pDPuzT8mXTy/3BJy1bkbfyyPT+vDy2kIWk9YDvgpoj4T3n/ijpPBW4Ftpf03kI5S5BaDT2hcf7kribz30PqrtpbUrmLtDHEvDEkuREwVMrzTuCrnR0kIn5KGm33JeBMScUfyxfk9XdL5Y5h/i43gLuBfwJ7SFq5kHfxvH8UyiMHuRtI53Q2Zf7WzTWk4LMxcG3xfJ61xi0fq1VEzMjXRfwCuE3SxLxpHGkY914RMbMXq3A6aRTftySdFBEzI+IOSYeTzl/8TdI5pGtf3kk6Wb0VqcuFiHhK0gG5/vdL+j1pJNWqpPM4ewJ/i4grJZ1NGs67nKSLmTfU+lXmD35d+RZpZNjNkn7BvKHW3fn//bSkJfPfS+XntwdpRN+PmykgIkLSl0lfxPdJ+i2pBbAU6T3cATiUNBLtRUlXALsqXbt0B2kwwV6kll+n50Ai4ueS3gBOJrWAdo6INyLickkXAbvnQHcZ8+5i8QCwXqGMOZL2JQ21vkPSBNIIui+Qrkc7KiLKrdhrSEPnG38X079bkW6tavdwOy99b2HeMNvvNJF3fM47ooPtUygMtS6kjyUNIZ6dl78CY5rdv8k6faSD7Xvl7YeX0rcmnf+YTupu+RfwF+DrFWVsQWqhzSQFkydIQ9GHF/IsRjqJ/1AubzqpRbR+qawRdDFkmvRL+6/5WFNJwW+9rvYr7D+OBYdYv0m6Pud0CsO4S5+BcZ2UuRrpeqQppNbgNFLr6Wjgvwr5VgB+QwrorwL3A18r1GlkV5+nnH8uqYWyRE57O6kr9VnSNWZ3kLo6J1IYal0oY5P8ns3K9biHDobwA+vnerzcOF5OH5KfawBrVey3wPDv0us/sup4g3FRfmHMzMxq43M+ZmZWOwcfMzOrnYOPmZnVzsHHzMxq56HWXZD0JilIz+oqr5mZvWVZYG5EVMYZj3brgqS5gIYOHdruqpiZ9RszZ86ENOS9sofNLZ+uzRo6dOjQGTMWuIGxmZl1YNiwYcycObPDHiOf8zEzs9q1LfhI+qTStMhPK00x/B9J10jasiLvaEm35qlvp0o6Jd+wsJxvaUknKk3r+4qkOyVtV88zMjOzZrWz5bMc6Q7B3ybdUfj/kW5BcqmknRuZJI0ELiXd6mRb0hzy25EmvyrXfxJpYrAfkG6VMhmYJGmrXn0mZmbWkj414CDftfYfpHlkNstpt5Nu+b5B5Dk9JI0mzYK4c0ScldO2Ik1Vu0NETMppIs3DMTwiunX7eUkzfM7HzKw1+ZzPzIhYoJcK+tg5n0gzTM4kTd5EnjFwQ9JcIHML+a4k3RBxx8LuY/O+xVujB3AasLak92NmZn1C24OPpEXy/B+rSDqCNDlUY276xm3RH6jY9f7C9kbeybHgjIf3FbabmVkf0BeGWp/NvBbMLGCniGhMzduY62N6xX7TgQ8XHg+nej736YXtC5DUVX+aL/AxM+thbW/5AAcBHyUNIrgUOFvSF0t5OjoxVU7v7ARW3zm5ZWY2yLW95RMRTzBv/vSL8uyEv5B0FmlyKqhutSzP/C2iaZ3kg+rWEx2dDGvILaOmWz+jvnFIs1ltIVz1y5+0uwpmthD6Qsun7HbSMOwVSVPzQvX5mvWZ/1zQg8A6FcOv18/rqvNGZmbWBn0q+OSh0SNJc9RPi4ingDuBXYpBRdLmwKrAeYXdJwHDmDfvesNuwCMRMbkXq25mZi1oW7ebpDOAJ0lzvj8PvBPYHdgM2C8PuwY4mHRNzx8lTQBWAY4BbgPOKRR5KXAtcKqk4aTrhXYHNgK27/UnZGZmTWvnOZ9bSHcj2It0TmUmqZWzXURc1MgUEddI2gY4gnQR6YvA+cBBETGnkC8kjQGOyssw0h0OdiiWZ2Zm7de24BMRJwMnN5n3MuCyJvLNAvbNi5mZ9VF96pyPmZkNDg4+ZmZWOwcfMzOrnYOPmZnVzsHHzMxq5+BjZma1c/AxM7PaOfiYmVntHHzMzKx2Dj5mZlY7Bx8zM6udg4+ZmdXOwcfMzGrn4GNmZrVz8DEzs9o5+JiZWe0cfMzMrHYOPmZmVjsHHzMzq52Dj5mZ1c7Bx8zMaufgY2ZmtWtb8JG0uaSJkh6R9LKkpySdJ2n9Ur7rJEXF8qeKMpeWdKKkZyS9IulOSdvV96zMzKwZi7Xx2HsDw4GfAQ8BKwEHAXdIGhkRtxbyPgbsVtr/+YoyJwEfzuX8AxgHTJK0bURc2rPVNzOz7mpn8NknIqYWEyRdQQoa3wV2LGx6uRSMFiBpK2AUsENETMpp1wJrAMcDDj5mZn1E24JPOfDktBmSHgPe1Y0ixwIzgQsK5YWk04AJkt4fEZO7XWEbFD4/8ap2V2HAO2fcqHZXwfqAPjXgQNKKwHrAA6VN75P0gqQ3JT0m6QeSFi/lWQ+YHBFzS+n3FbabmVkf0M5ut/lIEjCBFBB/Wth0I/An4GFgaWAMcCSwAam10zAceLSi6OmF7VXHndFF1YZ2VXczM2tNnwk+wHGkwLJHRDzUSIyIw0r5Lpb0HPA9SRtFxE2FbdFJ+Z1tMzOzGvWJbjdJPwa+DewfEROb2OW0vP5EIW0a1a2b5fN6esU2ImJYZwvpPJKZmfWgtgcfSUcC3wMOiogTm9ytUe/i+Z0HgXUklZ9T47qh8nkkMzNrk7YGH0mHA4cBh0XEcS3s2rjmpzj8ehIwDNi2Iu8jHulmZtZ3tO2cj6RvA+OBi4GrJH28sPm1iLhH0qeBQ4BzgSeBIcD2wB7AORFxc2GfS4FrgVMlDSddL7Q7sFHex8zM+oh2DjhotFC2yUvRk8AI4Jn8+EhgBVI32yPAt4CTijvka3rGAEflZRgwmXTR6UW9UH8zM+umdl5kOrKJPH8Htm6hzFnAvnkxM7M+qu0DDszMbPBx8DEzs9o5+JiZWe0cfMzMrHYOPmZmVjsHHzMzq52Dj5mZ1c7Bx8zMaufgY2ZmtXPwMTOz2jn4mJlZ7Rx8zMysdg4+ZmZWOwcfMzOrnYOPmZnVzsHHzMxq5+BjZma1c/AxM7PaOfiYmVntHHzMzKx2Dj5mZlY7Bx8zM6td24KPpM0lTZT0iKSXJT0l6TxJ61fkHS3pVkmvSJoq6RRJwyryLS3pREnP5Lx3StqunmdkZmbNamfLZ2/g3cDPgC2Bb+XHd0j6eCOTpJHApcC/gG2B7wDbAZdIKtd/ErAL8ANga2AyMEnSVr36TMzMrCWLtfHY+0TE1GKCpCuAfwDfBXbMyccCDwBfiIi5Od8zwBXA54GzctpWwChgh4iYlNOuBdYAjicFMDMz6wPa1vIpB56cNgN4DHgXgKRVgQ2B0xuBJ+e7EniaeQEKYCwwE7igkC+A04C1Jb2/F56GmZl1QztbPguQtCKwHvDHnLReXj9Qkf3+wvZG3snFIJXdV9xeccwZXVRraBfbzcysRX1mtJskARNIdfppTh6e19Mrdple2N7I21E+SnnNzKyN+lLL5zhgDLBHRDxU2hYd7FNO7yhfh9siYoFRc0W5ZeTWj5lZD+oTLR9JPwa+DewfERMLm6bldVWrZXnmb+lM6yQfVLeKzMysDdoefCQdCXwPOCgiTixtfjCv12NB6zP/uaAHgXUqhl83rhuqOm9kZmZt0NbgI+lw4DDgsIg4rrw9Ip4C7gR2KQYVSZsDqwLnFbJPAoaRrgUq2g14JCIWGGxgZmbt0bZzPpK+DYwHLgauKl5YCrwWEffkvw8mXdPzR0kTgFWAY4DbgHMK+1wKXAucKmk46Xqh3YGNgO178amYmVmL2jngoNFC2SYvRU8CIwAi4hpJ2wBHAJcALwLnk7rp5jR2iIiQNAY4Ki/DSEOrd4iIi3rxeZiZWYtaCj6SngAOiIgLO9i+DXBiRKzRVVkRMbLZ40bEZcBlTeSbBeybFzMz66NaPeczAli6k+1DgNW6XRszMxsUenrAwUrAyz1cppmZDTBddrtJ2hgYWUjaQdJaFVmXB3YG/tYzVTMzs4GqmXM+mwKH578D2CEvVf4OHNgD9TIzswGsmeBzAjAREPAEcACFO0dnAbwUEb6LgJmZdanL4BMRM0lTFSBpU+ChqukQzMzMmtXSUOuIuL63KmJmZoNHyxeZSno3sBfwHtKNPFXKEhGxeQ/UzczMBqhWLzLdknQPtSVIdxrwOR4zM2tZqy2fo4HngTERcWcv1MfMzAaBVi8yXRs4wYHHzMwWRqvB5z/A671RETMzGzxaDT6nAzv2RkXMzGzwaPWcz0RgU0kXAD8nzZkzp5wpIv658FUzM7OBqtXg8zDpbgZiwTl4ihbtdo3MzGzAazX4HEkKPmZmZt3W6h0OxvdSPczMbBDp6fl8zMzMutTqHQ42biZfRNzQveqYmdlg0Oo5n+to7pyPBxyYmVmHWg0+e3RQxprAOGAKcMrCVcnMzAa6VgccnNbRNknHAXe3Up6kdwHfBTYAPggMATaNiOtK+aYAq1UUcUxEHFLKuxJwLLA18PZcp4Mj4q+t1M3MzHpPjw04iIgXgN8AB7Ww21rAF4GXgKu7yHsD8InS8otiBklL5nI2AfYDxpLuvn21pA+1UC8zM+tFLc/n04UXgDVayH9DRLwDQNIYYLvOyo6IW7sob09gXWCDiLg7l3s98BBwFLBlC3UzM7Ne0mMtn9zq+DLwbLP7RMTcnjp+Nha4vxF48jFeA/4IjJa0TA8fz8zMuqHVoda/7WDT8qRusBVJ53B6w2aSXiJNZPcI8Evg1xFRHH23HnBtxb73kUbgrQPc3kv1MzOzJrXa7Taug/TpwKPAgRFx5kLVqNrFwJ3AE6Spu3clBZ/3AgcW8g2nenbV6YXt85E0o4tjD221smZm1rlWR7u15Y4IEbFvKWmSpDOAb0o6ISKeLGbvrKier52ZmbWqP99e5zRS/T9aSJtGReuG1C0IFa2iiBjW2QLM7PGam5kNct0a7SZpWWAU80a2PQFcGREv9lTFmtAInMVBCw+SzvuUrU+ad+jh3q6UmZl1reXgI+mrwPHA0qR5fSB1Z70k6VsRcWoP1q8zu5ECzx2FtEnAyZI+GBF/y/VdgnQt0VURMaumupmZWSdaHe22HTCB1NL5IfBA3rQu6aLOCZKmRsRFLZT5ufznhnm9iaQVgNkR8RdJXwS2By4BniJ1oe0KjAGOK82aeiqwD3CepENJ3Wz7A6sAO7XyXM3MrPe02vI5iHTB5sci4qVC+tWSfgfcChwMNB18gHNKj8fn9ZPACNJU3SuQbpkzHHgNuB8YV77dT0S8Kmkz4DjgV8CSpNvrjI6Iu1qok5mZ9aJWg89/A0eWAg8AEfGipNOAw1opMCLUxfZbSeeXmi3vWdLFrmZm1kd1Z7RbZ8HCQ5nNzKxLrQafe4HdJQ0pb5C0NOki1Ht7oF5mZjaAtdrt9lPgPOBuSScCk3N6Y8DBWsAOPVc9MzMbiFq9w8H5kvYFjgFOYl43m4DZwL4RcUHPVtHMzAaalq/ziYhfSjoTGA2sTgo8j5MuMvXdAMzMrEvdusNBRMxgwSHSZmZmTelywIGkRSX9RNLeXeT7uqSjJHU6dNrMzKyZ0W67kubouaOLfLeTLjD94sJWyszMBrZmgs9OpPuidXqHgLz9chx8zMysC80Enw2Aq5os71rgI92vjpmZDQbNBJ/lgalNlvcf5s2dY2ZmVqmZ4PMi6caezRgOLHDfNzMzs6Jmgs+DwBZNljc65zczM+tQM8HnPGCUpO07y5Tn+hkNnNsTFTMzs4GrmeBzCvB34GxJP5Y0orhR0ghJPwLOBh7N+c3MzDrU5R0OIuIVSVsDFwOHAodIehGYBSwDLEu6xc4jwDYR8Wov1tfMzAaApqZUiIi/Ax8kTUl9E/AmsDIwB7gxp384Ih7vpXqamdkA0vS93XKL5qS8mJmZdVt3ZjI1MzNbKA4+ZmZWOwcfMzOrnYOPmZnVrq3BR9K7JP1c0k2SXpIUkkZ2kPdLku6V9Kqkp/IcQ0tW5FtJ0mmSnpc0W9KNkj7Z60/GzMya1u6Wz1qkKRheAq7uKJOkXYEzgJuBLYGjgH2AiaV8S+ZyNgH2A8aS7k13taQP9Xz1zcysO7o1jXYPuiEi3gEgaQywXTmDpEWB44ALI+IbOflaSW8AEyT9LCJuy+l7AusCG0TE3Xn/64GHSAFry159NmZm1pS2tnwiYm4T2T5OuqD1tFL6GcAbwI6FtLHA/Y3Ak4/xGvBHYLSkZRauxmZm1hPa3e3WjPXy+oFiYkS8DDxe2N7IO1++7D5gUWCd3qigmZm1pt3dbs0YntfTK7ZNL2xv5O0oH6W8AEia0cXxh3ZVQTMza01/aPk0RJPpHeXrapuZmdWkP7R8puX18MLfDcsD/yjlXaB1w7ypvRdoFUXEsM4OnltGbv2YmfWg/tDyacyMWjy3g6SlgDWZ/xzPg+V82fqkO3A/3BsVNDOz1vSH4HMr8Czw5VL6F4HFSTOtNkwC1pf0wUaCpCVy3qsiYlYv19XMzJrQ9m43SZ/Lf26Y15tIWgGYHRF/iYg3JR0CTJR0MvBn0qi1Y4A/R8StheJOJV18ep6kQ0ndbPsDqwA71fB0zMysCW0PPsA5pcfj8/pJYARARJwmaQ5wMPA14Hng18DhxR0j4lVJm5EuSv0VsCRwNzA6Iu7qpfqbmVmL2h58IkJN5vsD8Icm8lV10ZmZWR/SH875mJnZAOPgY2ZmtXPwMTOz2jn4mJlZ7Rx8zMysdg4+ZmZWOwcfMzOrnYOPmZnVzsHHzMxq5+BjZma1c/AxM7PaOfiYmVntHHzMzKx2Dj5mZlY7Bx8zM6udg4+ZmdXOwcfMzGrn4GNmZrVz8DEzs9o5+JiZWe0cfMzMrHYOPmZmVrt+EXwkjZQUHSxrl/KOlnSrpFckTZV0iqRh7aq7mZktaLF2V6BFBwM3lNKmNP6QNBK4FDgf+AGwCnAMsJ6kT0fE3HqqaWZmnelvwefRiLi1k+3HAg8AX2gEGknPAFcAnwfO6v0qmplZV/pFt1szJK0KbAicXmzhRMSVwNPAju2qm5mZza+/BZ9TJL0paaakiyVtUNi2Xl4/ULHf/YXtZmbWZv2l220mcAJwHTAdWAc4BLhZ0iYRcRswPOedXrH/dODDVQVLmtHFsYd2p8JmZtaxfhF8IuIe4J5C0o2SLiS1cn4MjCpm76iYXqqemZm1qF8EnyoR8aykK4DtctK0vB5ekX15qltERESnw7Bzy8itHzOzHtTfzvmULcK8Fs2DeV11bmd9qs8FmZlZG/Tb4CNpZWA0cCtARDwF3AnsImmRQr7NgVWB89pRTzMzW1C/6HaTdAbwBHA38AKwNumC07cDhxayHky6puePkiYw7yLT24Bz6qyzmZl1rF8EH9JQ6Z2B/YAhpPM71wE/ioi3utMi4hpJ2wBHAJcAL5LudnBQRMypu9JmZlatXwSfiPgJ8JMm814GXNa7NTIzs4XRb8/5mJlZ/+XgY2ZmtXPwMTOz2jn4mJlZ7Rx8zMysdg4+ZmZWOwcfMzOrnYOPmZnVzsHHzMxq5+BjZma1c/AxM7PaOfiYmVntHHzMzKx2Dj5mZlY7Bx8zM6udg4+ZmdXOwcfMzGrn4GNmZrXrF9Nom5k146irrmx3FQa8740a3SPluOVjZma1c/AxM7PaOfiYmVntBlzwkbS0pBMlPSPpFUl3Stqu3fUyM7N5BlzwASYBuwA/ALYGJgOTJG3V1lqZmdlbBtRotxxgRgE7RMSknHYtsAZwPHBpG6tnZmbZQGv5jAVmAhc0EiIigNOAtSW9v10VMzOzeZS+mwcGSbeQ4s0nS+kfA24FvhARZ5e2zeii2KEAQ4cObaoOs195ten6WvcNefuSvVLuy6+/2Svl2jxLLdF7HS6vven3r7e9bbHm3r+ZM2dC+j6ubOQMqG43YDjwaEX69ML27oiZM2fO6ua+fV0jqs5say1aNPP119pdhb6i371/M19pdw36jH733gG08PN6WWBuRxsHWvAB6Kwpt8C2iBjWi3Xp8xotv8H+OvRXfv/6r8H+3g20cz7TqG7dLJ/X0yu2mZlZzQZa8HkQWEdS+Xmtn9cP1FwfMzOrMNCCzyRgGLBtKX034JGImFx/lczMrGygnfO5FLgWOFXScOAfwO7ARsD27ayYmZnNM6CCT0SEpDHAUXkZRrrDwQ4RcVFbK2dmZm8ZUNf5WOsG+4ib/s7vX/812N+7gd/unwQAAAtCSURBVHbOx8zM+gG3fMzMrHZu+ZiZWe0cfMzMrHYOPmZmVjsHHzOzbpI0XlJIGpQj1haGg4+ZmdXOwcfMzGrn4DOASPpS7gL4eMW2/5X0oqRl8+OtJF2f02ZLulrShqV91pR0lqRnJL2W15dJWquu5zTYFbp11snvxSxJz0n6raShhXxDJB0v6Z+SXs/r4yS9vZ3172skTZQ0pSJ9vKQoPA5JJ0gaJ+lhSS9LulfSNk0c44OSnpZ0TeM9kjRF0vmStpZ0j6RXcrl7drD/JZJm5nx3SBpb2L6cpDmS9iukrZ7r/GSprPMk3VZ43HQ9epuDz8ByDvAM8I1iYv4CGgf8ISJm5Q/axcDTwJeAXYDFgeslrV/Y9VJgTWB/YDSwH/AYaZIoq9d5wEPADsAxpPftZwD5Lu4XAfsCpwBbAxNI79sFktSOCg8A2wN7A4cBO5KmZJkkaY2OdpD0GeAG0j0mPxsRxYniPgwcCxyfy76fdB/KjQv7rwvcBKyej70T8CxwnqQvA0TEC8DdwKhC2aOAV4B3N34c5s/FSODqUjW7rEctIsLLAFqAH5ImG1yhkPYV0kR66wFDgBeAs0v7LQU8BZyTH6+Q99m+3c9pMC/A+Pw+HFhK/wXpy0bAljnPvqU8++f0z7T7efSVBZgITOnodS48DtKPsyGFtJWAOcChFe/PMGBP4A3gaPIF/IV8U4DZwKqFtCVJc5CdUkg7K+dbqZAm4K5cn0Vy2k9IM6Aumh//CfhDzrNXTvtortvmrdajjsUtn4HnFNKHtdiM/jpwQ0Q8AHyC9I/yB0mLNRbgdeA6YJO8zzTgceBYSXtLWqeuJ2CVLiw9vo/0pbESsGlO+0Mpz+/zelOsO66JiNmNBxHxHDAVWK0i73hSa3O/iDg08rd6yd0R8XShvFeBR0vlbQpcmY/VyBek93YV4L05+WpSD8RHc8t2M+CqnN5oEY0CXgNu7kY9ep2DzwCTP7RnA3tLWiSf/9mA9EsZ0pcVwAWkX2nFZRdSi6fxgd+c9ME9Apgs6d+SfiTpbXU9H3vLtNLj1/J6SdJMva9FxIxihkjdM69RPbuvda38mkN6PZesSN+F1Ko4dyHLW57UzVb2TF433sub8r6jgA8AKzIv+GyaA9Io4OYcXFqtR68bUFMq2FtOAnYFPgvsTPrgTsrbns/rbwB3dFZIRDxJbkFJem8u8wfAXFL3nvUN04C3SRpWDECSlgPeRvWXzWD1Kuk1KVthIcv9DCnwXC9p84h4pqsdOjANWLki/Z2F7UTEK5JuIQWY2cCjEfGUpKtJAeoTwCeBI7tZj17nls8AFBG3A7cB3yOdsJwQEW/kzTcDs4C1I+LOqqWDMh+NiB8CTwL/XcPTsOZdk9e7ltJ3LW231Dp5h6RGDwCSliAFj4XxBPBpYFHgBknv7mY51wCjS/UTaYDJ08AjhbxXAx8HtiO1eoiIp3Ke8aQgWx5s0Gc4+AxcJwGfIv0zTGgkRsRLwAHAvpJOl7SDpE0k7STpWEn/AyDpA3ko9j6SPiNpc0n/C4wA/lL/07FOXEH68vmppO9LGi3p+8BPgcuBK9tau77lLNKggT8pXW6wA+n1W3RhC85f/BuTBoLcIGnNbhRzJKln4RpJO+eh3RcAHwEOKp1LuhpYgnSe9qpS+mjSgITKH5N9gYPPwHUu6TzOpIj4d3FDRPwO2ILUT3wq6QvqONKw6htytmdJv+b2y2VNIg3b3Csifl1D/a1J+Qtpe+BkYC/SEPm9gJ8DYzs4+T0oRcQ/SK/VMODPpM/9OcwbnLGw5T9H+j/5DykAtTRQJyIeAjYitdAm5DquTHofzyxlv4PUizGXNLS7odHauT4i5rT4FGrj+XwGqPyL7lxgZERc3+76mJkVOfgMMJLeRxoy+StgakR8os1VMjNbgLvdBp5TSHcvmArs1ua6mJlVcsvHzMxq55aPmZnVzsHHzMxq5+BjZma1c/AxM7PaOfiYNUHSUpIOkHSjpOmS3siTul2aJxzr1n0S874H9HR9zfo6j3Yz60KenOsS0u3sryLdjuV54B2kGzuOAo6LiIO6UfZ1wIiIGNFT9TXrD3xXa7NO5FlgLwbWAHaMiPNKWY5Rmn58wwV2HqDyjS6H5PsEmnWLu93MOvdV4H3A8RWBB4CIuCMiftl4LGkLSWdJekLSK5JmSLpC0ibF/SRNId0UcjVJUVhGFvK8J98A9hlJr0uaIuk4SUPK9cg3iL0lH/NZST+XtG4uc3wp7xBJR0t6XNJrOf/vJa1Wyjcy7z8u32R2Mmlagu9IulDSbEkLTKsu6aN5v8O6fIVtUHLLx6xzn8vrCZ3mmt840qRgvydNTb4qKYhdLWnTiLgx5zuANOXyCsCBhf0fApC0AekW+zNId654mjSdxTeBT0napDFVhqSNSN2BL5CmWJ5Bmk7jU+XK5fNTl+dtfwaOB95DmvF2C0kfyXdoLjqANE/M/5FuOvsv0h2TtwW+mOtXtCfphpcTu3itbLCqc85uL17620KavGtWi/sMqUhbiXSe6NJS+nXAlA7KuRd4GFimlD4WCGBcIe12UotkjULa4qT5mwIYX0j/Wk47tlTu1jn99ELayJw2HXhHKf+iwD+B20vpS5Fu539p1fPy4iUi3O1m1oVlSbetb1pEzG78LWlpScNJc8jcBnysmTIkrU+aHvlM0iylKzQW0hTKs0nTYpAnHtsQuCAinijU4w3StAplY0mtkqNL9b4E+BuwvaTyd8PvI2JqKf8c4LfAhrm+DZ8jvW6nNvNcbXBy8DHr3CxgmVZ2kLSmpD9JegF4kdTi+Q+wFbBck8U05oE5Iu9bXKYCQ0itKYDV87o4yyWdpK0O/DsiXqjY9iDp+ZanlX60g3qeSgqsXymkfSXX8cIO9jHzOR+zLjwAbCxpjWKroiOSliZNyDcEOAG4nxSA5gKHAps1eVzl9fHAZR3keaGUt1mt5gd4uSoxIv4l6TJgV0kHAe8mzeb505g3dbvZAhx8zDp3LunL9KvA95rIvzmwCrBnpBlj3yLpRxX5O7rQ7rG8nhMRV3WQp6ERFN9Xsa0q7XHgs5KGRcSM0rb3k1p7z3dxzKIJpPNFY4AP5TR3uVmn3O1m1rnfkLquviNp+6oMkjaQ9I38sDFtsUp5tqD6fM9LwHL52pmie0itrr0lrVFxzMUkLQ9vTd18J+lczRqFPIsD+1cc83zS//4hpTK3JAWPCyNibtVz7cAlpJF4ewG7AzdHxMMt7G+DkFs+Zp2IiJclbUP6gj1f0hXAlaRRcCsCmwKfAY7Nu9xEGop8vKQRpKHWHwS+TOqCK56YB7gV2AY4WdJfScHrmoiYKunLpKHW90n6Lel8zFLAWsAOpG68ibmc7+R6/VXSL0mjzXYClmg8lcIxJ5KCxMG5jjfkMr8BPEdzLbziazRH0u+AH+Sklva3Qardw+28eOkPC+lL/0BScHkBeIP0RX0JKbAsWsj7AdJ5msaAg+uAT5O+9KNU7hBSF9VzpMATwMjC9tWAXwNTgNdJQe8u0ki1/yqVtRkpmL2ay/s5qbUVwEEVxz2a1GX3OmmAwOnAaqV8IykN6+7g9Vkt138WFUPNvXgpL763m9kAJmlH0oWkX4yIP/Xicd5JuvD01IjYq7eOYwOHz/mYDQBKliylLQ58C3iT1PrqTV8nXXTayp0gbBDzOR+zgeFtwJOSziANkBgOfIHUBXhMRDzbGweVtDNpePV3gcsj4q7eOI4NPO52MxsAJC1Kuu/aJsA7SaPtHgEmROGmp71w3CCdY7oR2CMinu6tY9nA4uBjZma18zkfMzOrnYOPmZnVzsHHzMxq5+BjZma1c/AxM7PaOfiYmVnt/j95H9gmMzkKqAAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"category_bar_plot(prior_record_df, \"Prior Record Breakdown\", 0)"
]
},
{
"cell_type": "code",
"execution_count": 127,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" count \n",
" category \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" 354 \n",
" one \n",
" \n",
" \n",
" 1 \n",
" 212 \n",
" two+ \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" count category\n",
"0 354 one\n",
"1 212 two+"
]
},
"execution_count": 127,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"num_of_vic_df = get_value_counts(death_row, \"num_of_vic\")\n",
"num_of_vic_df"
]
},
{
"cell_type": "code",
"execution_count": 128,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 128,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ8AAAEtCAYAAADX4G3qAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deZgcVb3/8fdHQJEACQQEwSuIG0HwqggqogRIuIIQICCKCETEFZBF9gvX4FV2fiyuoGjCIjthjexEFgkKcmUJBJBFwbBlZQtbvr8/zmlTqdTMdE9mqmcmn9fz1FPTp06dOt1T0985S1UpIjAzM6vT29pdATMzW/w4+JiZWe0cfMzMrHYOPmZmVjsHHzMzq52Dj5mZ1c7Bx3qcpJA0rt316A5Jy0g6TdI/JL0l6Ymaj99vP7v+RNLw/FmPWYQyxuQyhvdczRYfDj79ROGPJSTt2UGekHRV3XUbYA4B9gEuAMYA+3W1g5LRkq6UNE3S65JmSfqTpMMkrdjLde4zJK1ZOE8by+uSnpR0saRPtbuO1jcs2e4KWLccJenciHi13RUZgEYC90XEQc1klrQMKVBtDUwBzgCeBJYFPg38D7A9sGGTx38n8FaLde6LrgfOyj+/A/gQ8C1gW0mfjYg/t61m1ic4+PQ/dwGfJP1Hfkyb69J2kpYA3hERr/RQkasC/2gh/69IgedE4JCImFfYdpqkd5NaUh2S9E7gjYh4MyLmtlrhPurhiDinmCDpduByYBeg0+AjabmIeLEX62dt5m63/udC4G7gEElDu8rc0RhCVX+1pLE5bR1Jp+QupJcl3SjpwznPaEl/lfSqpCckfauTY4+QNFnSK5KekXSqpEEV+QZLOk7So5Jek/S8pPMkrdVBnUdIOlLS34G5wE5dfAZLSjpE0hRJcyVNlzRB0nrlsoH3AZsUuozGdlLuR4FdgcnAwaXAA0BETIuIwwv7jMvlrizpt5KeBV4G3pO3L/T7aqRJ2kzSHfnzfErSIXn7CpLOlPRc3naVpNUW4XNeOp8LU3N5syTdJ+mEzj7nJvwrr1/v4P1tLuk2SS8BV3aj3stJ+rGkOyW9kPM+KunY3ELtkqTdJb2RuwjfUUjfU9JDhTL3BdRBGWtKOlvSszn/3yUdXayDOhhzkvRwTt+ulP6MpImF15Py399q+bOYmf9Wr5X0oWbea7u55dP/BGlc4gbgv4EDeuEY44GXgKOBlYEfANdKOhI4Hvgl8FvgG8DpkqZExG2lMj4B7Aj8mtT9sinwfWBdSSMbX9SSBgN/At6by3wAeDfwPeBOSZ+MiCdLZZ8ILJXLngNM7eL9nEsKUNfnuq8K7AXcIelzEXEPcAspkJwMvAD8JO97byfl7pDXv47Wb5J4PfAM8L/AINLn3ZmPA9uQuvXOyu/nWElzgd2BJ4CxwAdIn/NZwIjGzi1+zj8H9shlnAwsAXwQ2KyF97e0pJXyz28ndbsdA7wCnF2R/5Okz/PXpPOvO/VeHdgTuAT4PfAmsAlwMOnz+6/OKizpcNLv/efA9wvn6H6kz+FvwOHAMsBBwHMVZaxBatUNJp1rDwPDgcOAz0raPCLeBO4AXgU2B8blfVcnfc7zcvplOf0jwCrATaXDDSKdt5Nzvd4H7AtcLmndiOjb3bcR4aUfLKQTOIAD8+vrSP/1r1HIE8BVpf0CGFdR3pi8bXghbWxOuxJQIf37Of1F4L2F9JVzHc6rOGYA25XST83pXymlvQr8ZynvGqTAMq6izlOBZZr83EbmfS4ovaePkr6cbi3lfwKY1GTZl+SyP9HC73Fc3uecDrYv9PvKafOATxXS3g5My+mnlfL/v7zPh7v5Oc8AJnbzPF2z8PsvL/8ENurgPQcwomJbK/V+O7BURRn/m8vfsOLvaQypB+jn+fXhpX2HkFqmU4rnHKml+hIL/w2dm9O2KpVzQk7/RiHtBuCpwuvdSON9vwemFNL3KZ9nwKScdnDpOAfl9P/qzu+vzsXdbv3XIaQ/tv/thbJPi3wmZ7fm9eUR8e/xkIh4nhQIPlhRxtSIuKyUdmxebw9plhip//8W4GlJKzUW0h/8ZGCLirJ/Gc2P8Wyf1z8pvqeIuBe4CthY0spNllW2fF7P6ca+J7aY/46IuLPxIiJeJ/2HLeC0Ut7G7+uD0K3PeTbwEUnrtljHostJgX8ksBXpH5jXgSskfbwi/98i4oZiQqv1jojXI+KNvO+SuTtyJdKXPEDVTLulgYtJkyHGRMTRpe1bkFo6Py+ecxHxFCnQFOv7NmAUcE9ETGRBx5D+Udi+kHYTsLpylzapZXk36Z+aYUrjhZB6DWYC/1cqcx4L/+4braOqv8k+xd1u/VRE3CPpPGAXSSfmL9Oe8ljp9cy8frwi70zSf6FlD5YTImKapFlAo69+ZWAo6Q/8+Q7qstA4Cqkro1nvy2UsVB/gfmDbnKej43emEXSW68a+rbwHWPh3Ah3/XhrpjTHBVj/n/UhdY/dJegy4mdQavjIqxrU68FRFMLmC9M/KL0kzAYuqPo+Wzw9J3wO+A3yEhce0V6jY/3jS72+XiPh9xfbGufpQxbYpFfVdltQ1uICImCFpWqE8mB8oNiN9LpsC55E+7wA2y3/jm5Ba4+XP/l+x8ASV6Xnd5Xhwuzn49G9HkMZVjgO2bHHfzn73HfUVd5ReNfDa0RiIKn6+gfQemtXKzLbKQeEecj8wmjSecE8rO7bQcmvosP8+Ou7bV2nd1OccEZdLWpPUYtmENHb0DeBWSSNyq6tlEfGkpIeAT0kaFBEvFzZXfR4t1VvSAcBJpC7p00gTHF4njQWNo3qC1WWksaaDJF0bEdNL2xt1qDqfy+dWq+faX0j/wGwm6XrSuNZNOVD9jTTu8yCwIguP90DnU/J787zvEQ4+/VhEPC7pl8C+kjbtINsM0slbtlZFWk9ap5yQuxEGM/+/+OeBWcDy5f+Se9DfSQPNw1h48kCjjlUtumZcQrqO5xuSflfqquxLWv6cI2IGcA5wTu7+OpY0cL8tcNEi1GWpvF6W1HXWmVbrvStpzG7LYitB0hc62ecm4EzgauDmHFyLEwn+ntfDWDgADCu9fo40LvqR8kEkrUCaKPHvrrOIeEvSraQWzwhSoGxM3LkR+BLzW1FVwadf85hP//dj0n9PHf1n+DDwmdI0zxWAr/dyvT5cni5KGqeCPIsnf0GcC2woaceqQiS9axHr0Rh3Oix/iTbKXZfUP39bHrtqWe7qPBvYCDimWH7hOKtKKo8j1KqVz1nSEpKGlPYP5rfsun23BknrkGa9PR0Rz/ZkvbO3SC2U4u95SeDQLo7zR+ALpMkSkyStWth8PWnCw16lv6H3AF+tqO+VwMcrAt6hpO/bCaX0m0hdZN8HJhdaxDeRWkJ7AM9ERLmLr99zy6efi4gXlK6/6Gjiwc9I/8HeJOls0uydb5Kuwl+1g316wn2k/5p/DTxC+u9uR+CPpJlnDf8NfBa4UNKFpEHk10njSFuRBmDHdLcSEXF9LvcrwApKtx9qTLWeS/qjXxTfIY0lHAJ8UdIlzL/DwYakbrn7FvEYPaHZz3k5YFoen7mH9N/8+4DvksaSrlyo5GofkvS1/PNSwPuBb5O+cw7pcK/u1xvSxIFjgD9IupQ0IeSrwBtdHSQibpO0BXANKQBtFhH/ioiZ+RKDE4E/STqLNAHhO6Tzujx54nDSJIvLJP0CeBT4PPBl0sSJ8aX8jRbNMBb8u7iFNBtzHdI40MDT7ul2XppbKE21Lm1bhtS/vdBU67z9INIX4mukPuQ96Hyq9Zql/dfM6WMryp4EPFFKC1If+wjgTtJ/js8CPwWW66D+R5K+pF8ldV08SLrmozi9eKE6N/nZNb7wHsyfwQxSi2i9irxP0ORU68I+Io0bXEW6ducNUnfR7fm4Qwp5x5EbEx2U1dFU63EVeSvLKpwrY1r9nEkzKI8hzaSbnj+vJ0jX2Hywic+ica4Ul3n5M78WGNnMe+7m+bEE6XqaR3O9nyRNKBhWPn87+Yw+mev6CPAfhfRvkyYFvJbL34/Ue7DQ+UgK1meTAvfrpG7mo6m4PCCfO8/ncj5X2nZ7Tt+zmb+7rv5W+9qiXGEzM7PaeMzHzMxq5+BjZma1c/AxM7PaOfiYmVntPNW6C5LeJAXp7ty/y8xscbU8MC8iKuOMZ7t1QdI8QIMHD253VczM+o3Zs2dDuhSgsofNLZ+uzRk8ePDgWbNmtbseZmb9xpAhQ5g9e3aHPUYe8zEzs9o5+JiZWe0cfMzMrHYOPmZmVjsHHzMzq13bgo+kjSRdK+lpSXMlPS/pJklblvJNkhQVy/kVZS4r6TRJ0yS9KukuSaPqe1dmZtaMdk61XoF0i/LfkW5DvwLwLWCipJ0johhcHgF2K+3/QkWZE4BPkJ64+DjpFvwTJG0TERN7tvpmZtZdfeoi0/zUwceBRyJis5w2ifQ8lI91se9WpEfhjo6ICTlNwK3A0IgoP/K22TrN8nU+Zmatydf5zI6IIVXb+9RFphHxpqTZNPHkwQrbA7OBywvlhaTxwBmS1ok2Pop2qyNObtehrQ+b+OP9210Fs7Zo+4QDSW+TtKSk1SQdRXrGe/mb+sOSZkp6U9Ijko6QtFQpz7rAlEjPUS+6t7DdzMz6gL7Q8rmQ9AhiSDfv3CkirilsvxU4H3gIWBbYDvgRsD6ptdMwFHi4ovwZhe0LkdRVf5pv6mZm1sP6QvA5GDgOWBX4KnChpN0j4jyAiDiylP8qSc8Ch0vaOCJuK2zrbACr7wxumZkt5tre7RYRj0XEXyLiyojYGbgW+Lmkzuo2Pq8/U0ibTnXrZsW8nlGxjYgY0tlCGkcyM7Me1PbgU+HPpGnXK3eSp1Hv4vjOA8CwiqC1Xl7f3zPVMzOzRdWngk+eGj0cmEVqyXSkcc3P5ELaBGAIsE1F3qntnOlmZmYLatuYj6RzgSeBu0kXjL4b2B3YDNgnT7v+HHAocEnOOwjYFvg6cFFE3F4ociJwM3CmpKGk64V2BzbO+5iZWR/RzgkHdwC7AN8mzSibDdwFjIqIK3OeaXn9I2AlUjfbVOAA4KfFwvI1PdsBR+dlCDCFdNHplZiZWZ/RtuATET8DftZFnkeBL7ZQ5hxg77yYmVkf1afGfMzMbPHg4GNmZrVz8DEzs9o5+JiZWe0cfMzMrHYOPmZmVjsHHzMzq52Dj5mZ1c7Bx8zMaufgY2ZmtXPwMTOz2jn4mJlZ7Rx8zMysdg4+ZmZWOwcfMzOrnYOPmZnVrm3BR9JGkq6V9LSkuZKel3STpC0r8o6UNFnSq5Kek3S6pCEV+ZaVdJqkaTnvXZJG1fOOzMysWe1s+axAeiT2D4AvAN8CXgMmSvpKI5Ok4cBE4J/ANsCBwCjgaknl+k8gPZr7CNITUKcAEyRt1avvxMzMWtLOx2hfDVxdTJN0JfA4KRCdn5OPB+4HvhwR83K+acB1wJeAC3LaVsAIYHRETMhpNwNrASeRApiZmfUBfWrMJyLeBGYDbwBIWh3YADi7EXhyvuuBp4EdCrtvn/e9vJAvgPHA2pLW6fU3YGZmTWl78JH0NklLSlpN0lHAh4CT8+Z18/r+il3vK2xv5J1SDFLZvaWyzMyszdrW7VZwIfNbMHOAnSLimvx6aF7PqNhvBvCJwuuhwMMd5CuWtQBJs7qo3+AutpuZWYva3vIBDgY2JE0imAhcKGnnUp7oYN9yekf5utpmZmY1anvLJyIeAx7LL6/Mkw5+LukCYHpOr2q1rMiCLaLpneSD6tYTEbHQlO2i3DJy68fMrAf1hZZP2Z9J07BXBh7IaVXjNeux4FjQA8CwiunX6+V11biRmZm1QZ8KPpIEDAdmAdMj4ingLmCXYlCRtDmwOnBpYfcJwBDStUBFuwFTI2JKL1bdzMxa0LZuN0nnAk8CdwMvAO8Gdgc2A/bJ064BDiFd03OepDOA1YDjgDuBiwpFTgRuBs6UNJR0vdDuwMbAtr3+hszMrGntHPO5g3Q3gm+TxlRmk1o5oyLiykamiLhJ0tbAUaSLUl8ELgMOjoi3CvlC0nbA0XkZQrrDwehieWZm1n7tvMPBz4CfNZn3GuCaJvLNAfbOi5mZ9VF9aszHzMwWDw4+ZmZWOwcfMzOrnYOPmZnVzsHHzMxq5+BjZma1c/AxM7PaOfiYmVntHHzMzKx2Dj5mZlY7Bx8zM6udg4+ZmdXOwcfMzGrn4GNmZrVz8DEzs9o5+JiZWe3aFnwkbS5pnKSpkl6R9JSkSyWtV8o3SVJULOdXlLmspNMkTZP0qqS7JI2q712ZmVkz2vkY7e8AQ4GTgQeBVYCDgb9IGh4Rkwt5HwF2K+3/QkWZE4BP5HIeB8YAEyRtExETe7b6ZmbWXe0MPntFxHPFBEnXkYLGQcAOhU2vlILRQiRtBYwARkfEhJx2M7AWcBLg4GNm1ke0rdutHHhy2ixSK+c93Shye2A2cHmhvADGA2tLWqebVTUzsx7WpyYcSFoZWBe4v7Tpw5JmSnpT0iOSjpC0VCnPusCUiJhXSr+3sN3MzPqAdna7LUCSgDNIAfHEwqZbgfOBh4Blge2AHwHrk1o7DUOBhyuKnlHYXnXcWV1UbXBXdTczs9b0meADnEAKLF+PiAcbiRFxZCnfVZKeBQ6XtHFE3FbYFp2U39k2MzOrUZ/odpP0E+AHwL4RMa6JXcbn9WcKadOpbt2smNczKrYREUM6W0jjSGZm1oPaHnwk/Qg4HDg4Ik5rcrdGvYvjOw8AwySV31PjuqHyOJKZmbVJW4OPpB8CRwJHRsQJLezauOanOP16AjAE2KYi79SImNLtipqZWY9q25iPpB8AY4GrgBskfbqw+bWIuEfS54BDgUuAJ4FBwLbA14GLIuL2wj4TgZuBMyUNJV0vtDuwcd7HzMz6iHZOOGi0ULbOS9GTwJrAtPz6R8BKpG62qcABwE+LO0RESNoOODovQ4AppItOr+yF+puZWTe1LfhExPAm8jwKfLGFMucAe+fFzMz6qLZPODAzs8WPg4+ZmdXOwcfMzGrn4GNmZrVz8DEzs9o5+JiZWe0cfMzMrHYtBR9Jj0ka1cn2rSU9tujVMjOzgazVls+apGfqdGQQsEa3a2NmZouFnu52WwV4pYfLNDOzAabL2+tI+jwwvJA0WtIHKrKuCHwF+L+eqZqZmQ1UzdzbbVPgh/nnAEbnpcqjwP49UC8zMxvAmgk+pwDjAAGPAfsBl5fyBPBSRFQ+LdTMzKyoy+ATEbPJj5KWtCnwYEQ819sVMzOzgaulRypExB97qyJmZrb4aPl5PpLeC3wb+CAwlNQdVxQRsXkP1M3ManDQFde3uwrWB50wamSvlt9S8JG0JTABeDvwIuAxHjMza1mr1/kcA7wAbBgRgyPifVVLMwVJ2lzSOElTJb0i6SlJl0paryLvSEmTJb0q6TlJp0saUpFvWUmnSZqW897V2R0ZzMysPVoNPmsDp0TEXT1w7O8A7wVOBrYEDsiv/yLp041MkoYDE4F/AtsABwKjgKslles/AdgFOIL0+O0pwARJW/VAfc3MrIe0OubzPPB6Dx17r/KsOUnXAY8DBwE75OTjgfuBL0fEvJxvGnAd8CXggpy2FTACGB0RE3LazcBawEmkAGZmZn1Aqy2fs5kfFBZJ1XTtiJgFPAK8B0DS6sAGwNmNwJPzXQ88XarL9qQp4ZcX8gUwHlhb0jo9UW8zM1t0rbZ8xgGbSrocOJXUSnmrnCki/tGdykhaGVgXOC8nrZvX91dkv6+wvZF3SjFIZfcWt1ccc1YX1RrcxXYzM2tRq8HnIdLdDARs3Um+JVqtiCQBZ5BaYyfm5KF5XTWrbgbwicLrocDDHeQrlmVmZm3WavD5ESn49IYTgO2Ar0fEg6VtHR2znN5Z3Sq3RcRCs+aKcsvIrR8zsx7U6h0OxvZGJST9BPgBsG9EjCtsmp7XVa2WFVmwRTS9k3zga5LMzPqMtj9GW9KPgMOBgyPitNLmB/J6XRa2HguOBT0ADKuYft24bqhq3MjMzNqg1TscfL6ZfBFxS5Pl/RA4EjgyIk6oKOcpSXcBu0g6pTDVenNgdeDSQvYJwDdI1wIV77q9GzA1IhaabGBmZu3R6pjPJJob8+lywoGkHwBjgauAG4oXlgKvRcQ9+edDSNf0nCfpDGA14DjgTuCiwj4TgZuBMyUNJc3E2x3YGNi2iTqbmVlNWg0+X++gjPcDY4AngNObLGubvN6ahWfOPQmsCRARN0naGjgKuJp0T7nLSN10/57mHREhaTvg6LwMIU2tHh0RVzZZJzMzq0GrEw7Gd7RN0gnAX1soa3gLea8Brmki3xxg77yYmVkf1WMTDiJiJvAb4OCeKtPMzAamnp7tNpN0LzUzM7MO9VjwkbQ0sCvwTE+VaWZmA1OrU61/28GmFYHPACuT7khtZmbWoVZnu43pIH0G6b5q+0fE7xepRmZmNuC1Otut7XdEMDOz/s/BxMzMatdqtxsAkpYnPTW0MbPtMeD6iHixpypmZmYDV8vBR9KepMdSL0t6rg+kW+68JOmAiDizB+tnZmYDUKuz3UaRHvj2GPA/zL9T9EeAfYAzJD3n29mYmVlnWm35HAw8CHwqIl4qpN8o6XfAZNKNQB18zMysQ61OOPhPYFwp8ACQx3vG5zxmZmYd6s5sN3WyrbcesW1mZgNIq8Hnb8DukgaVN0halnQR6t96oF5mZjaAtTrmcyLp6aF/lXQa6Xk5MH/CwQeA0T1XPTMzG4havcPBZZL2Jj1J9KfM72YT8DKwd0Rc3tH+ZmZm0I0xn4j4BfAfwJeBw4DDgZ2A90TEL1spS9J7JJ0q6TZJL0kKScMr8j2Rt5WXYyvyriJpvKQXJL0s6VZJG7X6Ps3MrPd06w4HETELuKgHjv8BYGfSE1BvBEZ1kvcW0jTuoqeLL/JjHW4kXQC7DzAd2I80FXyjiLinB+psZmaLqMvgI2kJ4CfAExHxq07yfZfUIvrviGh21tstEfGuvP92dB58ZkbE5C7K24M0/rR+RPw1l/tH0rVJRwNbNlkvMzPrRc10u32N9Iyev3SR78+klsnOzR48IuY1m7dJ2wP3NQJPPsZrwHnASEnL9fDxzMysG5oJPjsBN0TE3Z1lytuvpYXg06LN8rjQ65Luk/RdSeVrjtZl/i1/iu4FlgCG9VLdzMysBc2M+axPupFoM24GDuh+dTp0FXAX6Z5yQ0mtsV8AHwL2L+QbSnqwXdmMwvYFSJrVxbEHt1pZMzPrXDPBZ0XguSbLez7n71ERsXcpaYKkc4HvSzolIp4sZu+sqJ6um5mZta6ZbrcXgZWaLG8osNB933rJeFL9NyykTaeidcP8gLhQqygihnS2ALN7vOZmZou5ZoLPA8AWTZY3MuevQ6PuxUkLD5DGfcrWA94CHurtSpmZWdeaCT6XAiMkbdtZpvysn5HAJT1RsSbsRgo8xVl4E4D1JH2sUK+3kyZB3BARc2qqm5mZdaKZMZ/Tge8CF0o6Efh1RDzR2ChpTWBP4EDg4Zy/aZJ2zD9ukNebSFoJeDki/iBpZ2Bb4GrgKVIX2teA7YATIuIfheLOBPYCLpV0GKmbbV9gNdKsPTMz6wO6DD4R8aqkL5JmnB0GHCrpRWAOsBywPOneblOBrSNibot1KN8pYWxePwmsCTxOGnM6njSe8xpwHzAmIsaX6jpX0mbACcAvgaVJd08Y2dVUcTMzq09Tt9eJiEdzV9Y3gR1JdxFYlRSAbiV1tf0mIl5ttQIR0dnzgch3NRjRQnnPALu2Wg8zM6tP0/d2yy2an+bFzMys27rzJFMzM7NF4uBjZma1c/AxM7PaOfiYmVntHHzMzKx2Dj5mZlY7Bx8zM6udg4+ZmdXOwcfMzGrn4GNmZrVz8DEzs9o5+JiZWe0cfMzMrHYOPmZmVjsHHzMzq11bg4+k90g6VdJtkl6SFJKGd5D3q5L+JmmupKckHStp6Yp8q0gaL+kFSS9LulXSRr3+ZszMrGntbvl8ANgZeAm4saNMkr4GnAvcDmwJHA3sBYwr5Vs6l7MJsA+wPfAicKOkj/d89c3MrDuafpJpL7klIt4FIGk7YFQ5g6QlgBOAKyLiezn5ZklvAGdIOjki7szpe5Ae8b1+RPw17/9H4EFSwNqyV9+NmZk1pa0tn4iY10S2TwOrAuNL6ecCbwA7FNK2B+5rBJ58jNeA84CRkpZbtBqbmVlPaHe3WzPWzev7i4kR8Qrw98L2Rt4F8mX3AksAw3qjgmZm1pp2d7s1Y2hez6jYNqOwvZG3o3yU8gIgaVYXxx/cVQXNzKw1/aHl0xBNpneUr6ttZmZWk/7Q8pme10MLPzesCDxeyrtQ6ybng4pWUUQM6ezguWXk1o+ZWQ/qDy2fB/K6OLaDpGWA97PgGM8D5XzZesBbwEO9UUEzM2tNfwg+k4FngF1L6TsDSwGXFtImAOtJ+lgjQdLbc94bImJOL9fVzMya0PZuN0k75h83yOtNJK0EvBwRf4iINyUdCoyT9DPgYtKsteOAiyNicqG4M0kXn14q6TBSN9u+wGrATjW8HTMza0Lbgw9wUen12Lx+ElgTICLGS3oLOAT4JvAC8Cvgh8UdI2KupM1IF6X+Elga+CswMiLu7qX6m5lZi9oefCJCTeY7BziniXxVXXRmZtaH9IcxHzMzG2AcfMzMrHYOPmZmVjsHHzMzq52Dj5mZ1c7Bx8zMaufgY2ZmtXPwMTOz2jn4mJlZ7Rx8zMysdg4+ZmZWOwcfMzOrnYOPmZnVzsHHzMxq5+BjZma1c/AxM7Pa9YvgI2m4pOhgWbuUd6SkyZJelfScpNMlDWlX3c3MbGFtf5Jpiw4BbimlPdH4QdJwYCJwGXAEsBpwHLCupM9FxLx6qmlmZp3pb8Hn4YiY3Mn244H7gS83Ao2kacB1wJeAC3q/imZm1pV+0e3WDEmrAxsAZxdbOBFxPfA0sEO76mZmZgvqb8HndElvSpot6SpJ6xe2rZvX91fsd19hu5mZtVl/6XabDZwCTAJmAMOAQ4HbJW0SEXcCQ3PeGRX7zwA+UVWwpFldHHtwdypsZmYd6xfBJyLuAe4pJN0q6QpSK+cnwIhi9o6K6aXqmZlZi/pF8KkSEc9Iug4YlZOm5/XQiuwrUt0iIrerQgIAAAuqSURBVCI6nYadW0Zu/ZiZ9aD+NuZT9jbmt2geyOuqsZ31qB4LMjOzNui3wUfSqsBIYDJARDwF3AXsIulthXybA6sDl7ajnmZmtrB+0e0m6VzgMeCvwExgbdIFp+8EDitkPYR0Tc95ks5g/kWmdwIX1VlnMzPrWL8IPqSp0l8B9gEGkcZ3JgE/joh/d6dFxE2StgaOAq4GXiTd7eDgiHir7kqbmVm1fhF8IuJY4Ngm814DXNO7NTIzs0XRb8d8zMys/3LwMTOz2jn4mJlZ7Rx8zMysdg4+ZmZWOwcfMzOrnYOPmZnVzsHHzMxq5+BjZma1c/AxM7PaOfiYmVntHHzMzKx2Dj5mZlY7Bx8zM6udg4+ZmdXOwcfMzGrn4GNmZrUbcMFH0rKSTpM0TdKrku6SNKrd9TIzs/kGXPABJgC7AEcAXwSmABMkbdXWWpmZ2b8t2e4K9KQcYEYAoyNiQk67GVgLOAmY2MbqmZlZNtBaPtsDs4HLGwkREcB4YG1J67SrYmZmNp/Sd/PAIOkOUrzZqJT+KWAy8OWIuLC0bVYXxQ4GGDx48CLV7eW5ry3S/jYwDVr6He2uAnPffLPdVbA+aOklF61jbPbs2ZC+jysbOQOq2w0YCjxckT6jsL07Yvbs2XO6ua8tqBHFZ7e1Fn3E7NfmtrsKNp/PzYIe+Hd5eWBeRxsHWvAB6Kwpt9C2iBjSi3WxkkZL05+79TU+N+s10MZ8plPdulkxr2dUbDMzs5oNtODzADBMUvl9rZfX99dcHzMzqzDQgs8EYAiwTSl9N2BqREypv0pmZlY20MZ8JgI3A2dKGgo8DuwObAxs286KmZnZfAMq+ERESNoOODovQ0h3OBgdEVe2tXJmZvZvA+o6H+v7PKPI+iqfm/UaaGM+ZmbWD7jlY2ZmtXPLx8zMaufgY2ZmtXPwMTOz2jn4mFm/JenTksZK8gy1fsbBx8z6s08DPyRd02f9iIOPmdkikjRJ0rh216M/cfCxRSJpU0l/lPRyXiZJ2qSwfaykkDRM0gWS5kh6VtJvJQ0ulfU2SftLuk/SXEkvSDpL0qr1vzPr6ySNBU7OLx/P51lImiDp7lLeW/K2TQtpoxrnZiGt0/PZeo6Dj3WbpM2B64ElSDdv3Q14O3BD8Y88uxR4EBgNHAd8lflfHA2/A44BriDdHPZAYFNgkqRBvfQ2rP/6DXBK/nk08Jm8TAI+lu/vSD53PgW8Cmxe2H8EMC0iHsz5WjmfbVFFhBcv3VqAO4GngKULae8E/gXckV+PJT3Eb//Svj8nfRk0LnTeKOf7Xinfx0hPQ9yr3e/XS99bgP3yebNmIW3tnPal/PoLpAdzntI4L3P6FODswusuz+ecJtJ9MYvLH4Hx5fR2fz59eXHLx7ol/ze5AXBxRPz7WdAR8SpwEbChpGUKu1xRKuJeYGlglfx6K1KQOV/Sko2F9AympwF3fVhTIuIhUsAYkZNGAHeQzsENJA2WtBowDLgRWj6fNwHeKC2fJ7WUFkiXtGavvdF+bkDd1dpqtQLpP8BnKrZNI3XprlBIm17K03hE/NJ5vUrep5yvYaXuVdMWUzcyP/hsDlwC3E4KCpswf3bcjXnd7Pn8CnA3KVAVnU4KeEeV0v/V7XcwwDn4WHfNJHVtVE0GeDepFTOzhfJeyPtsTPqCKHux1QraYu1GYFdJGwD/SerOfU3S7aRgtALwSET8M+dv+nyOiBeBu4oZJL0ITI+Iuxbe3aq42826JSJeJvWR7yip0Xoh/7wDcGdEvNJCkX8gnY+rRsRdFcvUHn0DNlA0WtDvLKU3WjQ/If3j8uf8+gZS8Nm8kKc3zmfrgls+tigOB64jzQY6idRtcQDwLtJstqZFxC35OomzJP0UuA2YC6xOmvE2MSIu7sG628Bwf17vLekcUqv53oh4StLDwEjgioh4K+e7kTSjsvFzUY+dz9Y1t3ys2yLiZtIf91vAOcDZwJvA5hFxSzeK3IM0vXoL4GLSAPERucx7e6LONrBExK3AsaSp1rcBfwFWy5sbweWGwi53M7+L7eZSWT19Plsn/DwfMzOrnVs+ZmZWOwcfMzOrnYOPmZnVzsHHzMxq5+BjZma1c/AxM7PaOfiYmVntHHzMmiBpGUn7SbpV0gxJb+SH4k2UNCbfgbs75Y6RtF9P19esr/NFpmZdkPQB4GrgQ6Sr5a8j3Qj1XaQ7J48AToiIg7tR9iTSs2jW7Kn6mvUHvrebWSckvRO4ClgL2CEiLi1lOS7fObl8i/0BS5KAQRHxUrvrYv2Xu93MOrcn8GHgpIrAA0BE/CUiftF4LWkLSRdIekzSq5JmSbpO0gIPxJP0BOnZMmtIisIyvJDng5LOljRN0uuSnpB0QtVjxSVtIumOfMxnJJ0q6SO5zLGlvIMkHSPp75Jey/nPkrRGKd/wvP8YSXtJmkK64euBkq6Q9LKk5SvqsmHe78guP2FbLLnlY9a5HfP6jBb2GQOsCJxFeizz6qQgdqOkTfPNMCE9AvoY0oPy9i/s/yCApPWBm4BZpIeVPU16Ns33gc9K2iQi3sh5NyZ1B84k3WhzFrAT8Nly5fL41LV528XAScAHge8CW0j6ZEQ8VdptP2Ao8GvSA9f+SXqmzTbAzrl+RXuQnoEzrovPyhZX7X6OtxcvfXkhPVl1Tov7DKpIW4U0TjSxlD4JeKKDcv4GPAQsV0rfnnRX5jGFtD+TWiRrFdKWIj29M4CxhfRv5rTjS+V+MaefXUgbntNmAO8q5V8C+Afw51L6MsDs8nv14qW4uNvNrHPLA3Na2SHSg8kAkLSspKGk2/TfCXyqmTIkrQd8FPg98A5JKzUW0qMDXiY9egJJq5DGnC6PiMcK9XgDOLWi+O1JrZJjiokRcTXwf8C2ksrfDWdFxHOl/G8BvwU2yPVt2JH0uZ3ZzHu1xZODj1nn5gDLtbKDpPdLOl/STNJTNF8Ange2Ij2+uRnD8vqovG9xeQ4YRGpNAbwvr6ue9lqV9j7gXxFR9ZjzB0jvd6VS+sMd1PNMUmD9RiHtG7mOV3Swj5nHfMy6cD/weUlrFVsVHZG0LHALKTicAtxHCkDzgMOAzZo8rvL6JOCaDvLMLOVtVqv5ASofIR0R/5R0DfA1SQcD7wU+D5yYW15mlRx8zDp3CenLdE/SY5a7sjnpSZp7RMTvihsk/bgif0cX2j2S129FxA0d5GloBMUPV2yrSvs78AVJQyJiVmnbOqTW3gtdHLPoDNJ40XbAx3Oau9ysU+52M+vcb0hdVwdK2rYqg6T1JX0vv3yrkVzKswXV4z0vASvka2eK7iG1ur4jaa2KYy4paUWAiHiWNPNs22JeSUsB+1Yc8zLS3/6hpTK3JAWPKyJiXtV77cDVpJl43wZ2B26PiIda2N8WQ275mHUiIl6RtDXpC/YySdcB15Nmwa0MbAr8F3B83uU20lTkkyStSZpq/TFgV1IXXHFgHmAysDXwM0l/IgWvmyLiOUm7kqZa3yvpt6TxmGWADwCjSd1443I5B+Z6/UnSL0izzXYC3t54K4VjjiMFiUNyHW/JZX4PeJbmWnjFz+gtSb8DjshJLe1vi6l2T7fz4qU/LKQv/f1JwWUm8Abpi/pqUmBZopD3o6RxmsaEg0nA50hf+lEqdxCpi+pZUuAJYHhh+xrAr4AngNdJQe9u0ky1/yiVtRkpmM3N5Z1Kam0FcHDFcY8hddm9TpogcDawRinfcErTujv4fNbI9Z9DxVRzL17Ki+/tZjaASdqBdCHpzhFxfi8e592kC0/PjIhv99ZxbODwmI/ZAKBk6VLaUsABwJuk1ldv+i7potNW7gRhizGP+ZgNDO8AnpR0LmmCxFDgy6QuwOMi4pneOKikr5CmVx8EXBsRd/fGcWzgcbeb2QAgaQnSfdc2Ad5Nmm03FTgjCjc97YXjBmmM6Vbg6xHxdG8dywYWBx8zM6udx3zMzKx2Dj5mZlY7Bx8zM6udg4+ZmdXOwcfMzGrn4GNmZrX7/znFS0AaWFP1AAAAAElFTkSuQmCC\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"category_bar_plot(num_of_vic_df, \"Number of Crimes Breakdown\", 0)"
]
},
{
"cell_type": "code",
"execution_count": 129,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" count \n",
" category \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" 263 \n",
" murder_robbery \n",
" \n",
" \n",
" 1 \n",
" 118 \n",
" murder \n",
" \n",
" \n",
" 2 \n",
" 87 \n",
" murder_rape \n",
" \n",
" \n",
" 3 \n",
" 54 \n",
" murder_other \n",
" \n",
" \n",
" 4 \n",
" 44 \n",
" murder_rape_robbery \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" count category\n",
"0 263 murder_robbery\n",
"1 118 murder\n",
"2 87 murder_rape\n",
"3 54 murder_other\n",
"4 44 murder_rape_robbery"
]
},
"execution_count": 129,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"main_crime_df = get_value_counts(death_row, \"main_crime\")\n",
"main_crime_df"
]
},
{
"cell_type": "code",
"execution_count": 130,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 130,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ8AAAHSCAYAAAAzJMYmAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3dd5xkVZ3//9ebnISRQRFEkoqwgroCX0URhiggGSUJOiAuYlgQFJAFGRBECaugPxFcYEARWRSQMBKGDEuUKFlgUBQkTCQMYfj8/ji3mJrqW91VQ/cNVe/n41GP6r731K1PVVffT51wz1FEYGZmVqR5yg7AzMz6j5OPmZkVzsnHzMwK5+RjZmaFc/IxM7PCOfmYmVnhnHysUiSNl1T58f+SxkoKSWPKjqXOsvdw/Nt4/IrZMcYNX1RWBCcfG5KkMdk/eEj6eZsy75b0Wlbm2oJD7Jikd0r6vqTbJU3NYn5K0h8kbS9JZcc4HCRNavqbhaQ3JT0j6TpJO5cdn5mTj3VjJrCrpAVz9u0OCHjjbT7HV4GF3+Yxckn6f8ADwOHAU8A44GvAKcCywB+AfTo83K9JcV4/7IEOn6dIf5fdgT2Ak4D3AOdI+naZgZnNV3YAVisXALsA2wD/27JvD2ACsNHbeYKIeB14/e0cI4+k9wAXAwsB60fEjS1FfiDps8A7hzjOOyJiRkTMAmYNd5zDbFpE/KZ5g6RTgKeBscBPBntw47WOXHjWz1zzsW7cCdxDSjRvyWoUHwbOyHuQpE0lnSvpcUmvZM1dV0haP6fsgD6fxjZJS0g6WdKzkmZKuknSJzqM/bvAu4GDchIPABFxeUT8rul5I3vujSTdKOlFUgLL7fNp2rZR1rT3ZPZ6b5X0yazM+tmxXpL0tKTD2rxna0m6QNLzkl6V9LCk/5L0dr8wTiHVYF9reb5rs6a6lSX9XtJkYHrTfknaR9KfJb0saYakayRtkBP717O/7z+yZs2nJf1G0oqdBCjp41kT4QOSlm/avm72N39F0r+yJuDF2hxjUUnHSHose/+ekXSWpBWayiyUHWt8y2NPzf6OP23Zfq6k6Y2/gaRxWbkPSfph1nz7qqR7JG3RyWvtZ675WLfOAP5b0nIR8VS2bU/gWeCSNo8ZCywJnEVqCnovsBdwlaQNIuKGDp/7cuA54EhgNLA/MEHSih18Q9+BdMI9s8Pnalgre+yvunjsj4B5gROBBYADgMslfRk4DTgVOBvYEThS0hPNNZTsxHUB8FfgBGAysA7pdX8M+EKHccwraanGz8AywL7AO0hNja0WA64DbgL+i5SsG35NqvX+nvQZWBD4InClpO0j4qKmst8BbiE1800GVif9vTeUtEZEvNAuYEmbkpo/7wW2iojJ2fZPABOBGcCPganAzqTPVOsx5iN9Vj6dxXsC8EFSk+qmktaKiKciYqakm4ENWw6xIfAmTbV4SQLGANdHRGvT8pmk2vrxpL/3fsCFklaJiEntXmvfiwjffBv0RvqnC9JJZTTwKnBItm9h0ong+Oz3F4FrWx6/aM4xlwaeBya0bB+fPpYDtwG/aNn+hWz73kPE/46s3L1dvu7Ibhvn7Bub7RuTs+1OYIGm7Vtn298A1m7avgCpCezmpm0LAc+Q+pLma3nOb7c+5yCxT2qKv/n2CvAfOeWvzfYflbNvu2zff7Rsnw+4A3gC0BB/742yYxyY8x6Pz37enfQF4UJg4ZZy/5ftW6Xl/bstO8a4pu1fzbYd23KMz2Xbf9207dBs2wez39/XKJPdL51tXyP7ff+mx47Ltl3S8vrXzrYfU8b/a11ubnazrkT61noR6UQLsD2wBHD6II95qfGzpMUkjSb1l9wKdNpsBgP7KK7O7j84xOMWz+6nD1oq3z0RMbHLx5wcEc3NWo2a3S0RcXtjY1bmNuaMfxNSYj4DGCVpqcaN1KcGsGmHcUzKjrdJ9pixpPf8ZEl7tHnM8TnbdiPVOC5siWcUqRlyxebX0Ph7S5onaypditRcO402f29JB5FqEKcDO0TEK0373k2q+f0xIh5pep7XyO+32o5UczmmeWNEXArcDWwjqXHua3yGGrWfjUifzXGkBNLYvkFL+WYnRpZ1sue5nfR+DfW57GtudrO5cQZwqaR1SU1ut0XEA+0KS3o/cDTwWdIJq1k31/Q8PscDI15IrSGMHuJxjaTzji6eq+GRoYsM0BrnlCzOJ3LKTmHO+FfL7tsmc1Jy6sRLrYlT0tnAXcDPJF0UczaBPRcRU3OOsxrpvfvXEDE9kj3HhsD3SYlmoZZyeQM6ts+O/6uI+FrO/pWz+4dy9uV97lYC/hkRU3L23U9qulyK1FR8G6m2viGpKXJD4I6IeEzSfdnv52T3L5CSaKvHc7ZNZujPZV9z8rG5cTnwD9KQ5Q0YZHiypMVITUiLAj8F7iN9K3wT+B4D29vbijTCLPdphnjcDElPAqtKWrj5W3UHXu6ibEO7ODsZHdd4Ld8lfUvP88+uI8pExBuSriL1/XyC2bUpaP9aRepr23WQQ/8FQNLawBWk/qqDSQn3FdKXjN+RP8jpNlLt6fOSTo2IO3KeH/K/qOT97Tu+Vit7P24ANsj6dTYgNblBquU0aknrAVc313CazNXnst85+VjXImKWpLNIyeMV0kmlnY1I19DsGRFzjIaTdNTIRTnA+aQ+k91JHf5V9Wh2P6DWMozmz+47rQk+CqxCajZ8cYiyu5IGN2weEW/V9CQtSvth7E8BXyad7CdK2iwibmna/1h2v9qAR+ZvewzYTNKonJrcv5Fqws83bbsa2Bz4PLAccFW2/SrS4IHts9jzmtxsLrnPx+bWL4EjgK9FxLRByjW+Fc7xLTAb1dRNf8/bdSzp2/uxktbJK6A0JLzsq/8vJzUHHSxpydadkhaWNDfNh43HLwRslv16Z4cPO4t0rjgmb6ek5mbA3L83cAiDnG8i4h/A+qRa3RWSPt2071nS6LltJK3S9LwLkL5QtLowe66DW+LcHPh34KKIeLNpVyOpHEEaTHNT9vt1pEEiR7SUs2Hgmo/NlYj4G6lTdig3kkZvnZBd5/EUqc19d1IT3BojE+GcIuIZSVsCfwRulHQhqTlwOqlmthmwLp3PcDAiIuIlSV8inUAflnQ6qQlrFLAq6Vv4dqTRaUNZQtJu2c8ivc7dSH0ov4qIR9s+cs6Yfi/pDOCbkj5OGt31PKmWsA7wAWb3y1xASggTJJ1KGqG2CfAR5qxt5D3PM0rXTU0kDU3/XERcl+3en/Sab5L0/zF7qHXeOWw8qSZ1UPaZuz6L8eukfqtDWsrfTeqjWY00UnNmFs8MSX8mfUl6OiLy+pxsLjn52IiKiKlKMwccC3yL9Jn7M7AF8BUKSj5ZLLdJ+nAWx1ak62YWJtU0bgG2iTmvVylFRFye9Z0cTEoW7yINTHgM+G/SNTCdWI7Z/ReQ+nQeIJ2E867zGSymPSVdA/wHqbl1AdKXijuz3xvlbpK0A3AY8ANSs+xEUq1myKmIIuJZpQtXJ5IS2NYRcVVE3CxpE9I1VAeTvjScB5xM+hLTfIzXs8/cocBOpIQ9NSt/aET8vaX8m0rzEW7PwNrNVaTk41rPMFN+/5mZmdnIcZ+PmZkVzsnHzMwK5+RjZmaFc/IxM7PCebTbECS9QUrSczMvmJlZv1oceDMicvOMR7sNQdKbgJZYYomyQzEzq41p06ZBmqE+t4XNNZ+hTV9iiSWWmDo1b75FMzPLM2rUKKZNm9a2xch9PmZmVjgnHzMzK5yTj5mZFc7Jx8zMCufkY2ZmhXPyMTOzwjn5mJlZ4Zx8zMyscL7I9G1af6c9yg5h2F137hllh2BmPc41HzMzK5yTj5mZFc7Jx8zMCufkY2ZmhSst+UjaSNJ4SQ9LelnSU5LOl7RGS7lrJUXO7Xc5x1xM0kmSnpb0iqQ7JG1d3KsyM7NOlDna7WvAaOAnwIPA0sCBwO2SxkTELU1lHwW+1PL453OOeQHw8ew4TwBjgQskbRURE4Y3fDMzm1tlJp9vRMSzzRskXUFKGt8Fdmja9XJLMhpA0hbAxsD2EXFBtu0aYGXgBMDJx8ysIkprdmtNPNm2qaRaznJzccjtgGnAH5uOF8CZwKqS/m0uQzUzs2FWqQEHkt4FrA78pWXXhyRNkfSGpEclHSpp/pYyqwMPRMSbLdvvbdqf95xTB7sBXj/bzGyYVWaGA0kCTiUlxOObdt0A/A54CFgM2BY4EliTVNtpGA08knPoyU37zcysAiqTfIDjSIllj4h4sLExIg5rKXeJpH8Bh0haNyJubNoXgxw/d19EjBosKNd+zMyGXyWa3SQdDRwA7BsR4zt4yJnZ/TpN214gv3azZHY/OWefmZmVoPTkI+lI4BDgwIg4qcOHNeJu7t+5H1hNUutralw31NqPZGZmJSk1+Ug6HDgMOCwijuvioY1rfpqHX18AjAK2yin7cEQ8MNeBmpnZsCqtz0fSAcA44BJgoqRPNu1+NSLukvQZ4GDgD8CTwKLANsAewHkRcVPTYyYA1wCnSRpNul7oy8C62WPMzKwiyhxw0KihbJndmj0JrAg8nf1+JLAUqZntYWB/4GfND4iIkLQt8MPsNgp4gHTR6cUjEL+Zmc2l0pJPRIzpoMxfgc91cczpwDezm5mZVVTpAw7MzKz/OPmYmVnhnHzMzKxwTj5mZlY4Jx8zMyuck4+ZmRXOycfMzArn5GNmZoVz8jEzs8I5+ZiZWeGcfMzMrHBOPmZmVjgnHzMzK5yTj5mZFc7Jx8zMCufkY2ZmhXPyMTOzwjn5mJlZ4Zx8zMyscE4+ZmZWOCcfMzMrnJOPmZkVzsnHzMwK5+RjZmaFc/IxM7PCOfmYmVnhSks+kjaSNF7Sw5JelvSUpPMlrZFTdhNJt0h6RdKzkk6RNCqn3GKSTpL0dFb2DklbF/OKzMysU2XWfL4GLA/8BNgc2D/7/XZJn2wUkjQGmAD8HdgK+A6wNXCppNb4LwC+CBwKfA54ALhA0hYj+krMzKwr85X43N+IiGebN0i6AngC+C6wQ7b5WOAvwE4R8WZW7mngCuALwLnZti2AjYHtI+KCbNs1wMrACaQEZmZmFVBazac18WTbpgKPAssBSHovsDbw60biycpdCfyD2QkKYDtgGvDHpnIBnAmsKunfRuBlmJnZXKjUgANJ7wJWJ9V0yH6m6fdm9zXtb5R9oDlJZe5tOZaZmZWszGa3OUgScCopIR6fbR6d3U/Oechk4ONNv48GHmlTrvlYrc87dYjQlhhiv5mZdakyyQc4DtgW2CMiHmzZF20e07q9Xbmh9pmZWYEqkXwkHQ0cAOwbEeObdr2Q3efVWpZkzhrRC4OUg/zaExExYMh2S2xTce3HzGxYld7nI+lI4BDgwIg4qWX3/dl9Xn/NGszZF3Q/sFrO8OvGdUN5/UZmZlaCUpOPpMOBw4DDIuK41v0R8RRwB/DF5qQiaSPgvcD5TcUvAEaRrgVq9iXg4Yh4YJjDNzOzuVRas5ukA4BxwCXAxOYLS4FXI+Ku7OeDSNf0nCPpVGBZ4MfArcB5TY+ZAFwDnCZpNOl6oS8D6wLbjOBLMTOzLpXZ59OooWyZ3Zo9CawIEBFXS9oSOAK4FJgBXEhqppvVeEBEhKRtgR9mt1GkGQ62j4iLR/B1mJlZl0pLPhExpouylwGXdVBuOvDN7GZmZhVV+oADMzPrP04+ZmZWOCcfMzMrnJOPmZkVzsnHzMwK5+RjZmaFc/IxM7PCOfmYmVnhnHzMzKxwTj5mZlY4Jx8zMyuck4+ZmRXOycfMzArn5GNmZoVz8jEzs8I5+ZiZWeGcfMzMrHBOPmZmVriuko+kxyVtPcj+LSU9/vbDMjOzXtZtzWdFYLFB9i8KrDDX0ZiZWV8Y7ma3pYGXh/mYZmbWY+YbqoCk9YAxTZu2l/SBnKJLAjsDdw9PaGZm1quGTD7ABsDh2c8BbJ/d8vwV+PYwxGVmZj2sk+TzU2A8IOBxYD/gjy1lAngxIiYPa3RmZtaThkw+ETENmAYgaQPgwYh4dqQDMzOz3tVJzectEXHdSAViZmb9o6vkAyBpeWBv4IPAaFJzXLOIiI2GITYzM+tR3V5kujnwCPA94LPAysBKLbeVuzjecpJOlHSjpBclhaQxOeUmZftabz/KKbu0pDMlPS/pJUk3SPpUN6/TzMxGVrc1n2OA54FtI+KOYXj+DwC7AHcCVwFtZ08ArgcOatn2j+ZfJC2UHWcx4FvAC6QBEldJ+lRE3DUMMZuZ2dvUbfJZFTh0mBIPwPUR8W4ASdsyePKZEhG3DHG8PYEPA2tGxJ3Zca8DHgR+CGz+9kM2M7O3q9sZDp4DXhuuJ4+IN4frWJntgPsaiSd7jleBc4BNJL1jmJ/PzMzmQrfJ59fADiMRSAc2zPqFXpN0n6R9JLUOdlgd+EvOY+8F5gVWa90haepgN2CJ4X8pZmb9rdtmt/HABpL+CJwIPAHMai0UEX97+6HN4RLgDtJFrqOB3YBfAKsw54wKo4G8C10nN+03M7OSdZt8HiLNZiBgy0HKzTvXEeWIiG+2bLpA0tnAf0r6aUQ82Vx8sEPlHHvUYM/t2o+Z2fDrNvkcyeAn9yKdCewK/D+gkXxeIL92s2R27+l/zMwqoNsZDsaNUBxzo9Ff1Txo4X5Sv0+rNUjNgw+NdFBmZja0Oi+j/SVS4rm9adsFwBqSPtbYIGkB0rVEEyNierEhmplZnq5qPtnaPkOKiOu7OObnsx/Xzu7Xl7QU8FJE/EnSLsA2wKXAU6QmtN2AbYHjWgY3nAZ8Azhf0vdIzWz7AssCO3Yak5mZjaxu+3yupbM+n24GHJzX8vu47P5J0rLdTwBLAceS+nNeBe4DxkbEmc0PjIiZkjYEjgNOBhYizZ6wSUT8uYuYzMxsBHWbfPZoc4z3A2OBScAp3RwwIlqv1WndfwuwcRfHewbYvZsYzMysWN0OODiz3T5Jx5FqGWZmZoMatgEHETEF+B/gwOE6ppmZ9abhHu02hS6WVDAzs/40bMknW85gd+CZ4TqmmZn1pm6HWp/eZteSwDrAu4Dvvt2gzMyst3U72m1sm+2TSSucfjsifvu2IjIzs57X7Wi3Os+IYGZmFeFkYmZmheu22Q0ASYuTLvxsjGx7HLgyImYMV2BmZta7uk4+kvYCTgAWI63rA2nKnRcl7R8Rpw1jfGZm1oO6He22NXAqqabzfWYvWf1h4FvAqZKejYiLhzVKMzPrKd3WfA4EHgQ+EREvNm2/StIZwC3AQYCTj5mZtdXtgIOPAuNbEg8AWX/PmVkZMzOztuZmtNtgs1BXZYltMzOrsG6Tzz3AlyUt2rpD0mKki1DvGYa4zMysh3Xb53M8cD5wp6STgAey7Y0BBx8Ath++8MzMrBd1O8PBhZK+CfwY+Bmzm9kEvAR8MyL+OLwhmplZr+n6Op+I+IWk3wKbACuREs9jpItMpw1zfFYjWxz6k7JDGHYTjvp22SGY9aS5muEgIqYC5w1zLGZm1ieGHHAgaV5JP5L0tSHK7SPph5IGGw1nZmbW0Wi33Uhr9Nw+RLnbSBeY7vJ2gzIzs97WSfLZEZgYEX8erFC2/3KcfMzMbAidJJ81gYkdHu8aYK25D8fMzPpBJ8lnSeDZDo/3XFbezMysrU6SzwxgqQ6PNxoYMO+bmZlZs06Sz/3Aph0eb5OsvJmZWVudJJ/zgY0lbTNYoWytn02AP3T65JKWk3SipBslvSgpJI1pU3ZXSfdIminpqWz490I55ZaWdKak5yW9JOkGSZ/qNCYzMxt5nSSfU4C/Av8r6WhJKzbvlLSipKOA/wUeycp36gOk0XEvAle1KyRpN+Bs4CZgc+CHwDeA8S3lFsqOsz5prrntSM2GV0n69y7iMjOzETTkDAcR8YqkzwGXAN8DDpY0A5gOvANYnDTFzsPAlhExs4vnvz4i3g0gaVtg69YCkuYFjgMuioivZ5uvkfQ6aeXUn0TErdn2PUmTnK4ZEXdmj7+OtADeD0mJy8zMStbRkgoR8VfgY8C+wI3AG8B7gFnADdn2j0fEY908eUS82UGxT2bPdWbL9rOB14EdmrZtB9zXSDzZc7wKnANsIukd3cRnZmYjo+O53bIazc+yW5FWz+7/0hLPy5Iea9rfKHtNzjHuBeYFViPNxGBmZiWaq4lFCzY6u5+cs29y0/5G2XblaCkLgKSpQzz/EkMFaGZm3ZmbZbTL0m6J7tbtgy3l7WW+zcwqoA41nxey+9FNPzcsCTzRUnZA7YbZsy4MqBVFxKjBnjyrGbn2Y2Y2jOpQ82lctNrct4OkRYD3M2df0P2t5TJrkAZHPDQSAZqZWXfqkHxuAZ4Bdm/ZvgswP+ki2IYLgDUkfayxQdICWdmJETF9hGM1M7MOlN7sJunz2Y9rZ/frS1oKeCki/hQRb0g6GBgv6efA70mj1n4M/D4ibmk63Gmki0/Pl/Q9UjPbvsCypKUhzMysAkpPPgxcjntcdv8ksCJARJwpaRZpsbqvAs8DvwQOb35gRMyUtCHpotSTgYWAO4FNhlqPyMzMilN68omIjpbdjojfAL/poFxeE52ZmVVIHfp8zMysxzj5mJlZ4Zx8zMyscKX3+Zj1oi+Mn1h2CMPuvLEblx2C9RDXfMzMrHBOPmZmVjgnHzMzK5yTj5mZFc7Jx8zMCufkY2ZmhXPyMTOzwjn5mJlZ4Zx8zMyscE4+ZmZWOCcfMzMrnJOPmZkVzsnHzMwK5+RjZmaFc/IxM7PCOfmYmVnhnHzMzKxwTj5mZlY4Jx8zMyuck4+ZmRXOycfMzArn5GNmZoWrRfKRNEZStLmt2lJ2E0m3SHpF0rOSTpE0qqzYzcxsoPnKDqBLBwHXt2yb1PhB0hhgAnAhcCiwLPBjYHVJn4mIN4sJ08zMBlO35PNIRNwyyP5jgb8AOzUSjaSngSuALwDnjnyIZmY2lLoln7YkvRdYGziguYYTEVdK+gewA04+ZoX77kVXlh3CsDtu603KDqH2atHn0+QUSW9ImibpEklrNu1bPbv/S87j7mvab2ZmJatLzWca8FPgWmAysBpwMHCTpPUj4lZgdFZ2cs7jJwMfzzuwpKlDPPcScxOwmZm1V4vkExF3AXc1bbpB0kWkWs7RwMbNxdsdZoTCMzOzLtUi+eSJiGckXQFsnW16IbsfnVN8SfJrRETEoMOws5qRaz9mZsOobn0+reZhdo3m/uw+r29nDfL7gszMrAS1TT6S3gNsAtwCEBFPAXcAX5Q0T1O5jYD3AueXEaeZmQ1Ui2Y3SWcDjwN3AlOAVUkXnC4MfK+p6EGka3rOkXQqsy8yvRU4r8iYzcysvVokH9JQ6Z2BbwGLkvp3rgWOioi3mtMi4mpJWwJHAJcCM0izHRwYEbOKDtrMrNnJN19VdgjDbp91Npqrx9Ui+UTEj4AfdVj2MuCykY3IzMzejtr2+ZiZWX05+ZiZWeGcfMzMrHBOPmZmVjgnHzMzK5yTj5mZFc7Jx8zMCufkY2ZmhXPyMTOzwjn5mJlZ4Zx8zMyscE4+ZmZWOCcfMzMrnJOPmZkVzsnHzMwK5+RjZmaFc/IxM7PCOfmYmVnhnHzMzKxwTj5mZlY4Jx8zMyuck4+ZmRXOycfMzArn5GNmZoVz8jEzs8I5+ZiZWeGcfMzMrHA9l3wkLSbpJElPS3pF0h2Sti47LjMzm63nkg9wAfBF4FDgc8ADwAWStig1KjMze8t8ZQcwnLIEszGwfURckG27BlgZOAGYUGJ4ZmaW6bWaz3bANOCPjQ0REcCZwKqS/q2swMzMbDalc3NvkHQzKd98qmX7J4BbgJ0i4n9b9k0d4rBLACyxxBK5O198+eW5jreqFltkkbl63EszXx3mSMq36EILztXjXn7tjWGOpHyLLDB3DSUz3+i992Kh+ebuvXhtVu+9FwvMm/9eTJs2DdL5OLeS01PNbsBo4JGc7ZOb9s+NmDZt2vS5fOxwaWS/aSP9RNmHpsqKey9enTnST/F2FfdevDLSz/C2FfZe1OBrVmHvxSAfi8WBN9vt7LXkAzBYVW7AvogYNYKxDJtGDa0u8Y4kvxez+b2Yze/FbHV4L3qtz+cF8ms3S2b3k3P2mZlZwXot+dwPrCap9XWtkd3/peB4zMwsR68lnwuAUcBWLdu/BDwcEQ8UH5KZmbXqtT6fCcA1wGmSRgNPAF8G1gW2KTMwMzObraeST0SEpG2BH2a3UaQZDraPiItLDc7MzN7SU9f59LI6jF4pit+L2fxezOb3YrY6vBe91udjZmY14JqPmZkVzjUfMzMrnJOPmZkVzsnHzMwK5+RjZmaFc/IxM7PCOfmYmVnhnHwqStKYsmOoCkkLSHpM0pZlx1IlkhaRtJyknpqppBOS5pO0nqT3lh1LFdTxfOHkU11XS/qLpH0kLVZ2MGWKiNdIUyVVfzmzAkjaWNKtwHRgEvCRbPvJkr5QZmwFmgVMBD5cdiAVUbvzhZNPdW0LPAX8HPiHpJ9JWq3kmMo0Aej7mo+kTYA/AfMCP2LO/+FnSBPp9rxIV8c/CdTiRFuA2p0vPMNBxUn6ALAPMJb07f860gfswohou0Rtr5G0MXA6KQldCDxNy8q0EXFvCaEVStLNwD8jYoesue01YK2IuFPSdsBJEfG+cqMshqT/BHYFNoqIl8qOpwrqdL5w8qkJSQsBuwD/SWpm+SdwCnByRLxQZmxFkNT8j9P6oRXpy/C8BYZUCkkvk2Zpv0zSvMDrzE4+nwGujIiFyo2yGJJ+AnwBWBC4ioFfSCIiDigjtrLV4XzRdx2VNfYe4EPAcsCbpLWK/gv4jqRdI2JCmcEVYI+yA6iIV4F2yWUZYFqBsZRt36afd8zZH0BfJh9qcL5wzafiJG0BfB34LDAV+B/gFxHxd0nLZL9/MCJWKTFMK4ikCcA8EbFZTs3nYuDViPh8uVFaWep0vnDyqShJBwJ7AysB9wA/A34bETNbyn0KuKEfmpwaJK0KLAXc1W9t/ZLWAa4F7gDOAU4EfkBqWtkCWCci7iotQCtFHc8XTj4VJel1Usf6SRFxwyDllgH+IyKOKCy4kkjaAzgaWDrbtHb2jf/3pL6OU8qLrjiSNiV1In+gafPjwD4RcWU5UZVH0ubA+qQvJEdGxN8kfRRhcSsAAB7+SURBVBJ4IiL+VW50xajj+cLJp4IkzQN8Crg3IqaXHU8VSNoFOJv0D/YnUudpo7npQOCzEbFRmTEWTdL7SYn4+Yh4pOx4ipZdz3IxKfHMIg07b3wh+R1pVOD+ZcZYhLqeL3ydTzWJ1LSyXslxVMnBwK8iYnvSkOtmDwGVvqZhJETEYxHxf/2YeDLHkJobtwGWIP3fNFwO9MuXkVqeL5x8KigiZpGGRtpsHwLOa7NvKrBkgbGUStJK2WwGD0j6V3b/C0krlh1bwXYADo2Ii0mjAJv9HVi++JCKV9fzhZNPdZ0B7CNJQ5bsDzNon2CWB54vMJbSSFoTuAvYkzSjwdXZ/VeAuyV9vMTwirYkqdabR6Trf/pF7c4Xvs6nuqYDHwXul3QR+RfQ/ayUyMpxLXBA9l68nm2LrL17b9I8X/3gJ6TPwiYR8VRjo6T3AVdm+9cvKbai/Q1YE7gmZ9+awKPFhlOq2p0vPOCgolqu6M/TF1f0N2TDq28DngPOB/YHTgM+BnwQWDMiHi8vwmJIegUYGxHn5uzbGTg9IhYpPrLiSToS+CbpSv6JpC8la5JOupcDJ0TEseVFWJw6ni9c86mulcoOoEoi4iFJ6wLHk65sF6np6TpgvX5IPJnJQLtrm14CphQYS9mOBj5Nmu+vMWXMpcC7SbWh/y4prjLU7nzhmo/VjqQFgdHAlIjoq2UWsm/76wCbZR3Nje3zkr7t3xQRh5cVX9GyZtedgc3Jhp2ThuL/tvn9sepx8qm4bFr0xgV0/xMRz2Tt+y9ExMvlRmdFk7Q/sB/pupbzSYMN3gNsT6oNnpjtgwq289vIqtP5wsmnorLp8k8DdiObtZnZF9BdRLqg7NAyYxxpkr7fRfGIiB+MWDAV0UHbfrPKtfPbyKjj+cJ9PtX1fdJ08d8GLmPOIaV/IvV3VOrDNALGtfwezHkhYWNbQ88nH2rYtj9SJM0PHAR8EViBgUOrIyL65RxXu/NFv/xh6uhLwBERcVLWnt/sCfrgJBQRb12HJmkV0j/RGcBvSENJlwF2Jy2ctVkJIRYuIp4sO4YKOYZ0sv0TcAEDLzTtJ7U7Xzj5VNcypKHFeV4DFi0wlio4CTgrIo5q2jYJ+EH2z3YSqdPZ+seOwA8iYlzZgVRA7c4XnuGgup4mTSmTZ3XSBXb95NPAjW323QisW2AspZK0oaQ/SLpf0uMtt8fKjq9A7yQNtbcani+cfKrrQuBQSR9u2haS3ktqavhDOWGV5lWg3dQxa5K+3fU8SRsCVwDvIE2m+hDwFPA+0ii368uLrnA3kq7qtxqeLzzaraIkjSL9c60C3E06wd5NWsPlCeDT/bSQmqT/AXYl/SOdExHTJS2ebTuBdF3HV8uMsQiSrgMeIF3Z37yK6YdJ1/l8KyIuKDPGomT9gBeSZjyfEBFvlBxSaep4vnDyqTBJi5Ku5m+9gO4nEfFimbEVLUs0FwOfIY1wmwksRBr9dj2wVUTMKC/CYkh6jjTI4grgDeATEXF7tu+rpAXlenZyUUlTmHOE40KkUW6zgNb/iYiI0UXFVra6nS+cfKw2shl7NyNdRDeaNKXKNcAV0ScfZEnTSIn2eknPk+Z5uyTbtyFwSS/P7SZpPHMmn0FFxB4jF429HR7tVnGSFiBNntk42d4dEX3Rv9GQvQc7A7dGxJ9I3+b61STSyCaAB0nvyyXZ79sDPb1sdESMLTuGKqvT+cIDDipM0ndI06fcTJow8WbgmWyKlb6R/fOcCixbdiwVMBHYJPv5p8Cukh6V9ACwD+l96guSvi8p9zMhaZkuZ8iovbqdL9zsVlGSvk3qSL8M+B3pG+3SpOnjNwX2j4gTy4uwWJLuA46JiN+WHUuZsklVF4yI6dnvXyB9JgK4NCJalxjvWZJmAetExIDrW7JF927rl+mF6ni+cPKpKElPANdExJ45+8YD60dE5a5aHinZWjWHA5tGxN/LjqcM2QzOy5Fm8+75wRVDyea5+2Sb5LMRqf9r4eIjK14dzxfu86mu95C+weQ5B9ipwFiqYCdgceBRSXeTv1LjDqVEVhwBjwPbMrufp69IWg8Y07RpL0mtUystDGxF+yW2e1HtzhdOPtV1P7B8m30rkK716Cf/TrqQ9GlSc8LSLft7vgofEbMk/bPsOEq2AakGDOlvvlebco8D3yokomqo3fnCzW4VlTUbnAHsGRETm7ZvCvyKNMQ2b+1662GSjgDWArbsl+HlzbI+r8b1XZOBjYE/txR7NSJmFh1bmep4vnDyqRBJd7ZsWo5sxU5mdyC+kzSE8u8RsWaxEVrZJB1AmuVhOnAR+c2PfbGAnKQVgKerOpR4pNX9fOHkUyGSrqW7C+g2GLloqkVSuyaFt0RE5SZPHG4dLCbXdwvIZdPsjKHpwuOIeLTUoApQ9/OFk4/VQnbSHfTD2g8n3ezb/qD6Zc2fbPTfL4GvMOcig28Cp0bE10sJzDriAQdWF3syMPksBWxNam44asAjelA3iSWbjugw0on4mZGLqjQHkRLPicBZzLnA4H6SnoiI40qMzwbhmk+FSVoC+BpzzmV2LXBKREwrMbRKkXQecF9EHFl2LFWSLbL3GrB2RLT2D9SepEeAP0bEd3P2HQdsHRHt1rjpOXU7X3h6nYqS9H7gPtJSwauSmhJWBX4E3Ctp5RLDq5rxtB9y2+80dJHaWoG0jESey7P9faGO5wsnn+o6idQs+smIWDki1omIlYF1gPmz/ZbMB4wqOwgr3GTS+jV5Vs3294vanS+cfKprDPC91qlDIuJW4L+Y8yrvviRp/mwOryOAe8qOxwp3CXCUpM2bN0raAjiStP5TvxhDzc4XHnBQXS/Tfnr8p7P9fWOI0W5TgM8WGI5Vw/eATwGXZOscPUOaZmYJ0hX/3ysxtqLV7nzh5FNd5wJjSbPUthoL/G+RwVTAkQxMPjNJ69tM8ESb/Scinpe0Fun/YQywJHAvcDVwVp/NclC784VHu1WIpK2bfl0EOBZ4kvTBaXyr24k0tPjgiGg3kaBZY7Tb68BavTjarRu9OOy87ucLJ58KaWpaUtN9O/14JftHSOuTrECa36tZP8xq3RUnn9l6cdh53c8XbnarlkpNf1ElknYDziQNIX2WdCJp1vPforIlkh8E9o2IIZdUyGbBXgno95mwG3pt2Hmtzxeu+VgtZBcUPkianXdK2fGURdILwI4RcVXZsdSJa4HV45pPxUlaHPgks69YvqWxhHKfWRb4ej8nnswEYEvAyccGqNP5wsmnwiQdAhxCWpmx0WTwsqQjI+LY8iIrxR20Xyyrn5wJnC5pYeBCBi6pQETcW0ZgVq66nS/c7FZRkr4KnEI6wbROmrgtsFdEnFFehMXKLiY9G9gjIm4uO56ytCyp0PrPKyrYsVwFvd7sVsfzhZNPRUm6D7g9IvbM2Xc6sGZEfLT4yMqRDZU9HtgPmMHAqVMiIt5feGAFk/TlocpExJlFxFInfZB8ane+cLNbdX0Q+E6bfeeShhz3k6NJK3g+ATzEwNFufcGJxdqo3fnCyae6XiRdJJZn2Wx/P9kLOCki9is7kKqQtCppTaO7IuKlsuMpkoedD1C784UnFq2uq0iTJn64eaOk1UkTaV5ZSlTlWQi4qOwgqkDSHpL+SZq/7DrgQ9n230vau9TgChIRr5FmMn+li8c8GRGvj1xUpard+cLJp7oOJtVM75F0p6QJku4E7gbmzfb3k6uBtcoOomySdgFOA24hLRzWfOHkbcCOZcRVksawc6vh+cIDDipM0tLA/syeNPEF0kn4JxHxXImhFU7SGqS265+TTjoD1mqp6vUMw0nSPaRrN/Zu7UTP5vr6ZUQsW26UxZC0MXA66fPQ98PO63a+cPKpIEnzkCYDnOLZmpOmIcZtP7D9MMRY0kxgy4iYmJN81gOuiIjWee96koedJ3U9X3jAQTUJeJw0Pn/IztQ+kbekQj+aQfpWm2d54PkCYynbHmUHUBG1PF84+VRQNjKnV0flzJWIGFd2DBVxLXCApItItR6AyL797g1MLCuwonnYeVLX84UHHFTXGcA+2cWVZg2HAauRRrr9iFQb3Ic0AGF1Ug2x70haVdK6khYtO5aS1O584ZpPdU0HPgrcn33Lbe1MjYj4WSmRWWki4iFJ65Jme9iX1OSyJ2nI9XoR8XiZ8RVN0h6kC5CXzjatDdwp6ffAlRFxSmnBFat25wsPOKiols7UPH3RmWrtSVqQNHvxlIjo+HqXXpENOz+bNNLtT6S5zRqDLw4EPhsRG5UZY1HqeL5w8qkoSSsMVSYiniwiFrMq8rDz2ep4vnCzW0V180HpxfXpbTZJ3++ieETED0YsmGr5EHBAm31TaT8qsOfU8Xzh5NMb5gEOJw2zdPLpPeNafg8GLgnd3ITRL8nHw87nTiXOFx7t1jtqM8rFuhMR8zRuwKrAJOD7wMqkhcNWJiWoSdn+fnEtadh580W1fTnsfC6Ufr5wzcesXk4CzoqIo5q2TQJ+kPV7nARsXkZgJTiMNJ/d/cD5zB52/jHSEgNDrn1k5XHNx6xePg3c2GbfjcC6BcZSqoh4iPR6H2POYecz6MNh53Xjmo9ZvbwKfJw0hX6rNemzRfayiUM37fdh53Xk5GNWLxcCR0iaDpwTEdMlLQ7sSuoH+m2p0ZUkIl6ldxeK60lOPmb1sj+pP+Nk4BfZLNcLkZqcrs/29ywPO+8dvsi0B7ReYFd2PDaysus0NgPWJzU1vQBcQ1pOoaf/oXOu5B902HnVruqvgqqcL5x8Kqjb9emzx6wA/LOHlwnue9nnYmfg1oh4uOx4yiZpFdK0OmcAvyHNZ7YMsDswFtgsIh4tLcCSSFqEdP3TMxHxRpsypZ8vPNqtgrw+veXJPhenAn0xZUwH3hp2HhGTIuLV7P4HwK+z/X1D0saSbiVNMjoJ+Ei2/WRJX2guW4XzhZNPdXl9esvzKOnbvXnY+VskbUKqBc5LWmqj+dz+DBW85skDDqrrTOB0SQvj9elttqOBwyXdEBF/LzuYknnY+WxHAhdFxA6S5gMOadp3L7BXOWG15+RTXVdk9/8BfLVln0iJyJ2p/WcnYHHgUUl3k79uyw6lRFY8Dzuf7aPAEdnPrR35zwPvKjacoTn5VJfXp7c8/076Rv80aQG1pVv299MIor4edt7iVdJrz7MMMK3AWDri0W5mVlv9POy8maQJwDwRsVnO2kYXA69GxOfLjXJOTj41IGlVYCngroh4qex4zMrmYedzkrQOaZbvO4BzgBNJS2t8BNgCWCci7iotwBxOPhWWtz599k2m39ant4yk5YcqExF/KyKWsmXNbJtHxDVlx1IFkjYFfg58oGnz48A+EXFlOVG15z6fisrWpz+NOdenb7gN2LFlm/WHSQzdr9MvA1E87LxJRFwBrCLp/aQvrM9HxCMlh9WWaz4V5fXpLY+ksQxMPksBWwPLAUdFxBlFx1UGSTuTVuTc1MPO68c1n+ry+vQ2QESMb7PrBEnnAe8rMJyyedh5E0krAQcy5+CLa4FjI2JSeZHlc/KpLq9Pb90aTxp2fGTJcRTFw84zktYkXWy7MHATcA/p/fgKsKukDas26bCTT3VdS1qf/iJSkxt4fXob3HykOQH7QkSsWHYMFfITUhLeJCKeamyU9D7gymz/+iXFlst9PhWVDa++DXiOtD79/qQBCI316df0MsEGIGl+0pDa04AZEfGZkkOygkl6BRgbEefm7NsZOD0iFik+svZc86moiHhI0rrA8cy5Pv11eH36vpWtZ9PuG+MU4LMFhlMqDzufw2Sg3TWAL5E+G5Ximk8NeH16a5A0joHJZyZpCPaEiJhRdExlGSIRA/2zmJykI4F1SGsYzWraPi9wOXBTRBxeVnx5XPOpAa9Pbw0RMa7sGCpkT4YYdl54ROWZShoh+1dJ55OWUXgPsD2p1eRSSf+ZlY2I+Fk5Yc7mmk+FeH1664SkjwC7ACswcDLJvhpe3E427Py+iOiLkX85y4sPJqpQI3TyqRCvT29DkbQbaa2nN4FnGbhmTUTEyoUHVjGSPgecHBFD9gv1gmxZ7I5FxJMjFUun3OxWIRHx1uqDnaxPX0KIVr7vA5eQRjZVrhO5Qvpt2HnpyaRbrvlUlKTLgJsj4oicfeOAT0TE5oUHZqWS9CKwbUT4Oq8cHnZeH675VNengePa7LuR9lPvWG+7gzTDRd/zsPM5SdoQ+AawKmmmg2YREe8vPqr2nHyqy+vTW54DgLMlPRgRN5cdTMmOxMPOgbcSzxXA1cBqwGXAYqTh15NIX1grxcmnurw+veW5E7gUuFHSDNLFhc0q9w13pHjY+RwOB34FfJM0Hdeh2Qz4HyZd53NRmcHlcZ9PRWWJ5mLgM6Rvd63r02/VT9/sLJH0Q+Bg4AngIXJqwBGxXdFxlcXDzhNJz5EGI10BvEHqE7492/dV0oJyHy8xxAFc86morKYzBq9Pb3PaCzgpIvYrO5CydTLsvPCgyrMA8HJEvClpMnPO8P0YqR+oUpx8Kqhlffo/kYZcm0H6dl+5JpSSeNj5bJOYvarrg6TzxyXZ79sD/yohpkHNM3QRK1pEvAacCnilUmt1NbBW2UFUxLLAz5x4gLTEyibZzz8lreHzqKQHgH1I55NKcc2nurw+veU5DDg3u95nAgMHHBAR0wuPqhwedj7bIcCCABHxB0k7kfrCAjg+Ik4vM7g8HnBQUV6f3vI0TcHU9h+3X6ZdylbvPBvYo5+HnWcLTC5HmvW+NoOQXPOpLq9Pb3nyrm3pVx52ngh4HNiW2f08lefkU11en94G8LUtczga+DaDDDvvBxExS1Ltllxxs5uZ1ZKkZ4Hfetg5SDqCNBBly7pchuGaj5nVlYedzzYd+Chwv6SLyG+mL30BuWau+VSU16c3G5ykC4H/i4hjy46lbB0sJleJBeSaueZTXZMYul+nUh8ms4J52PlsK5UdQLdc86koSWMZYn36iDij6LjMqsLDzueOJJES96kR8UxpcTj51E+/rU9vlidbVHHQE1jeYoz9TtK8pJGBa0fEnaXF4eRTP/22Pr2ZDZ8s+bwOrFVm8vHcbvXUV+vTm1nv8YCDGmlan/4I4J6SwzEzm2tOPhXl9enNrJc5+VSX16c3s57lAQdmZn2kKgMOXPOpMK9Pb2a9ysmnorw+vZl1QtICpKWz942IIZdUyGbBXgkodSZsN7tVlKRHSB8or09vZoOS9AKwY0RcVXYsnfJ1PtXl9enNrFMTgC3LDqIbbnarLq9Pb2adOhM4XdLCwIUMXFKBiLi3jMDacbNbRXl9ejPrVMuSCq0ndeElFawLXp/ezDq1R9kBdMs1n4qS9EPgYAZZnz4itis6LjOz4eDkU1Fen97M5oakVUlrf90VES+VHU87Hu1WXV6f3sw6JmkPSf8E7geuAz6Ubf+9pL1LDS6Hk091XQ2sVXYQZlZ9knYBTgNuAb5GGmTQcBuwYxlxDcbNbhUlaQ3gXODneH16MxuEpHuAWyJi79a52yRtDfwyIpYtN8o5OflUlNenN7NOSZoJbBkRE3OSz3rAFRHROj9kqTzUurryllQwM8szA1iyzb7lgecLjKUjrvmYmdWcpPNISWZ9Uq3ndWBN0orH1wGPRcTY0gLM4eRjZlZz2fDq24DngPOB/UkDED4GfBBYMyIeLy/CgTzazcys5iLiIWBd4DFgX9Jotz1JzXHrVS3xgGs+ZmY9RdKCwGhgSkS8UnY87Tj5mJlZ4TzazcyshiR9v4viERE/GLFg5oJrPmZmNdSyjAKkSzOUsy39ULHrAj3gwMyshiJinsYNWBWYBHwfWBlYOLsfl21ftZwo23PNx8ys5iRdBtwcEUfk7BsHfCIiNi88sEG45mNmVn+fBm5ss+9G0jDsSnHyMTOrv1eBj7fZtyY5i1GWzaPdzMzq70LgCEnTgXMiYrqkxYFdSf1Avy01uhzu8zEzq7ks0VwMfIY0wm0maUFKAdcDW0XEjPIiHMjJx8ysB0gSsBlpctHRwAvANaTlFCp3onfyMTOrMUkLADsDt0bEw2XH0ykPODAzq7GIeA04FajUSqVDcfIxM6u/R4Flyg6iG04+Zmb1dzRwmKT3lR1IpzzU2sys/nYCFgcelXQ38DRN87qRJhbdoZTI2vCAAzOzmpM0iTmTTauIiJULCqcjTj5mZlY49/mYmVnh3OdjZlZzkpYfqkxE/K2IWDrlZjczs5rLFpYb9GRetcXkXPMxM6u/PRmYfJYCtgaWA44qPKIhuOZjZtbDJJ0H3BcRR5YdSzMPODAz623jgb3KDqKVk4+ZWW+bDxhVdhCt3OdjZtaDJM0PfAQ4Arin5HAGcPIxM6u5IUa7TQE+W2A4HXHyMTOrvyMZmHxmApOACVVbxRQ82s3MzErgmo+ZWQ+Q9BFgF2AFYKGW3ZWb1drJx8ys5iTtBpwJvAk8C7zWUqRyTVxudjMzqzlJjwAPAmMjYkrZ8XTCNR8zs/pbFvh6XRIP+CJTM7NecAcw5MzWVeLkY2ZWfwcAB0pap+xAOuVmNzOz+rsTuBS4UdIMYHLL/oiI9xcfVntOPmZm9Xc08G3gCeAhBo52qxyPdjMzqzlJzwK/jYj9yo6lU+7zMTOrv4WAi8oOohtOPmZm9Xc1sFbZQXTDfT5mZvV3GHCupBeBCQwccEBETC88qkG4z8fMrOayJRVgkGl0ImLegsLpiGs+Zmb1l7ekQqW55mNmZoXzgAMzMyuck4+ZmRXOycfMzArn5GPWAUmLSNpP0g2SJkt6XdK/JE2QNFbSXA3eyR5bm6vSzYaLBxyYDUHSB0iTNq4CTASuAJ4H3g1snN2Oi4gD5+LY1wIrRsSKwxWvWR14qLXZICQtDFwCrAzsEBHntxT5saS1gbULD64kkgQsGhEvlh2L1Zeb3cwGtxfwIeCEnMQDQETcHhG/aPwuaVNJ50p6XNIrkqZKukLS+s2PkzQJWB9YQVI03cY0lfmgpF9LelrSa5ImSTpO0qKtcUhaX9LN2XM+I+lESR/Ojjmupeyiko6R9JikV7PyZ0laoaXcmOzxYyV9Q9IDwEzgO5IukvSSpMVzYvl/2eMOG/Idtr7kmo/Z4D6f3Z/axWPGAksCZwFPAe8lJbGrJG0QETdk5fYDjgGWIk2H3/AggKQ1SXN2TQVOAf4BfBT4T+DTktaPiNezsuuSmgOnAD/KHrMj8OnW4LL+qcuzfb8HTgA+COwDbCpprYh4quVh+wGjgV8BzwB/J62euRWwSxZfsz2BN4HxQ7xX1q8iwjfffGtzA14Apnf5mEVzti1N6iea0LL9WmBSm+PcQ1qb5R0t27cjXc0+tmnbbaQaycpN2+YHbsrKjmva/tVs27Etx/1ctv3XTdvGZNsmA+9uKT8v8DfgtpbtiwDTWl+rb74139zsZja4xYGuJmSMiJcaP0taTNJoYBZwK/CJTo4haQ3gI8BvgQUlLdW4ATcCLwGbZmWXJvU5/TEiHm+K43XgxJzDb0eqlRzTEvelwN3ANpJazw1nRcSzLeVnAacDa2fxNnye9L6d1slrtf7k5GM2uOnAO7p5gKT3S/qdpCnADFKN5zlgC+CdHR5mtez+iOyxzbdngUVJtSmAlbL7h3OOk7dtJeCfETElZ9/9pNe7VMv2R9rEeRopsX6ladtXshhrtb6MFct9PmaD+wuwnqSVm2sV7UhaDLielBx+CtxHSkBvAt8DNuzweZXdnwBc1qbMlJayneq2PMDLeRsj4u+SLgN2k3QgsDywHnB8VvMyy+XkYza4P5BOpnsBh3RQfiNgWWDPiDijeYeko3LKt7vQ7tHsflZETBziORtJ8UM5+/K2PQZsJmlURExt2fdvpNre80M8Z7NTSf1F2wL/nm1zk5sNys1uZoP7H1LT1XckbZNXQNKakr6e/TqrsbmlzKbk9/e8CLwzu3am2V2kWtfXJK2c85zzSVoSICL+RRp5tk1zWUnzA/vmPOeFpP/9g1uOuTkpeVwUEW/mPK6dS0kj8fYGvgzcFBEPdfF460Ou+ZgNIiJelrQl6QR7oaQrgCtJo+DeBWwAfBY4NnvIjaShyCdIWpE01PpjwO6kJrjmjnmAW4AtgZ9L+j9S8ro6Ip6VtDtpqPW9kk4n9ccsAnwA2J7UjDc+O853srj+T9IvSKPNdgQWaLyUpuccT0oSB2UxXp8d8+vAv+ishtf8Hs2SdAZwaLapq8dbnyp7uJ1vvtXhRjrpf5uUXKYAr5NO1JeSEsu8TWU/QuqnaQw4uBb4DOmkHy3HXZTURPUvUuIJYEzT/hWAXwKTgNdISe/PpJFq72s51oakZDYzO96JpNpWAAfmPO8xpCa710gDBH4NrNBSbgwtw7rbvD8rZPFPJ2eouW++td48t5tZD5O0A+lC0l0i4ncj+DzLkC48PS0i9h6p57He4T4fsx6gZKGWbfMD+wNvkGpfI2kf0kWn3cwEYX3MfT5mvWFB4ElJZ5MGSIwGdiI1Af44Ip4ZiSeVtDNpePV3gcsj4s8j8TzWe9zsZtYDJM1LmndtfWAZ0mi7h4FTo2nS0xF43iD1Md0A7BER/xip57Le4uRjZmaFc5+PmZkVzsnHzMwK5+RjZmaFc/IxM7PCOfmYmVnhnHzMzKxw/z+EE59kWBzoBwAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"category_bar_plot(main_crime_df, \"Main Crime Breakdown\", 90)"
]
},
{
"cell_type": "code",
"execution_count": 131,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" count \n",
" category \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" 324 \n",
" gun \n",
" \n",
" \n",
" 1 \n",
" 242 \n",
" other \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" count category\n",
"0 324 gun\n",
"1 242 other"
]
},
"execution_count": 131,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"type_of_crime_df = get_value_counts(death_row, \"type_of_crime\")\n",
"type_of_crime_df"
]
},
{
"cell_type": "code",
"execution_count": 132,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 132,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ8AAAEtCAYAAADX4G3qAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3dd7wcVf3/8debZhQwkSAo4JciKiDYEAS+KKEEASmhKCAiCCoWLCjVHygWuigiX5UoJQLSJKHG0AJSBJQikAABaQrS06ih5PP745wlk8nsvbu3zN7cvJ+Pxzwme+bMmTN7N/vZU2ZGEYGZmVmdFup0BczMbMHj4GNmZrVz8DEzs9o5+JiZWe0cfMzMrHYOPmZmVjsHH1tgSFpW0p8kPSkpJE2o8dir5WMeXNcxByNJN0u6r5dlPFnn396qOfgsYPIXYKvLSp2ubx87ERgF/BrYHTi2ux0kLSbpq5KulvSspNfy+mpJ35A0pL8rXQdJ51T8/adKul3S9yS9pdN1tMFlkU5XwGq3e+n1J4GvAqOB60vbnqmlRvUZCVwaEUe0klnSu4FLgLWBvwHHA08CSwEjSEFsPeCLLRQ3BXgr8Frbta7Xl4FZgIDhwPak8/4EsHMH62WDjIPPAiYiziy+lrQIKfjcVN42mEhaDHgHMLXF/AsBY0mBZ5+IGF3Kcryk1YFtuilnyYh4PtKtRF5pv+a1OzciXmi8kPRr4J/ATpIWj4gXm+2Y32NFxKwa6mnzOXe7WVOSNsjdL4c22T4xd828Jb8+R9Irkt6Vx1amSnpR0hWS1mpSxm6SbpL0gqSXJP1N0nZt1HFJScdKekjSq5KekHSapBUKeY4m/ZoH2KfQrbRLF0XvSGrVjKkIPABExL0R8WbXXWM8QtL7JI2TNA14Om+bZ8ynmJbfh7slvSzpfkm75TwrN8qSNEPS6ZIWr3gfVpA0WtJ/8vvwuKTfSBre6nvZ5BzfAJ7KL99stUk6Otf9fZJOlPQ48DLw0UKeLXP35Iz8ufinpL0r6r6VpPMlPZzzTZM0QdIGrdRR0jKSbs37fbKQvpKksZJm5jqMa9aVrOTruY4vS5qe67BeKd88Y06S9srvxc2l9P1y+ofy6y0anzulrtx7Jc3K571fK+c6mLjlY01FxN8kTQL2knREFG4EKGllUtfTSaVfugsBVwKPAT8EVgC+CVwvad2IuL9Qxs+B7wOXAv8vJ+8EXCjpKxHxh67ql39pXw2sA5wD/BxYDfgasLmktSPiybxtCnAqMBE4LRdxUxfF75TXlYGnC8OA63K9DgGWbmGfHYHlgd8C00kt0TMkvU7q8vpLLmt9YA/gBWDfxs6S3kvqFgQ4BXgYeD/wdWBEft/fbM10Y7jmjGMNB3YANgFOjYhXK/KfDzwPHEfqqnsm1+lbpDG264GfkgLTFsAfJK0UEYcVytgbWAI4HXgceA+p++9aSRtGxN+bVVbSqsDlwGLAhhExOacvnY+9LOl9nQJsSvr7V43TnQB8m/SZOIT0d9wH+KukrSLi6pxvInCIpOUj4vGctgkwG/i4pKERMaOQ/ixwd+lY3yV9Lk4FZgJ7Ar+Q9GhEjG12roNORHhZgBfSBz+APZts/3bevkkp/ac5/UOFtHNy2tmlvOvn9AsLaRvktB+W8gqYQOoee2s3df9WLuMnpfQdc/rvC2lDctrvWnxfJuf8b2vjvbw573NoxbbV8raDK9JmAssX0pcntTJmA98olTOe1H33lkLa5cB/gXeV8v5vLuPgFure+NtVLb8GFirlPzpvuxxYuLRtReBVUsAqH+fkfG4rFNIWr8i3PCkQj614j+/L/16H1LKcVCwvb/tFrt+upfTf5fQJhbQP5bSJwCKl83gBuJ/UnQiwWc67eyHf48Afc/q2OW3hXP/zCvm2yHkeBZYopC8JTAOu6e3/5/lpcbebdeePpF+tb3aXKI2H7AncGhF3VexzTPFFRNxEag1sqTmzpnYjfTGeKWnpxkL6tX0RaXxmnW7qtj3pS+640vEuAO7L23vq7cAbEfFSm/vNBn7Z5j7nx5xf0eR/P0Q6t5NLea8H3kJqHSBpGWBzYBzweum9nEL6otu8jbpsQ5qYMRLYlfT3/yZwUpP8v4zUNVf0OWBR4NRifXKdLiH1uGxSON83x5EkLZG7CmcBt5ImOsxD0lbANaS/84YR8VgpyyjgP6SgWnQM8xqV10dHxOuFej0KnAm8D/hgTr4x122TXI/VgOVIrbZ/kVpXkMYKh5ICWtkfotASjYjn87m+r+pcByt3u1mXImK6pD8Dn5X0joiYBnya1J32s6pdSF8IZfcAn8r7PQisTuqie7CLwy/bTfVWBv6d//OWTQZ2lPT2iJjZTTlVZgIrSHprRLzcxn6PRxeD8k08VJE2jdTaKH+xT8vr4aQvu9Xy62/kpUo7AfTamLuL7hxJs4GvSzovIq4t5b+fea2e1+XZk0Vv/m0lvR84ghTwhpbyVb33/0P6gXIHsHlEzDWRQ5KAlYCrIzctGiLiYUnlMlfO68kVx5qU16sAkyLi5Ty20wiem5Baon8jBZpiOlQHn6q/93Okv+kCw8HHWjGaNEX788D/kVpBLwFnt1GGKl6/BnyGFLCqlPvKuyuzL00C1iANoP+tm7xF7baUAMoBprt0mHPujfWpNP97tBsMyy4ntXQ3Aa4tbas630addiF9qVZ5AEDSMFKQWpTUVTaJ1NU1G/gR1a3fp0hBbzNSK+uPTY7f7HNV9Vlsx0Tgx3msbRPSTNFXJE0Evipp2Zz+eBTGOAua/V378/M84Dj4WLci4gZJ9wJ7SzoP2Bb4U5MWhUi/xv9ZSl+d1I3U6B55gDRh4V8R8XAPq/YgsKGkJWLeAfU1gGd72OoBuID0xfZl2gs+dXsgrxeJiKv66RiL5vWSLeZv1OnpiLimm7yfBpYBPh8RcwXPPCGlyizSZ/AC4DRJi0bEKY2NETFb0iPAapJUbP3kiTLlCQeN1vcHSeM3RWvkdbG1MhH4MSn4jWBON+tEUsD7NGm87YIm9Tc81dpa93tSK+AXpC+jrmaiHVR8IWl9UpfbhJgzM+6MvD46jyFR2qe7LjeAC0mznPYv7bs9Kdhd2EIZzfyZNLi9p6S9qjIoTZU+sBfH6LWI+C9pZt0ukj5W3i5poTzW0huNMZHbWsx/DqlV+1NV3BlB0jskNQJaoxWgUp5tgA83O0D+HO1AGkP6vaR9SlkuIo2LlafTH8S8LsrrA5Wue2vU4T2kFv/9zN0ldwupNfkdUlfZxFynZ0gtt4OAt1Hd5WaZWz7WqjHAUcAXgCkRcUOTfK8Ba0oaD1xGGuPZlzQd983/+BFxvaSjSNNaPyDpAuAJ0uDtx4GN6f6XdqM78Ed5yu2NwAdIU4z/CxzWxb5dyr+edyBNAz9F0pfy+TxFmgzxSdLg/EC4MPcrwA3ATZLGkFqdi5DGKUaRZngd3WJZO0tq/EAYDmxJ+iV/G3BeKwVExEOSvg38BrhH0pmkwf9lSDPLtiONszxJ6sZ7Fvh1Hvv5L2mwflfSF/6qXRznVUmfBf4E/Da3gBoTI44ktVzH5Gt1GlOtPwrMKJVzl6QTSTM7r5V0Pmns6WukyR3fKLaeIuI1STfk9+V54B+F4iaSglLj39ZMp6fbeensQjdTrUt5z8p5D2iy/RzS4Ou7SOMPU0m/EK8EPtxkn+2Aq0gD6bOAf5O+5Pdusf5Lkma7PULq1nuSNPOoPPW2ranWhf0WI113M5E0fvEa6cvyKtJ1IMUpz29OA64op6up1vNMhW5WFukLMYD1SunLkFqlD+T3cRpwZ057fwvnWTXV+hXS5JEjKEwNzvkbU63f1UWZnwIuJl378yqpS+tq0nUuixXyfSx/RqaTvswnkqbnnwO80t37Qgq0f8r12a+QvgppFuDzpAkkF5ImIjxJYap1zivShI0783nPIE35X7/JuR2Qj3dZKX2bnP6vin0aU613afZ/pz/+jw/UpTF33axbkk4ltXxWiIinK7afA4yKiEFxs00z6z8e87GW5HGDnUkXis4TeMzM2uExH+tSvi/Vh0mzvobQ+tiBmVlTbvlYdz5Puo5iZeCrEXF7h+tjZoOAx3zMzKx27nbrRr6z8EKk2TJmZtaatwOzI6Iyzrjl0418XysNHVq+5ZSZmTUzY8YMgIiIyuEdt3y6N3Po0KFDp0+f3ul6mJnNN4YNG8aMGTOa9hh5woGZmdXOwcfMzGrn4GNmZrVz8DEzs9o5+JiZWe0cfMzMrHYOPmZmVjsHHzMzq50vMq3JVof+svtMtsAZ/7P9Ol0Fs45wy8fMzGrn4GNmZrVz8DEzs9o5+JiZWe0cfMzMrHYOPmZmVjsHHzMzq52Dj5mZ1c7Bx8zMatex4CNpA0mXS3pc0iuSnpE0UdKWFXlHSrpZ0suSnpZ0sqRhFfmWkHSipCdy3lslbVvPGZmZWas62fJ5BzAF+D6wBfBVYBYwXtIujUySRgDjgf8A2wD7A9sCl0kq138csBtwKPAZ4B5gnKSt+vVMzMysLR27t1tEXAZcVkyTdAnwMCkQnZOTjwUmATtHxOyc7wngCuCzwLk5bStgM2CHiBiX064BVgGOJwUwMzMbAAbUmE9EvA7MAF4DkLQ8sA5wRiPw5HxXAo8DOxZ23z7ve1EhXwBjgNUkrdHvJ2BmZi3pePCRtJCkRSQtJ+nHwPuBxi2g18zrSRW73l3Y3sh7TzFIZXeVyjIzsw4bCI9UOI85LZiZwOciYkJ+PTyvp1bsNxX4WOH1cOD+JvmKZc1F0vRu6je0m+1mZtamjrd8gAOBdUmTCMYD50natZQnmuxbTm+Wr7ttZmZWo463fCLiIeCh/PKSPOng/ySdCzyX06taLUsxd4vouS7yQXXriYiYZ8p2UW4ZufVjZtaHBkLLp+zvpGnY7wQm57Sq8Zq1mHssaDKwesX067XyumrcyMzMOmBABR9JAkYA04HnIuIx4FZgt2JQkbQpsDwwtrD7OGAY6Vqgoi8CUyLinn6supmZtaFj3W6SzgIeBW4DngXeDewBbAJ8K0+7BjiIdE3P2ZJGA8sBxwC3AOcXihwPXAOcImk46XqhPYANge36/YTMzKxlnRzzuYl0N4J9SGMqM0itnG0j4pJGpoiYKGlr4Meki1KfBy4EDoyINwr5QtIo4Mi8DCPd4WCHYnlmZtZ5nbzDwUnASS3mnQBMaCHfTGDfvJiZ2QA1oMZ8zMxsweDgY2ZmtXPwMTOz2jn4mJlZ7Rx8zMysdg4+ZmZWOwcfMzOrnYOPmZnVzsHHzMxq5+BjZma1c/AxM7PaOfiYmVntHHzMzKx2Dj5mZlY7Bx8zM6udg4+ZmdXOwcfMzGrn4GNmZrVz8DEzs9p1LPhI2lTS6ZKmSHpJ0mOSxkpaq5TvWklRsZxTUeYSkk6U9ISklyXdKmnb+s7KzMxasUgHj/01YDjwS+BeYFngQOAfkkZExM2FvA8AXyzt/2xFmeOAj+VyHgb2BMZJ2iYixvdt9c3MrKc6GXy+GRFPFxMkXUEKGgcAOxY2vVQKRvOQtBWwGbBDRIzLadcAqwDHAw4+ZmYDRMe63cqBJ6dNJ7VyVuhBkdsDM4CLCuUFMAZYTdIaPayqmZn1sQE14UDSO4E1gUmlTR+QNE3S65IekHSopEVLedYE7omI2aX0uwrbzcxsAOhkt9tcJAkYTQqIPy9suh44B7gPWAIYBfwEWJvU2mkYDtxfUfTUwvaq407vpmpDu6u7mZm1Z8AEH+A4UmD5UkTc20iMiMNK+S6V9BTwA0kbRsQNhW3RRfldbTMzsxoNiG43SUcA3we+ExGnt7DLmLxev5D2HNWtm6XyemrFNiJiWFcLaRzJzMz6UMeDj6SfAD8ADoyIE1vcrVHv4vjOZGB1SeVzalw3VB5HMjOzDulo8JH0I+Aw4LCIOK6NXRvX/BSnX48DhgHbVOSdEhH39LiiZmbWpzo25iPp+8DhwKXAVZLWK2yeFRF3SPokcDBwAfAosDiwHfAl4PyIuLGwz3jgGuAUScNJ1wvtAWyY9zEzswGikxMOGi2UrfNS9CiwEvBEfv0TYGlSN9sU4HvAr4s7RERIGgUcmZdhwD2ki04v6Yf6mw0KB1x8ZaerYAPQcduO7NfyOxZ8ImJEC3n+BXymjTJnAvvmxczMBqiOTzgwM7MFj4OPmZnVzsHHzMxq5+BjZma1c/AxM7PaOfiYmVntHHzMzKx2Dj5mZlY7Bx8zM6udg4+ZmdXOwcfMzGrn4GNmZrVz8DEzs9o5+JiZWe0cfMzMrHYOPmZmVjsHHzMzq52Dj5mZ1c7Bx8zMatex4CNpU0mnS5oi6SVJj0kaK2mtirwjJd0s6WVJT0s6WdKwinxLSDpR0hM5762Stq3njMzMrFVtBR9JD3X1ZS5pa0kPtVjc14D/AX4JbAl8L7/+h6T1CmWOAMYD/wG2AfYHtgUuk1Su/zhgN+BQ4DPAPcA4SVu1WCczM6vBIm3mXwlYoovtiwMrtljWNyPi6WKCpCuAh4EDgB1z8rHAJGDniJid8z0BXAF8Fjg3p20FbAbsEBHjcto1wCrA8aQAZmZmA0Bfd7stC7zUSsZy4Mlp04EHgBUAJC0PrAOc0Qg8Od+VwOPMCVAA2wMzgIsK+QIYA6wmaY12T8bMzPpHty0fSZ8CRhSSdpC0akXWpYBdgH/2tDKS3gmsCZydk9bM60kV2e8ubG/kvacYpLK7itsrjjm9m2oN7Wa7mZm1qZVut42BH+V/B7BDXqr8C9ivJxWRJGA0qTX285w8PK+nVuwyFfhY4fVw4P4m+YplmZlZh7USfE4ATgcEPAR8l0LXVhbACxFRFSRadRwwCvhSRNxbUX6VcnqzfE23RcQ8s+aKcsvIrR8zsz7UbfCJiBmksRQkbQzcWzVe0xuSjgC+D3wnIk4vbHour6taLUsxd4vouS7yQXXryczMOqCtCQcR8dd+CDw/AX4AHBgRJ5Y2T87rNZnXWsw9FjQZWL1i+nXjuqGqcSMzM+uAdqdaI+l/gH2A95FaGipliYjYtMWyfgQcBhwWEceVt0fEY5JuBXaTdEJhqvWmwPLA2EL2ccDepGuBit2CXwSmRMQ8kw3MzKwz2go+krYkfckvBjxPL7qyJH0fOBy4FLiqeGEpMCsi7sj/Poh0Tc/ZkkYDywHHALcA5xf2GQ9cA5wiaTjpeqE9gA2B7XpaTzMz63vttnyOAp4FRkXErb089jZ5vXVeih4lXdBKREyUtDXwY+AyUtC7kNRN90Zjh4gISaOAI/MyjDS1eoeIuKSXdTUzsz7UbvBZDTi0DwIPETGijbwTgAkt5JsJ7JsXMzMboNq9w8EzwKv9UREzM1twtBt8zmDuW9qYmZm1rd1ut9OBjSVdBPyKNKj/RjlTRPy791UzM7PBqt3gcx/pTgFi3kkCRQv3uEZmZjbotRt8fkLXt7AxMzPrVlvBJyIO76d6mJnZAqRjj9E2M7MFV7t3OPhUK/ki4rqeVcfMzBYE7Y75XEtrYz6ecGBmZk21G3y+1KSM9wJ7Ao8AJ/euSmZmNti1O+FgTLNtko4Dbu91jczMbNDrswkHETEN+ANwYF+VaWZmg1Nfz3abBqzSx2Wamdkg02fBR9IQYHfgyb4q08zMBqd2p1qf2mTTUsD6wDuBA3pbKTMzG9zane22Z5P0qcD9wH4R8ade1cjMzAa9dme7+Y4IZmbWaw4mZmZWu3a73QCQ9HZgM+bMbHsIuDIinu+ripmZ2eDVdstH0peB/wDnA8fm5XzgMUl7t1nWCpJ+JekGSS9ICkkjKvI9kreVl6Mr8i4raYykZyW9KOl6SRu0e55mZtZ/2p3tti0wmtTS+SEwKW/6IPAtYLSkpyPikhaLXBXYlXRnhKuBbbvIex1wUCnt8VL9huRylsj1eQ74LnC1pA0i4o4W62VmZv2o3W63A4F7gU9ExAuF9KslnQbcTAoQrQaf6yJiGQBJo+g6+EyLiJu7KW8vUiBcOyJuz+X+Ndf5SGDLFutlZmb9qN1utw8Dp5cCDwB5vGdMztOSiJjd5vG7sz1wdyPw5GPMAs4GRkpaso+PZ2ZmPdCT2W7qYlt/PmJ7kzwu9KqkuyV9XVK5Lmsypyuw6C7SYx5WL2+QNL2rBRja96diZrZgazf43AnsIWnx8gZJS5AuQr2zD+pVdinwbWArYGfSBa2/AX5RyjecdMFr2dTCdjMz67B2x3x+DowFbpd0InBPTm9MOFgV2KHvqpdExL6lpHGSzgK+LemEiHi0mL2roirKHtbVsd36MTPre+3e4eBCSfsCxwC/Zs6XuYAXgX0j4qK+rWJTY4DPA+sCjeDzHNWtm6XyuqpVZGZmNWv7ItOI+I2kPwEjgZVJgedB0kWmM/q4fl1pdBkWJy1MJo37lK0FvAHc19+VMjOz7vXoDgcRMZ10YWknfZEUeP5RSBsHnCTpIxHxTwBJi5GuJboqImbWX00zMyvrNvhIWhg4AngkIn7XRb6vA+8B/l9EtDzrTdJO+Z/r5PVGkpYGXoyIv0jaFdgOuAx4jNSF9gVgFHBcRPy7UNwpwDeBsZIOIXWzfQdYDvhcq3UyM7P+1UrL5wukZ/Ss202+vwMnkaY6t/NYhXIL6vC8fhRYCXgYWJp0G5/hwCzgbmDPiBhT3DEiXpG0CXAc8FtgCOnuCSMj4rY26mRmZv2oleDzOVKXVZdf3hFxm6TLSV1cLQefiOjquiHyXQ02a6O8J0lPVDUzswGqlet81gauarG8a4CP97w6Zma2IGgl+CwFPN1iec8wZ1qzmZlZpVaCz/OkMZdWDAfmue+bmZlZUSvBZzKweYvljcz5zczMmmol+IwFNpO0XVeZ8rN+RgIX9EXFzMxs8Gol+JwM/As4T9IRklYqbpS0kqSfAeeRbvh5cl9X0szMBpdup1pHxMuSPkO6s/QhwMGSngdmAksCbyfdYmcKsHVEvNKP9TUzs0GgpUcqRMS/gI+Q7hZwA/A68C7S/dKuz+kfi4gH+6meZmY2iLR8b7fcovl1XszMzHqsJ08yNTMz6xUHHzMzq52Dj5mZ1c7Bx8zMaufgY2ZmtXPwMTOz2jn4mJlZ7Rx8zMysdg4+ZmZWOwcfMzOrXUeDj6QVJP1K0g2SXpAUkkY0yft5SXdKekXSY5KOljSkIt+yksZIelbSi5Kul7RBv5+MmZm1rNMtn1WBXUlPP726WSZJXwDOAm4EtgSOBL4JnF7KNySXsxHwLWB70pNYr5b00b6vvpmZ9UTLNxbtJ9dFxDIAkkYB25YzSFoYOA64OCK+kZOvkfQaMFrSLyPilpy+F/BBYO2IuD3v/1fgXlLA2rJfz8bMzFrS0ZZPRMxuIdt6pMc3jCmlnwW8BuxYSNseuLsRePIxZgFnAyMlLdm7GpuZWV/odMunFWvm9aRiYkS8JOnBwvZG3msqyrgLWBhYHfh7cYOk6d0cf2hbtTUzs251esynFcPzemrFtqmF7Y28zfJRymtmZh0yP7R8GqLF9Gb5KrdFxLCuDppbRm79mJn1ofmh5fNcXle1WpZi7pbOc13kg+pWkZmZ1Wx+CD6T87o4toOktwHvZe6xoMnlfNlawBvAff1RQTMza8/8EHxuBp4Edi+l7wosCowtpI0D1pL0kUaCpMVy3qsiYmY/19XMzFrQ8TEfSTvlf66T1xtJWhp4MSL+EhGvSzoYOF3SScCfSbPWjgH+HBE3F4o7hXTx6VhJh5C62b4DLAd8robTMTOzFnQ8+ADnl14fntePAisBRMQYSW8ABwFfAZ4Ffgf8qLhjRLwiaRPSRam/BYYAtwMjI+K2fqq/mZm1qePBJyLUYr4zgTNbyFfVRWdmZgPI/DDmY2Zmg4yDj5mZ1c7Bx8zMaufgY2ZmtXPwMTOz2jn4mJlZ7Rx8zMysdg4+ZmZWOwcfMzOrnYOPmZnVzsHHzMxq5+BjZma1c/AxM7PaOfiYmVntHHzMzKx2Dj5mZlY7Bx8zM6udg4+ZmdXOwcfMzGo3XwQfSSMkRZNltVLekZJulvSypKclnSxpWKfqbmZm81qk0xVo00HAdaW0Rxr/kDQCGA9cCBwKLAccA6wp6ZMRMbueapqZWVfmt+Bzf0Tc3MX2Y4FJwM6NQCPpCeAK4LPAuf1fRTMz68580e3WCknLA+sAZxRbOBFxJfA4sGOn6mZmZnOb34LPyZJelzRD0qWS1i5sWzOvJ1Xsd3dh+1wkTe9qAYb28TmYmS3w5pfgMwM4AfgqsDFwALAGcKOkT+Q8w/N6asX+Uwvbzcysw+aLMZ+IuAO4o5B0vaSLSa2cI4DNitmbFdOk7C5nwrn1Y2bW9+aXls88IuJJ0kSC9XLSc3ld1cJZiuoWkZmZdcB8G3yyhZjTopmc11VjO2tRPRZkZmYdMN8GH0nvAkYCNwNExGPArcBukhYq5NsUWB4Y24l6mpnZvOaLMR9JZwEPAbcD04DVSBecvhU4pJD1IFJX3NmSRjPnItNbgPPrrLOZmTU3XwQf0lTpXYBvAYuTxneuBX4WEW92p0XERElbAz8GLgOeJ93t4MCIeKPuSpuZWbX5IvhExNHA0S3mnQBM6N8amZlZb8y3Yz5mZjb/cvAxM7PaOfiYmVntHHzMzKx2Dj5mZlY7Bx8zM6udg4+ZmdXOwcfMzGrn4GNmZrVz8DEzs9o5+JiZWe0cfMzMrHYOPmZmVjsHHzMzq52Dj5mZ1c7Bx8zMaufgY2ZmtXPwMTOz2jn4mJlZ7QZd8JG0hKQTJT0h6WVJt0rattP1MjOzOQZd8AHGAbsBhwKfAe4BxknaqqO1MjOzNy3S6Qr0pRxgNgN2iIhxOe0aYBXgeGB8B6tnZmbZYGv5bA/MAC5qJEREAGOA1SSt0amKmZnZHErfzYODpJtI8WaDUvongJuBnSPivNK26d0UOxRg6NChvarbi6/M6tX+NjgtPuQtna4Cr7z+eqerYAPQkEV61zE2Y8YMSN/HlY2cQdXtBgwH7q9In1rY3hMxY8aMmT3c1+bWiOIzOlqLAWLGrFc6XQWbw5/Ngj74ufx2YHazjYMt+AB01ZSbZ1tEDOvHulhJo6Xp990GGn826zXYxnyeo7p1s1ReT63YZmZmNRtswWcysLqk8nmtldeTaq6PmZlVGDP8TaUAAAnESURBVGzBZxwwDNimlP5FYEpE3FN/lczMrGywjfmMB64BTpE0HHgY2APYENiukxUzM7M5BlXwiYiQNAo4Mi/DSHc42CEiLulo5czM7E2D6jofG/g8o8gGKn826zXYxnzMzGw+4JaPmZnVzi0fMzOrnYOPmZnVzsHHzMxq5+BjZoOapPUkHS5pnllskkLSCZ2o14LOwcfMBrv1gB+RrvuzAcLBx8ysH0nq/EObBiAHH+sVSdtJukvSLEkPS9o/d3FE3r5S7trYs2LfkHR44fXhOW11SedKminpKUmnSurd0/xs0JK0saS/SnoxL9dK2ihvOxz4Zc76cP58haSVSmXsKek+SS9JulPS1hXHWV3S+ZKezZ/3uyR9vqKckDRS0pmSpgL39cd5z+8G1e11rF6StgDGAtcCPyR9nvYH3tXLoscC5wK/Bz5EulUSwF69LNcGGUmbApeTnlT8xZz8feAqSZsDfyA9JO67wA7AEznPE4VitiN1zR0GvAAcCIyT9IGIeCgf50PAjaRA8i3S41s+C5wl6a0RcUqpaqcBFwA7A2/tsxMeRBx8rDd+Cvwb2CIiXgOQNAF4pJfljo6Ixq/VqyS9F9hL0t7hq6JtbkcCTwKbRcQrAJLGAw8CR0bE+pIezXnviIhHKspYDNg0Il7M+98O/JcUOI7KeX4OPAuMaOQDrpC0NHCEpNMiovjUzr9ExHf67CwHIXe7WY9IWhxYGxjXCDwAEfEC0NubuF5cen0XMARYtpfl2iCSP4PrAH9uBB6AiHgZOB9YV9LbWihqYiGgEBFPAU8DK+bjDAE2JrXIZ0lapLGQ7qS/LLBaqcxxPT+zBYNbPtZT7wAEPFWxrSqtHc+VXjceJz+kl+Xa4NL4DD5Zse0J0o/rd7RQTvnzBukz1/i8DSd9V34vL1WWrji+dcHBx3pqGhBUt0aKaY1fpHPN+MnPWzLrjcZnsGqM8d3A7JynL44zmzSO87smeaaUXrt7uBsOPtYjEfGipFuB7SUdVBjzWYK5nyT7FCkAfahUhB/uZ72SP4O3ADtJOrgw5jME2BG4JSJektRoOfdo4D+X8VfgI8A/I+L1vqj/gs7Bx3rjh8BlwARJJ5I+TweQZgwtBW8+4O8s0oSBB4E7gXWBz1cXadaWHwBXkCamHE/qhvsesAxzPmOT8npfSWcCrwF3RcSrbRznu8D1wLWSTiZNtBlGGutZNyJ27PWZLGA84cB6LCImkH5hvhM4D/gFaaD1ImBGIev3gDNJU1gvAtYH5rmOwqxdEXENMBJ4g/QZOwN4nTR77bqc53rgaNJU6xuAfwDLtXmcu0gTbB4CjgGuBE4GtgCu6otzWdD4eT7WpyQtCvwT+G9EjOx0fcxsYHK3m/WYpIVJA7CXA8+QBn6/BqxO6qYwM6vk4GO9EaSprCeQut5eA24HtoqIKztZMTMb2NztZmZmtfOEAzMzq52Dj5mZ1c7Bx8zMaufgY2ZmtXPwMWuBpLdJ+q6k6yVNlfRaftDd+PwAsR7NHM37elq6LXA8282sG5JWJd1G6P2kq9mvID3bZRlgs7wcFxEH9qDsa4GVImKlvqqv2fzA1/mYdUHSW4FLgVWAHSNibCnLMZLWIT1XZoEgScDi+dlNZj3ibjezrn0Z+ABwfEXgASAi/hERv2m8lrS5pHMlPSTpZUnTJV0haaPifpIeATYCVpQUhWVEIc/7JJ0h6QlJr0p6RNJx+UFqlMrbSNJN+ZhPSvqVpA/mMg8v5V1c0lGSHpQ0K+f/o6QVS/lG5P33lPRNSfeQ7lK+v6SLJb0o6e0VdVk373dYt++wLZDc8jHr2k55PbqNffYk3dX7j8BjwPKkIHa1pI3zjS4h3YLoKNKDyPYr7H8vgKS1gYnAdNJNLB8HPgx8G/hfSRsVHmWxIak7cBrpJprTgc8B/1uuXB6fujxv+zNwPPA+4OvA5pI+HhGPlXb7Lumhar8nPbztP8CtpMdn7JrrV7QX6Rk4p3fzXtmCKiK8ePHSZCE95XJmm/ssXpG2LGmcaHwp/VrgkSbl3AncByxZSt+edGujPQtpfye1SFYppC0K3JjzHl5I/0pOO7ZU7mdy+hmFtBE5bSqwTCn/wqRHC/y9lP420l3Nx1edlxcvEeFuN7NuvB2Y2c4OEfFi49+SlshPbX0DuAX4RCtlSFqL9AC+PwFvkbR0YyE9FuBFYPOcd1nSmNNFEfFQoR6vAb+qKH57UqvkqFK9LyPdkXw7SeXvhj9GxNOl/G8ApwLr5Po27ER6305p5VxtweTgY9a1mcCS7ewg6b2SzpE0DXie1OJ5BtiKdCPWVqye1z/O+xaXp4HFmfO48pXzuvwo52ZpK5MeeVH1iOnJpPNdupR+f5N6nkIKrHsX0vbOdby4yT5mHvMx68Yk4FOSVim2KprJjxG/jhQcTgDuJgWg2cAhwCYtHld5fTwwoUmeaaW8rWo3P8BLVYkR8R9JE4AvSDoQ+B/gU8DPc8vLrJKDj1nXLiB9mX6Z9Mjm7mxKekrmXhFxWnGDpJ9V5G92od0Def1GRHT3pMxGUPxAxbaqtAeBLSQNi4jppW1rkFp7z3ZzzKLRpPGiUcBHc5q73KxL7nYz69ofSF1X+0variqDpLUlfSO/fKORXMqzOdXjPS8A78jXzhTdQWp1fU3SKhXHXETSUgAR8RRp5tl2xbz5qbLfqTjmhaT/+weXytySFDwujojZVefaxGWkmXj7AHsAN0bEfW3sbwsgt3zMuhARL0namvQFe6GkK4ArSbPg3glsDHwaODbvcgNpKvLxklYiTbX+CLA7qQuuODAPcDOwNXCSpL+RgtfEiHha0u6kqdZ3STqVNB7zNmBVYAdSN97puZz9c73+Juk3pNlmnwMWa5xK4Zink4LEQbmO1+UyvwE8RWstvOJ79Iak04BDc1Jb+9sCqtPT7bx4mR8W0pf+fqTgMo301NanSEFpd2DhQt4PkcZpGhMOrgU+SfrSj1K5i5O6qJ4iBZ4ARhS2r0h6VPkjwKukoHcbaabae0plbUIKZq/k8n5Fam0FcGDFcY8iddm9SpogcAawYinfCErTupu8Pyvm+s+kYqq5Fy/lxfd2MxvEJO1IupB014g4px+P827ShaenRMQ+/XUcGzw85mM2CCgZUkpbFPge8Dqp9dWfvk666LSdO0HYAsxjPmaDw1uARyWdRZogMRzYmdQFeExEPNkfB5W0C2l69QHA5RFxW38cxwYfd7uZDQKSFibdd20j4N2k2XZTgNFRuOlpPxw3SGNM1wNfiojH++tYNrg4+JiZWe085mNmZrVz8DEzs9o5+JiZWe0cfMzMrHYOPmZmVjsHHzMzq93/B7JWTSCeRZuXAAAAAElFTkSuQmCC\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"category_bar_plot(type_of_crime_df, \"Type of Crime Breakdown\", 0)"
]
},
{
"cell_type": "code",
"execution_count": 133,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" count \n",
" category \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" 324 \n",
" gun \n",
" \n",
" \n",
" 1 \n",
" 128 \n",
" other \n",
" \n",
" \n",
" 2 \n",
" 114 \n",
" knife \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" count category\n",
"0 324 gun\n",
"1 128 other\n",
"2 114 knife"
]
},
"execution_count": 133,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"weapon_df = get_value_counts(death_row, \"weapon\")\n",
"weapon_df"
]
},
{
"cell_type": "code",
"execution_count": 134,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 134,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ8AAAEtCAYAAADX4G3qAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deZgcVb3/8feHHQImEpD1SkRUVvWCICpKWIKCyK6IiERcWERFZP+JAlfZUURE4YqETVk0YY3sCYsalEVC2GWTcFkTkkAIS5Lv749zmlQqNTPdyUx1Zubzep56avrUqVOnunr62+fUqSpFBGZmZnVapN0VMDOz/sfBx8zMaufgY2ZmtXPwMTOz2jn4mJlZ7Rx8zMysdg4+VgtJIyR5XL/NF0kTJd20AOsvJikk/a4762Xzz8GnH5M0NP9DhqQzO8jzHklv5Txja65ipyTtl+v1jYple+Rlz3Sw7iOSpkjq1/8Dku4ofAYa00uSxkn6dn9/f6zn+INlAG8AX5G0ZMWyvQABMxdwG98Cll7AMsrG5PkWFcuGkuq8uqS1igskrQx8ELgtImZ3c516o9dJx3kv4GvAScASwNnAKW2sl/VhDj4GMAp4N7BjxbKvA6OBNxdkAxHxdkS8sSBlVJT5CPB/pEBTNhT4IykAlZc3gtXY7qxPL/Z2RFyUpwsj4lTgU8CLwPCuVpa0tKRFe7qS1rc4+BjAPcB9pEDzDkmbAOsB51WtJGkbSZdKekLSjNyNdYOkzSvyznPOp5EmaaCk30h6UdIbkv4q6eNN1n0ssJqkDxTKXYXUsrkWuJt5W0ZD83xMMVHShyRdLOn53NX4pKSTJS1TyrdOru+Dkl6V9LqkuyTtU7HfP837uLakM3PZMyT9XVJViw1J+0q6t/CeXi/pk6U875zDkLSZpNtzPV6WdI6kAU29ex2IiBnAK8Bbpe1eJGlm7o4dIelFYDqwSiHPHvkYNt6bcZJ2qdjPr0i6WtJ/JL2Zu/tGSlq/mTpKer+kx/L5oPUL6Rvkz+F0SZMkXQCs2EEZi0k6UtJD+bM3SdKfJa1XyvdM+ZyTpB/nY/CnUvppkmZLWiG//mbO9xlJh+X/lzdz1+9ezexrX7RYuytgC43zgJ9LWj0iJua0fUi/fq/pYJ3hwPLABcBEYDXgm8DNkraIiNub3Pb1wEvAccBg4GBgtKQhEfFqF+uOAb5CCiiP5bSheX4rsCHw1dI6Q0lfrPc1EnKgvQmYDPwGeA74CHAQ8Im8P42ux61ILYOrgCeBZYHdgXMlDY6Iqq6qi4G3gROBgcB+wPWSPhsR7wRBSafl/R8HHJnz7guMlbR9RNxQKncjYGfgXOAiYEtSF+dM4ICKelRR44uS1MX6HtIPkQ8Bx1blJ71XE0nHbFlS1x2STgQOJ7WWjwZmA7sCf5a0f0T8tlDOgcALpO69F4C1gG8Df5P03xHxeCcV/hjpx8XLwJYR8UxOXwu4DVgc+BXwLLBDzlvlkly/64GzSEH0O8AwSZtFxPicbwzwRUlLRkSjF2DLvH9bSFqk0IW7JTA+Il4ubetkYCnS5+tt0vG5QNKjEXFnR/vaZ0WEp346kb6EAziE9KX/JnBUXrY0MAU4Nb9+DRhbWn9ARZkrkb4QRpfSR6SP27xpwFml9C/m9H2b2If357x/KKSdDTyc/942L/9gfr1Kfn1FIb+ACcCDwLId1OWrXez3IsAdpOC1WCH9p3n9vwGLF9LXILUY7i+krZvz3lrKuzowDXgcWCSnLZbzzgI+VqrL9flYLt3E+3dHLqc8zQSOrsh/UV4+omLZJnnZcRXLrsmfpwGFtKr3cX1Sa+uMUvpE4Kb89+fy5/F24N2lfJflOny6dGyuyum/K6Q3PhsXAyqkb5jf1zGFtOE57xaF/483gAtz+oY5ffm87s8L634z57mrdFzfSwpCF9b1P78wTe52MwAiYhLpH3R4TtqF9Kv7952sM73xt6RlJQ0m/ePdCTTbbQbwi9LrW/L8A+WMFXV4HHiGuc/rDCV9gUP6cp1VWN6YF7vcPkrqXrwYWErSCo0pl/MGsE1hm8X9Xirv9/KkL/13d1Dvn0fE24Uynib96l6/0GW4U56fVMo7kdS6XBP4cKncOyLirlLaLaQBA2tU1KPKdGBYYdqLFCyOk3RUB+ucWpG2J+lL9oLie5jfx6tIn6d3PheN91HJu3K+54F/08HnR9LewNXADcCwiHilsGwxYHtgXBRa3ZFaJFWt0Z3z/GeRo0HOfw/wF2BzScvn5JvzfMs8/xSwJKkl+yqpNQzp87UIcz7DRb8uHdf/5H3t8nPeFzn4WNF5wAckbUbqcvtHRDzYUebc536JpFdI/4Avk7rPtiN9CTfrieKLHAghtcaaMQZYRemcTeN8z625rFeBe5lz3mdono8trL9Onv+UVP/i9AKpq2SlRmZJy0n6udIw7hnM2e/jcpaqfX+oIq3x3q6Z5+/L8wcq8k4o5W14opwRaPX9mxkRNxWmiyJiJ1LX2v9I+mDFOo9VpK1DakU+xrzv49k5T/F93EjSaNJnZ2oh7zpUv4ebkFrL1wG7xbwDWFYmtUgerli36nP8PtIPk0cqlk3I+zIEIFK33uPMCT5bAs9GxAOkFlgxfRap66+so2PV7HHqU3zOx4quJ/WR/4T0Zb1/RxklLUv6BxsAnA7cT/oSmU06V7FlR+uWRcSsjjbTZBFjSEOEh5K6p2BOy6fx957576Gkf/jxheWN7ZwM3NjBNiYV/r6U1PXzW1LLahLpC+cLwPeo/lFXdYFtef+a3d+ijt67+S2v6Hpga9J79mhxmzHnvEd5e7NIPz46GsI+AUDSENLnZzIpaD9KaoEF6VzN4hXrNuqwNaklel3F9qG597qR1sqFz7cAX8+f/S2Z07q5BThW0uI5/a6ImFax/oJ+zvsUBx97R0TMyiODjiT9or+kk+xbAasC+0TEXKPhJP2052pZqXi9z1Tg8Yh4trD8VuCHSqPLPgiMLHazMOdX/MyI6PQq+tzFti3w+4g4oLTsc52sui7z/vputLgav4gbJ9jXA56uWL+Ytw6NALBck/kfIwWGJyOiqmVUtCuwDPC5YheZJAErkI5j2RTmDA64QtJuEVEcDPMc6XO7TsW6VWmPkz7HH2LeY9M4//ZUIe0W0mCO7YGPkQYOQOqSO5V0qcI6wAkV27ISd7tZ2W9JI5z2i4iqL4CGxq+4uX61SdqG1s73LLB8/uRJYHPmPt/TcDvpl/gx+fXY0vK7SN1iB+Rf5HORtLikRjdQR/u9GqmrsiMH51/GjfxrAF8GHih8UV+Z54fm8xfFsvcmBZ5ii63H5CCwQ355d5OrXZjnJ6jiuh9JKxVeVr6PpFGAK9CB/JnchnTM/ixpp8KymaRRbZtK+nRhuwIOrSjuijw/slTPj5Bab7dGxOTCokZL58fAooXX95Fav8eW8lkn3PKxueSToMc0kfUO0snh0/IX9kTSifu9SF1wG/RMDTs0hvTlvzLws+KCiJgiaTzwmULe4vLZ+XqLm4D7Jf2e9Et4AGn4767AD4GLclk3A3tLepP0xbwG6UvzcdIv4ipLArdLugR4F6lLcwng+4V6PCjp56Sh1rdKuizn3Y90LuOA6Jk7MiwuqTgcfSXSPm8K/CUixjZTSET8XdL/kIZY35Ovf3mONMLwY6Sg0bjLxbXA8cDFkn5Naul8itSd+WQX25mWW5nXAJdL2iMiGtfaHJW38xdJjaHWO1JxXiUi/iJpJPDV3KIdzZyh1jMoHJuc/0VJD5Bapv/O54GIiMatp3YljTL8azPvV7/X7uF2nto3URhq3UTeqqHWHyb1uzcGHIwFPk0nw6q7SissqxzO20n9vsqcYcJrVCw/PS97icKw2lKeIcA5pC6vt0gDCe4iBbPVC/lWJI0CbHTzjAe+wZwhtZsV8jaGWq8N/Jo0gOEN0nU8W3VQj32Bf+V800gjuz5VytMYav27ivXnqUcn71vVUOvGPh0BLFHKfxGpe7KzMncgnTt7hfRl/B/SF/u3Kj5/f82fnVdIwWTdXKd/l/K+M9S6kLYM6QfD28AehfSP5PTXSeeULmTOEPvflcpYnNTyeTjXdTIwElivg337ZS7n7FL6/jl9bMU6HR6Pqn3tL5PyG2BmPSCf//p/wH/FnIt3zfo9n/MxM7PaOfiYmVntHHzMzKx2PudjZma181DrLkiaSWohVl2xbGZm1d4FzI6Iyjjjlk8XJM0GNHDgwHZXxcys15g6dSqkSykqT++45dO1aQMHDhw4ZcqUdtfDzKzXGDRoEFOnTu2wx8gDDszMrHYOPmZmVjsHHzMzq52Dj5mZ1c7Bx8zMaufgY2ZmtXPwMTOz2jn4mJlZ7XyRaTfb+oAj2l2FfuGms05sdxXMbAG45WNmZrVz8DEzs9o5+JiZWe0cfMzMrHYOPmZmVjsHHzMzq52Dj5mZ1c7Bx8zMaufgY2ZmtWtb8JH0SUnXS3pW0huSXpJ0i6RtK/IOkzRO0gxJL0o6W9KginzLSjpD0nM5712Sdqhnj8zMrFntbPm8G3gE+CHwOeDbwJvAaElfbmSSNBQYDTwDfAE4BNgBuFZSuf6jgD2BHwGfBx4ERknarkf3xMzMWtK2e7tFxLXAtcU0SVcDT5IC0SU5+WRgArB7RMzO+Z4DbgC+CFya07YDtgZ2iYhROW0MsCZwGimAmZnZQmChOucTETOBqcDbAJJWAzYGLmwEnpzvRuBZYNfC6jvnda8s5AvgfGBtSev2+A6YmVlT2h58JC0iaTFJq0o6Fvgg8Iu8eP08n1Cx6v2F5Y28DxaDVDa+VJaZmbXZwvBIhcuY04KZBnwpIq7Lrwfn+eSK9SYDGxZeDwYe7SBfsay5SJrSRf0GdrHczMxa1PaWD3AYsAlpEMFo4DJJe5TyRAfrltM7ytfVMjMzq1HbWz4R8QTwRH55dR508GtJlwKTcnpVq2V55m4RTeokH1S3noiIeYZsF+WWkVs/ZmbdaGFo+ZT9gzQMe0XggZxWdb5mA+Y+F/QAsE7F8OsN8rzqvJGZmbXBQhV8JAkYCkwBJkXEROAuYM9iUJG0FbAaMLKw+ihgEOlaoKKvAY9ExIM9WHUzM2tB27rdJF0MPA3cDbwMrALsDWwJfDcPuwY4nHRNzx8lnQOsCpwE3AlcXihyNDAGOFfSYNL1QnsDmwE79vgOmZlZ09p5zufvpLsR7Es6pzKV1MrZISKubmSKiFskbQ8cS7oo9VXgCuCwiJhVyBeSdgKOz9Mg0h0OdimWZ2Zm7dfOOxycCZzZZN7rgOuayDcNODBPZma2kFqozvmYmVn/4OBjZma1c/AxM7PaOfiYmVntHHzMzKx2Dj5mZlY7Bx8zM6udg4+ZmdXOwcfMzGrn4GNmZrVz8DEzs9o5+JiZWe0cfMzMrHYOPmZmVjsHHzMzq52Dj5mZ1c7Bx8zMaufgY2ZmtXPwMTOz2rUt+EjaStIISY9Iel3SREkjJW1QyjdWUlRMl1SUuaykMyQ9J2mGpLsk7VDfXpmZWTMWa+O29wMGA78AHgJWAg4D/ilpaESMK+R9DPhaaf2XK8ocBWyYy3kSGA6MkvSFiBjdvdU3M7P51c7g852IeLGYIOkGUtA4FNi1sOj1UjCah6TtgK2BXSJiVE4bA6wJnAY4+JiZLSTa1u1WDjw5bQqplbP6fBS5MzAVuLJQXgDnA2tLWnc+q2pmZt1soRpwIGlFYH1gQmnRhyS9ImmmpMck/UjS4qU86wMPRsTsUvr4wnIzM1sItLPbbS6SBJxDCoinFhbdDlwCPAwsC+wEHAdsRGrtNAwGHq0oenJhedV2p3RRtYFd1d3MzFqz0AQf4BRSYPl6RDzUSIyIo0v5rpH0AnCUpM0i4o7Csuik/M6WmZlZjRaKbjdJPwN+CHw/IkY0scr5ef6JQtokqls3y+f55IplRMSgzibSeSQzM+tGbQ8+ko4DjgIOi4gzmlytUe/i+Z0HgHUklfepcd1Q+TySmZm1SVuDj6SfAEcDR0fEKS2s2rjmpzj8ehQwCPhCRd5HIuLB+a6omZl1q7ad85H0Q+AY4BrgJkmbFha/GRH3Svo0cATwZ+BpYACwI/B14PKI+GthndHAGOBcSYNJ1wvtDWyW1zEzs4VEOwccNFoo2+ep6GlgCPBcfn0csAKpm+0R4GDgV8UVIiIk7QQcn6dBwIOki06v7oH6m5nZfGpb8ImIoU3k+Tfw+RbKnAYcmCczM1tItX3AgZmZ9T8OPmZmVjsHHzMzq52Dj5mZ1c7Bx8zMaufgY2ZmtXPwMTOz2jn4mJlZ7Rx8zMysdg4+ZmZWOwcfMzOrnYOPmZnVzsHHzMxq5+BjZma1c/AxM7PaOfiYmVntHHzMzKx2Dj5mZlY7Bx8zM6td24KPpK0kjZD0iKTXJU2UNFLSBhV5h0kaJ2mGpBclnS1pUEW+ZSWdIem5nPcuSTvUs0dmZtasloKPpCc6+zKXtL2kJ5osbj/gvcAvgG2Bg/Prf0ratFDmUGA08AzwBeAQYAfgWknl+o8C9gR+BHweeBAYJWm7JutkZmY1WKzF/EOAZTtZPgBYo8myvhMRLxYTJN0APAkcCuyak08GJgC7R8TsnO854Abgi8ClOW07YGtgl4gYldPGAGsCp5ECmJmZLQS6u9ttJeD1ZjKWA09OmwI8BqwOIGk1YGPgwkbgyfluBJ5lToAC2BmYClxZyBfA+cDaktZtdWfMzKxndNnykfQZYGghaRdJa1VkXR74MvCv+a2MpBWB9YE/5qT183xCRfb7C8sbeR8sBqlsfHF5xTandFGtgV0sNzOzFjXT7bYF8JP8dwC75KnKv4EfzE9FJAk4h9QaOzUnD87zyRWrTAY2LLweDDzaQb5iWWZm1mbNBJ/TgRGAgCeAgyh0bWUBvBYRVUGiWacAOwFfj4iHKsqvUk7vKF+HyyJinlFzRbll5NaPmVk36jL4RMRU0rkUJG0BPFR1vmZBSPoZ8EPg+xExorBoUp5XtVqWZ+4W0aRO8kF168nMzNqgpQEHEXFrDwSe44CjgMMi4ozS4gfyfH3mtQFznwt6AFinYvh147qhqvNGZmbWBq0OtUbSe4F9gQ+QWhoqZYmI2KrJsn4CHA0cHRGnlJdHxERJdwF7Sjq9MNR6K2A1YGQh+yjgG6RrgYrdgl8DHomIeQYbmJlZe7QUfCRtS/qSXwJ4lQXoypL0Q+AY4BrgpuKFpcCbEXFv/vtw0jU9f5R0DrAqcBJwJ3B5YZ3RwBjgXEmDSdcL7Q1sBuw4v/U0M7Pu12rL5wTgZWCniLhrAbf9hTzfPk9FT5MuaCUibpG0PXAscC0p6F1B6qab1VghIkLSTsDxeRpEGlq9S0RcvYB1NTOzbtRq8Fkb+FE3BB4iYmgLea8Drmsi3zTgwDyZmdlCqtU7HLwEvNUTFTEzs/6j1eBzIXPf0sbMzKxlrXa7jQC2kHQl8EvSSf1Z5UwR8Z8Fr5qZmfVVrQafh0l3ChDzDhIoWnS+a2RmZn1eq8HnODq/hY2ZmVmXWgo+EXFMD9XDzMz6kbY9RtvMzPqvVu9w8Jlm8kXEbfNXHTMz6w9aPeczlubO+XjAgZmZdajV4PP1Dsp4PzAceAo4e8GqZGZmfV2rAw7O72iZpFOAexa4RmZm1ud124CDiHgF+B1wWHeVaWZmfVN3j3Z7BVizm8s0M7M+ptuCj6SlgL2A57urTDMz65taHWr9+w4WLQ98AlgROHRBK2VmZn1bq6PdhneQPhl4FPhBRPxhgWpkZmZ9Xquj3XxHBDMzW2AOJmZmVrtWu90AkPQuYGvmjGx7ArgxIl7troqZmVnf1XLLR9I3gWeAy4GT83Q5MFHSN1osa3VJv5R0h6TXJIWkoRX5nsrLytOJFXlXknS+pJclTZd0u6RPtrqfZmbWc1od7bYDcA6ppfNjYEJetB7wXeAcSS9GxNVNFrkWsAfpzgg3Azt0kvc24PBS2rOl+i2Vy1k212cScBBws6RPRsS9TdbLzMx6UKvdbocBDwEfj4jXCuk3SzoPGEcKEM0Gn9si4j0Aknai8+DzSkSM66K8fUiBcKOIuCeXe2uu8/HAtk3Wy8zMelCr3W4fAUaUAg8A+XzP+TlPUyJidovb78rOwP2NwJO38SbwR2CYpOW6eXtmZjYf5me0mzpZ1pOP2N4ynxd6S9L9kvaXVK7L+szpCiwaT3rMwzrlBZKmdDYBA7t/V8zM+rdWg899wN6SBpQXSFqWdBHqfd1Qr7JrgO8B2wG7ky5oPQv4eSnfYNIFr2WTC8vNzKzNWj3ncyowErhH0hnAgzm9MeBgLWCX7qteEhEHlpJGSboY+J6k0yPi6WL2zoqqKHtQZ9t268fMrPu1eoeDKyQdCJwE/Io5X+YCpgMHRsSV3VvFDp0PfAXYBGgEn0lUt26Wz/OqVpGZmdWs5YtMI+IsSX8AhgHvIwWex0kXmU7t5vp1ptFlWBy08ADpvE/ZBsAs4OGerpSZmXVtvu5wEBFTSBeWttPXSIHnn4W0UcCZkj4aEf8CkLQE6VqimyJiWv3VNDOzsi6Dj6RFgZ8BT0XEbzvJtz/wX8D/i4imR71J2i3/uXGeby5pBWB6RPxF0h7AjsC1wERSF9pXgZ2AUyLiP4XizgW+A4yUdCSpm+37wKrAl5qtk5mZ9axmWj5fJT2jZ5Mu8v0DOJM01LmVxyqUW1DH5PnTwBDgSWAF0m18BgNvAvcDwyPi/OKKEfGGpC2BU4DfAEuR7p4wLCLubqFOZmbWg5oJPl8idVl1+uUdEXdLup7UxdV08ImIzq4bIt/VYOsWynue9ERVMzNbSDVznc9GwE1NljcG+Nj8V8fMzPqDZoLP8sCLTZb3EnOGNZuZmVVqJvi8Sjrn0ozBwDz3fTMzMytqJvg8AGzTZHnDcn4zM7MONRN8RgJbS9qxs0z5WT/DgD93R8XMzKzvaib4nA38G7hM0s8kDSkulDRE0k+By0g3/Dy7uytpZmZ9S5dDrSNihqTPk+4sfSRwhKRXgWnAcsC7SLfYeQTYPiLe6MH6mvWoL45odmCnza/Lhzd95YT1YU09UiEi/g18lHS3gDuAmcDKpPul3Z7TN4yIx3uonmZm1oc0fW+33KL5VZ7MzMzm2/w8ydTMzGyBOPiYmVntHHzMzKx2Dj5mZlY7Bx8zM6udg4+ZmdVuvh6jbWa2MDr+phvbXYU+76ith3VLOW75mJlZ7Rx8zMysdg4+ZmZWu7YGH0mrS/qlpDskvSYpJA3tIO9XJN0n6Q1JEyWdKGmpinwrSTpf0suSpku6XdIne3xnzMysae1u+awF7EF6+unNHWWS9FXgYuCvwLbA8cB3gBGlfEvlcjYHvgvsTHoS682S/rv7q29mZvOj3aPdbouI9wBI2gnYoZxB0qLAKcBVEXFATh4j6W3gHEm/iIg7c/o+wHrARhFxT17/VuAhUsDatkf3xszMmtLWlk9EzG4i26akxzecX0q/GHgb2LWQtjNwfyPw5G28CfwRGCZpuQWrsZmZdYd2t3yasX6eTygmRsTrkh4vLG/kHVNRxnhgUWAd4B/FBZKmdLH9gS3V1szMutTucz7NGJznkyuWTS4sb+TtKB+lvGZm1ia9oeXTEE2md5SvcllEDOpso7ll5NaPmVk36g0tn0l5XtVqWZ65WzqTOskH1a0iMzOrWW8IPg/kefHcDpKWAd7P3OeCHijnyzYAZgEP90QFzcysNb0h+IwDngf2KqXvASwOjCykjQI2kPTRRoKkJXLemyJiWg/X1czMmtD2cz6Sdst/bpznm0taAZgeEX+JiJmSjgBGSDoT+BNp1NpJwJ8iYlyhuHNJF5+OlHQkqZvt+8CqwJdq2B0zM2tC24MPcHnp9TF5/jQwBCAizpc0Czgc+BbwMvBb4CfFFSPiDUlbki5K/Q2wFHAPMCwi7u6h+puZWYvaHnwiQk3muwi4qIl8VV10Zma2EOkN53zMzKyPcfAxM7PaOfiYmVntHHzMzKx2Dj5mZlY7Bx8zM6udg4+ZmdXOwcfMzGrn4GNmZrVz8DEzs9o5+JiZWe0cfMzMrHYOPmZmVjsHHzMzq52Dj5mZ1c7Bx8zMaufgY2ZmtXPwMTOz2jn4mJlZ7XpF8JE0VFJ0MK1dyjtM0jhJMyS9KOlsSYPaVXczM5vXYu2uQIsOB24rpT3V+EPSUGA0cAXwI2BV4CRgfUmfjojZ9VTTzMw609uCz6MRMa6T5ScDE4DdG4FG0nPADcAXgUt7vopmZtaVXtHt1gxJqwEbAxcWWzgRcSPwLLBru+pmZmZz623B52xJMyVNlXSNpI0Ky9bP8wkV691fWD4XSVM6m4CB3bwPZmb9Xm8JPlOB04FvA1sAhwLrAn+V9PGcZ3CeT65Yf3JhuZmZtVmvOOcTEfcC9xaSbpd0FamV8zNg62L2jorpoOxOR8K59WNm1v16S8tnHhHxPGkgwaY5aVKeV7Vwlqe6RWRmZm3Qa4NPtghzWjQP5HnVuZ0NqD4XZGZmbdBrg4+klYFhwDiAiJgI3AXsKWmRQr6tgNWAke2op5mZzatXnPORdDHwBHAP8AqwNumC06WBIwtZDyd1xf1R0jnMucj0TuDyOutsZmYd6xXBhzRU+svAd4EBpPM7Y4GfRsQ73WkRcYuk7YFjgWuBV0l3OzgsImbVXWkzM6vWK4JPRJwInNhk3uuA63q2RmZmtiB67TkfMzPrvRx8zMysdg4+ZmZWOwcfMzOrnYOPmZnVzsHHzMxq5+BjZma1c/AxM7PaOfiYmVntHHzMzKx2Dj5mZlY7Bx8zM6udg4+ZmdXOwcfMzGrn4GNmZrVz8DEzs9o5+JiZWe0cfMzMrHYOPmZmVrs+F3wkLSvpDEnPSZoh6S5JO7S7XmZmNkefCz7AKGBP4EfA54EHgVGStmtrrczM7B2LtbsC3SkHmK2BXSJiVE4bA6wJnAaMbmP1zMws62stn52BqcCVjYSICOB8YG1J67arYmZmNofSd3PfIOnvpHjzyVL6x4FxwO4RcVlp2ZQuih0IMHDgwKbqMH3GG03X1+bfgKWX6pFyX39rZo+Ua3Mss0TPdbi8OdPHr6ctuVhzx2/q1KmQvo8rGzl9qtsNGAw8WpE+ubB8fsTUqVOnzXCtqBUAAAvcSURBVOe6C7tGVJ3a1lq0aOpbb7a7CguLXnf8ps5odw0WGr3u2AG08PP6XcDsjhb2teAD0FlTbp5lETGoB+uy0Gu0/Pr7+9Bb+fj1Xv392PW1cz6TqG7dLJ/nkyuWmZlZzfpa8HkAWEdSeb82yPMJNdfHzMwq9LXgMwoYBHyhlP414JGIeLD+KpmZWVlfO+czGhgDnCtpMPAksDewGbBjOytmZmZz9KngExEhaSfg+DwNIt3hYJeIuLqtlTMzs3f0qet8rHX9fcRNb+fj13v192PX1875mJlZL+CWj5mZ1c4tHzMzq52Dj5mZ1c7Bx8zMaufgY7aQkbSppGMkzTMKSlJIOr0d9bIkH5uoOj7zUdbwXNaQQtqSks6R9Lyk2ZLGLuh2FkZ96jofsz5iU+AnwAigq0d+WO92LfAJ4LlC2v7At4D9gPH0srteN8vBx8zmImnJiPAzK2oQES8BL5WS1wNejYiz21Cl2rjbrY+RtKOk8ZLelPSkpEMa3QR5+ZDczB9esW5IOqbwutG9sI6kSyVNk/SCpN9Lau7pejYPSVtIulXS9DyNlbR5XnYM8Iuc9cn8/s/VLZPzDZf0sKTXJd0nafuK7awj6XJJL+fPw3hJX6koJyQNk3SRpMnAwz2x332ZpI9KelbSLZIGSnpK0hWSPi/pXkkz8vHap7TeXN1u+f/0m8ByhWM/PC9bRNIPJN0v6Y18XC+QtHLNu9stHHz6EEmfA0aSfkntDhwK7AYMX8CiRwIPAbsAJwFfYc4XpLVA0lbAjcCipBvefg1YArhJ0hbA74DGOZ1dSF0y5W6ZHUldMkcDu5IeFTJK0pqF7XwY+AcwBPgu6Wa7dwIXS/pGRdXOIz2SZHfg+92wq/2GpM8Ct5HuK/m5iGh0k20InAycRjpm95PuO/mZTor7BOkela8x59hfm5edB5wAXEU6nocAWwBjJQ3ozn2qRUR46iMT8E/SzVQXL6QtC7ycDnVA+jIKYHjF+gEcU3h9TE77QSnfr4EZ5IuUPbV0jO4EJgJLFdKWBv4P+Ht+fVB+34d0cIyeBQYU0lYCZgFHFtJuyJ+FAaX1RwHPA4vk18Nzmf/b7vemt0yF/4tBwD7A26SgoEKep4DpwGqFtKVIAf7sQlrj/R9SSBsBTClt85M53wGl9I+Snhb6nXa/L61Obvn0EfmXz0bAqIh4u5EeEa8BC3pT1atKr8eT/pFWWsBy+5V8jDYG/hQR7zyNOCJmAJcDm0hapomibomI6YX1XwBeBNbI21mK9It4JPCmpMUaE+lX9UrA2qUyR83/nvVbxwDnAN+NiCMjR4OCeyLi2caLfMwfJR+nFm1HCjKXlI7nBNKPkc3nZwfayQMO+o53AwJeqFhWldaKSaXXjZPRSy1guf1N4xg9X7HsOVI3+LubKKd8PCAdk8bxGEz63z44T1VWqNi+tWZPUgvnzx0s7+o4tWIl0uejqkyY93gu9Bx8+o5XSM3yqtZIMa3xi3vJYob8/CPrWY1jVHWCeBXSL9tXumk7s0nnCH7bQZ5HSq99k8fWfZYUeG6VtFVE9GQAf5l0TDcjdfOVvdqD2+4RDj59RERMl3QXsLOkwxtdb5KWZe4nu75ACkAfLhXhh+31sHyM7gR2k3REo+std5PtCtwZEa9LarQsl57P7bwu6VbS+YB/RcTM7qi/zeMJ4NPAzcBtOQD9p4e29RfgCGDliOgTXaQOPn3Lj0kjY66TdAbp+B5KGjmzPLzzwL2LgX0kPQ7cB2xCGsFmPe8o0mCAmySdRuqGOxh4D3OOwYQ8P1DSRaRfuuMj4q0WtnMQcDtpJNTZwH9IJ8jXBjaJiF0XeE+MiJiYR6/dyJwA9HgPbOc2SSOACyT9CriD9CNyNdL5vdER8afu3m5PcvDpQyLiOkm7AscBl5HOLZwFrEoa0ttwMKmb5TDSaLhbgO1J/dfWgyJijKRhwLHARTn5n8BWEXF7znO7pBNJI6H2I/X1v48Wjk9EjJe0EekHyUmkcwKTSUPmL+uWnTEgDfiQNBS4nhSAtu6hTe0DjCPd/eAgUjfcs8CtpEFAvYqf59PHSVoc+BfwfxExrN31MTMDt3z6FEmLkk4wX0+60HRl0i/ndUi/lMzMFgoOPn1LkIbqng6sSDpXcA+wXUTc2M6KmZkVudvNzMxq5zscmJlZ7Rx8zMysdg4+ZmZWOwcfMzOrnYOPWRMkLSPpIEm3S5os6e38YL3R+YFg8zVyNK/rYfDW73i0m1kXJK1Fum3RB4GbSLfHeZl0S5yt83RKRBw2H2WPJT3LZUh31desN/B1PmadkLQ0cA2wJrBrRIwsZTlJ0sak5/T0C5JEekjda+2ui/Ve7nYz69w3gQ8Bp1UEHgAi4p8RcVbjtaRtJF0q6QlJMyRNkXSDpLke+CXpKdJDwNaQFIVpaCHPByRdKOk5SW9JekrSKVWPTZa0uaS/520+L+mXktbLZR5TyjtA0gmSHpf0Zs5/gaQ1SvmG5vWHS/qOpAdJN7Q8RNJVkqZLeldFXTbJ6x3d5Tts/ZJbPmad2y3Pz2lhneGku4hfQHpk9mqkIHazpC0aNxAl3fLoBNJNP39QWP8hgHxj0FuAKcDZpJtIfgT4HvApSZsXHp2xGak78BXgxLzOl4BPlSuXz09dn5f9CTgN+ACwP7CNpI9FxMTSageRHlL3v6Qb1j4D3EV6XMceuX5F+5BufDmii/fK+qt2P8fbk6eFeSI9OXJai+sMqEhbiXSeaHQpfSzwVAfl3Ac8DCxXSt+ZdCul4YW0f5BaJGsW0hYH/przHlNI/1ZOO7lU7udz+oWFtKE5bTLwnlL+RUmPavhHKX0ZYGp5Xz15Kk7udjPr3LuAaa2sEBHTG39LWjY/JXYWcCfw8WbKkLQB6YF/fwCWlLRCYyI9y2U6sE3OuxLpnNOVEfFEoR5vA7+sKH5nUqvkhFK9ryXdAX1HSeXvhgsi4sVS/lnA74GNc30bdiO9b+c2s6/WPzn4mHVuGrBcKytIer+kSyS9Qnq88cuku4xvR7rxazPWyfNj87rF6UVgAHMej/6+PC8/GrujtPeRHrFR9cjuB0j7u0Ip/dEO6nkuKbB+o5D2jVzHqzpYx8znfMy6MAH4jKQ1i62KjuTHlt9GCg6nA/eTAtBs4Ehgyya3qzw/DbiugzyvlPI2q9X8AK9XJUbEM5KuA74q6TDgvcBngFNzy8uskoOPWef+TPoy/SbpEdhd2Yr05Nh9IuK84gJJP63I39GFdo/l+ayIuKmLbTaC4ocqllWlPQ58TtKgiJhSWrYuqbX3chfbLDqHdL5oJ+C/c5q73KxT7nYz69zvSF1Xh0jasSqDpI0kHZBfzmokl/JsQ/X5nteAd+drZ4ruJbW69pO0ZsU2F5O0PKTHOJNGnu1YzJufYvv9im1eQfrfP6JU5rak4HFVRMyu2tcOXEsaibcvsDfw14h4uIX1rR9yy8esExHxuqTtSV+wV0i6AbiRNApuRWAL4LPAyXmVO0hDkU+TNIQ01PqjwF6kLrjiiXmAccD2wJmS/kYKXrdExIuS9iINtR4v6fek8zHLAGsBu5C68Ubkcg7J9fqbpLNIo82+BCzR2JXCNkeQgsThuY635TIPAF6guRZe8T2aJek84Ec5qaX1rZ9q93A7T556w0T60v8BKbi8QnpK7AukoLQXsGgh74dJ52kaAw7GAp8mfelHqdwBpC6qF0iBJ4ChheVrkB6N/hTwFino3U0aqfZfpbK2JAWzN3J5vyS1tgI4rGK7J5C67N4iDRC4EFijlG8opWHdHbw/a+T6T6NiqLknT+XJ93Yz68Mk7Uq6kHSPiLikB7ezCunC03MjYt+e2o71HT7nY9YHKFmqlLY4cDAwk9T66kn7ky46beVOENaP+ZyPWd+wJPC0pItJAyQGA7uTugBPiojne2Kjkr5MGl59KHB9RNzdE9uxvsfdbmZ9gKRFSfdd2xxYhTTa7hHgnCjc9LQHthukc0y3A1+PiGd7alvWtzj4mJlZ7XzOx8zMaufgY2ZmtXPwMTOz2jn4mJlZ7Rx8zMysdg4+ZmZWu/8PF9XlChKYxP8AAAAASUVORK5CYII=\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"category_bar_plot(weapon_df, \"Main Weapon Breakdown\", 0)"
]
},
{
"cell_type": "code",
"execution_count": 135,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" count \n",
" category \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" 328 \n",
" no \n",
" \n",
" \n",
" 1 \n",
" 238 \n",
" yes \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" count category\n",
"0 328 no\n",
"1 238 yes"
]
},
"execution_count": 135,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"co_defendants_df = get_value_counts(death_row, \"co_defendants\")\n",
"co_defendants_df"
]
},
{
"cell_type": "code",
"execution_count": 136,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 136,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ8AAAEtCAYAAADX4G3qAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3debgcVZ3/8feHTSRAIkEYgZEYUQHBURjclbBEZQ/BwQWUoDgg4gAuARkYAg+CgPwURB0yoomCbJqwRmQNq2FXCWGHgGDYskJIwpLv749zmhSVuvd239xbfXPzeT1PPZU+derUqe5Of+9ZqkoRgZmZWZ1WancFzMxsxePgY2ZmtXPwMTOz2jn4mJlZ7Rx8zMysdg4+ZmZWOwcfaytJoySFpGHLUMa7JF0s6flc1rieq2FL9RiSjz+mHcfvT5b1c/Rn0fc5+NibSFpD0mGSbpI0S9Krkp6VNCkHilXaXccK44BtgZOBrwBntbU2Ncmfx2Et7jM9/yg3lsWSnpF0g6Qv9lZdzcr64g+JtYmkTYArgPcC1wAnAS8A6wE7Ar8BNgdGt6uOZZLeAnwKODMiftzu+tRsFDAE+GmL+z0F/CD/e2VgQ2A/4DxJ74iIn/RUBc064uBjAEh6K3A5MBTYKyImlLKcLGkbYJvaK9e59QEBs9pdkeXI3Ig4p5gg6SxgBimgdRp8JK0VES/2XvVsReBuN2s4AHgfcFpF4AEgIu6IiF8U0ySNkHSLpJfycoukPar2l3SApAckLZL0iKRDSYGjKu9ASSfnfIvyeM55koYW8owDnsgvjy10JQ0r5PmCpJslvSjpZUm3Sfp8xfFC0jhJH8tdUPMlvSDpV5LWrMj/yXyuC3K35JlAVb6VJP23pBtz99Yrkp6U9EtJg0t53xinkLSrpDskLZQ0Q9KpxS5PSdNJXY0bl7rRhtE9s4GFwCulOk3OXXVDJf1B0ixgXmG7JH1T0l35/X1R0vWStqt4Lw6WdJWkp/P7MEPSOZKGNFNBSVvl93CapHcW0pv6LHLeAZJOkvRo/l49I+m3kjYu5Fk9lzWutO/Y/B7/tJR+gaR5jc8nf34h6X2STpT0VD7W3yTt3My5rhAiwosXgBuAAIa2sM/BeZ/7gSOBI/K/A/jPUt7Dcvpfge8Cx5C6f+7O6cMKeQcC9wEvAqcD/wkcCzwLPA9snPN9rFDuBGDfvKyft5+Qt/0p5/sv4Pqc9q1S/Rp1mwn8GDgQOC+njy3l/Qjph/p5YEwue0rhXMYU8q4OzAHOzud9UP73K8C9wGqFvEPy/rcDzwHHA98ErszpRxXyjsjv9fOF837j3Dv5zKbn/dbNy/rAB0ldqgEcUMo/mdT1+g/g/FyfYwvbzwFeBy4ADsnneDfwGrB7qazHgN/n78k38mc7H/gnMLji8xhXeP2Z/H24BVinm5/FKsDNOf0i0vf3J3n/Z4CNCnmvA54s1emRfK73FtJE+l5eXkgbk48xBbgp12l0Ps9XgCHt/v/eF5a2V8BL31hIP7rzWsj/NuCl/B9y7UL62sCj+YdiUE4blH9kpgFrFPJulMsoB5/TgQXAv5WOuTHpr+5xhbQh5R+ZnL5VTj+xou4X53LWKqQFsBj4aCnvFcCrwJqFtFvzj8h7C2mrkYJG+QdPwFsr6vD1nHfvinOZX/yBymVMBWaUypgMTG/xc56ej1FeFlD6g6FwjABOqNi2J9V/aKwC3Ak8DqiQPqCijB1yGaNL6W8EH9Ikklfy5/bWUr5WPotv5LRTSmXsktN/V0g7Oqe9J7/+10aevG78gbNlfv2dwr5jctrlpfPfJqefVOf/7b66uNvNGtam0J3ShOHAAOCMiHhjv/zvn5G6PXbMyZ8B1gB+HhEvF/I+BZxbLFSSgH2AG4GnJa3bWEg/ylNyeV3Zh/QffXyxjFzOpcBapJZT0V8iYkop7TrSj+mQXL/18n6XRMRDhXN5hYqxkkgW5H1XljQo1+G6nOUjFXW/OCKmF8sgtdj+paoLsBumkz6/4aT3chRwG/BLSft3sE/VZI59SX9kXFx6fwcBl5Hes/cUzmM+vNEVOTDn/Rswl+r3AUlHAOOBX5PGIhcUtrX0WZCC5WLSRBoK+a8gtXr3kNT4TWx8Ptvn9Q6kVs8Y0veqkb5dKX/R6fmzaxznDtL79Z6KvCscTziwhnmkH+RmvSuv76vYNjWvh5bWD1TknVZ6/XZgMOlH8fkOjr24ifptRmoxVB2zYf3S68cq8szM68b4TCvnAoCkvUndUR8CVi1tflvFLl3V46Wq47RgfkRcU6rjucA9wM8kXRoRMwubn4+IORXlbEb6zjzbybHWBx7Kx9ge+B9SoFm9lK/qfRiZy/+/iDioYnurn8W7gH9GxOyKbfeRuh/XJXV53k56n7cnTd3fHrgzIh6VdG9+fV5ezyQF0bKqz3EWS75LKzQHH2uYCnxa0tCIqPpPU1Y5UaCLvFUPjyqX03h9Dem6ne5SPt5OpL9Yq5QDZ0f5ivVq5VyQNJI0HnI7cChp7GQhaYrzlVRP+mmmHj0qIl6TdC2pjh8BJhU2v1y9FyL9gfDlToqeCqA0U/IqUjftkaQuuQWk9/F8qt+H20mtp89LGhsRd1YcH5r8LDpIq5Tfj5uA7XJrfDtSlxukVk6jlfRp4LpiC6ego8+xVz7D5Y2DjzX8kfQf6QDgqCbyP5rX7weuLW3bPK8fK+XdjKW7JzYrvX6eNEC/dvmv8xY9DHyONGh8/zKUU1Y8l7KqtK+Qgs12xS5HSZv2QF16+kmQjVZZsy3gh0nXhE2JiK5aY18mBdydIuLxRqKkAVS3eiBNSNmP9J25RtLnSt2irX4WjwKfkzSooiW3Oan1/0Ih7TrSHy+fJ41PNr7n15ImEYzMda/qcrMueMzHGn4FPAh8Tx1Pld5a0sH55dWkMZhvS1qrkGct4NukLourC3kXAN+StEYh70aU/mqOiMWkcaAPq2JKdN5vvSbOp/FX6omSVu5mGUuJiOdI4057SHpvobzVgMMrdnmdFCRWKuQVaUB7Wb0EvC2Xt0wkrU4K1pBmijXjt6TzOqlqo6Rit2ajFVCu61F08jsUEU+TppT/E7hK0icK21r9LC7OxzqyVM+dSF2il+bvX0MjqBwHLCLNtIM0M/S1nF7MZy1wy8cAiIiXJe1Kmt11saSrSEFjJmkcZjvgs8ApOf8cSaOBnwO3Fa6JGAVsAhwYEXNz3tmSjiENWt8q6bekCQgHkf56/lCpOv8NfAK4UNKFpB+YV0iz3XYG7srH6ex87pB0LOkH4q+SLiL9gL0D2DqXs1pr79IbvkOaBXaLpJ+TWmpfpPr/0x+AvYDr8nmvSpomvUZF3lZNAXYFzpR0K+kH/rr8o9yZgZL2zf8WsAFp8sBQ0vjKw80cPCL+IOk3wCGStiLN7nqB1Er4GOl70BiXmUgKCJMkjSV9nsOBD/Dm1kbVcZ5Run7pGuDPknaJiBvy5lY+i3GkltQR+dqiG3MdDyaNW5Vb/H8ljdFsBkyOiIW5Pi9KuovUPTkjIjobV7SOtHu6nZe+tZB+FA8nXQ8xmzTN+FlSUPoKsHIp/56k6a7z83IrMKKDsg8kta4Wkfr+DwP2pzTVulCPY0jXwiwgzRK6H/g/4COFfEOomGpd2L4L8GfSj8gi0pjLn4BvlvK96bqSQvqoDur36XyuC0kD1D8HtqiqC2mK77ScdwYwFlinfMzOzoUls6yGFNIGkK4ZepYlLaxhVe9DYZ/pLD3Nej5wB+kanpVK+SfTxXTu/L24idRttTAfYwLwhVK+EaQ/HOaTAs75wDtz/sldfR6kgfp78v47dPOzGEBqqT1GCoDPkVrJG3dwbn/M5RxTSv9hTj+nmc+q9P5PrjrWirYovyFmZma18ZiPmZnVzsHHzMxq5+BjZma1c/AxM7Paeap1FyS9RgrSrdz3zMxsRbc2sDgiKuOMZ7t1QdJiQAMHDmx3VczMlhtz5zYu84vKHja3fLo2b+DAgQPnzKm6r6KZmVUZNGgQc+fO7bDHyGM+ZmZWOwcfMzOrnYOPmZnVzsHHzMxq5+BjZma1c/AxM7PaOfiYmVntHHzMzKx2vsi0Jjsf/ZN2V8H6oEknVD3t2az/c8vHzMxq5+BjZma1c/AxM7PaOfiYmVntHHzMzKx2Dj5mZlY7Bx8zM6udg4+ZmdXOwcfMzGrn4GNmZrVz8DEzs9q1LfhI+rikP0t6WtJCSc9Luk7SThV5h0uaImmBpOcknSVpUEW+NSWdIWlGznunpN3rOSMzM2tWO1s+bwMeBL4LfA74T2ARMEnSFxuZJA0DJgH/AHYDvgfsDlwhqVz/icA+wNHALsA0YKKknXv1TMzMrCVtu6t1RFwBXFFMk3QZ8DgpEJ2fk08BpgJfiIjFOd8M4CrgP4ALctrOwI7AyIiYmNOuB4YCp5ECmJmZ9QF9aswnIl4D5gKvAkjaENgG+F0j8OR8VwNPA3sVdt8z73tJIV8A44FNJW3e6ydgZmZNaXvwkbSSpFUkbSDpOOC9QOPhN1vk9dSKXe8tbG/knVYMUtnfS2WZmVmb9YWHyV3IkhbMPGDviLgyvx6c17Mq9psFbFV4PRh4qIN8xbLeRNKcLuo3sIvtZmbWora3fIDRwIdJkwgmARdK+lIpT3Swbzm9o3xdbTMzsxq1veUTEY8Bj+WXl+VJBz+XdAEwM6dXtVrW4c0topmd5IPq1hMRsdSU7aLcMnLrx8ysB/WFlk/Z7aRp2G8H7stpVeM1W/LmsaD7gM0qpl9vmddV40ZmZtYGfSr4SBIwDJgDzIyIp4A7gX2KQUXSDsCGwITC7hOBQaRrgYq+CjwYEdN6sepmZtaCtnW7SToXeAK4C3gBeAewH7A98O087RrgCNI1PedJGgtsAJwM3AZcVChyEnA9cLakwaTrhfYDPgns0esnZGZmTWvnmM9fSHcjOJA0pjKX1MrZPSIua2SKiOsk7QocR7oo9UXgYmB0RLxeyBeSRgAn5mUQ6Q4HI4vlmZlZ+7XzDgdnAmc2mfdK4Mom8s0DDsmLmZn1UX1qzMfMzFYMDj5mZlY7Bx8zM6udg4+ZmdXOwcfMzGrn4GNmZrVz8DEzs9o5+JiZWe0cfMzMrHYOPmZmVjsHHzMzq52Dj5mZ1c7Bx8zMaufgY2ZmtXPwMTOz2jn4mJlZ7Rx8zMysdg4+ZmZWOwcfMzOrXduCj6QdJI2T9KCklyU9JWmCpC1L+SZLiorl/Ioy15R0hqQZkhZIulPS7vWdlZmZNWOVNh77IGAw8BPgfmB9YDRwh6RhETGlkPdh4Kul/V+oKHMisFUu53FgFDBR0m4RMalnq29mZt3VzuDzrYh4rpgg6SpS0Pg+sFdh08ulYLQUSTsDOwIjI2JiTrseGAqcBjj4mJn1EW3rdisHnpw2h9TK2agbRe4JzAUuKZQXwHhgU0mbd7OqZmbWw/rUhANJbwe2AKaWNr1P0mxJr0l6WNLRklYt5dkCmBYRi0vpfy9srzrmnM4WYOCynpeZmb1ZO7vd3kSSgLGkgPjjwqabgPOBB4A1gRHA8cDWpNZOw2DgoYqiZxW2m5lZH9Bngg9wKimw7B8R9zcSI+KYUr7LJT0LHCXpkxFxc2FbdFJ+5baIGNRZpdz6MTPreX2i203SD4HvAodGxLgmdhmf1x8rpM2kunWzTl7PqthmZmZt0PbgI+l44ChgdESc0eRujXoXx3fuAzaTVD6nxnVD5XEkMzNrk7YGH0nHAscAx0TEqS3s2rjmpzj9eiIwCNitIu+DETGt2xU1M7Me1bYxH0nfBcYAlwPXSPpoYfOiiLhH0qeAI4E/Ak8AA4A9gP2BiyLilsI+k4DrgbMlDSZdL7Qf8Mm8j5mZ9RHtnHDQaKHsmpeiJ4AhwIz8+nhgXVI324PAd4CfFXeIiJA0AjgxL4OAaaSLTi/rhfqbmVk3tS34RMSwJvI8AuzSQpnzgEPyYmZmfVRfmmptZm3w/UuvbncVrA86dffhvVp+22e7mZnZisfBx8zMaufgY2ZmtXPwMTOz2jn4mJlZ7Rx8zMysdg4+ZmZWOwcfMzOrnYOPmZnVzsHHzMxq5+BjZma1c/AxM7PaOfiYmVntHHzMzKx2Dj5mZlY7Bx8zM6udg4+ZmdWupeAj6TFJu3eyfVdJjzVZ1g6Sxkl6UNLLkp6SNEHSlhV5h0uaImmBpOcknSVpUEW+NSWdIWlGzntnZ/U1M7P2aLXlMwRYs5PtA4CNmyzrIOCdwE+AnYDv5Nd3SPpoI5OkYcAk4B/AbsD3gN2BKySV6z8R2Ac4GtgFmAZMlLRzk3UyM7MarNLD5a0PvNxk3m9FxHPFBElXAY8D3wf2ysmnAFOBL0TE4pxvBnAV8B/ABTltZ2BHYGRETMxp1wNDgdNIAczMzPqALoOPpE8DwwpJIyVtUpF1HeCLwF+bOXA58OS0OZIeBjbKx94Q2Ab4biPw5HxXS3qaFKAuyMl7AnOBSwr5QtJ4YKykzSNiWjN1MzOz3tVMy2c74Nj87wBG5qXKI8Dh3a2MpLcDWwDn5aQt8npqRfZ7C9sbeacVg1T29+L27tbNzMx6TjPB56fAOEDAY8BhFFoXWQAvRcSs7lZEkoCxpHGoH+fkwXldVe4sYKvC68HAQx3kK5ZVPu6cLqo2sIvtZmbWoi6DT0TMJXVnIWk74P6qLrMecCowAtg/Iu4vV6Oj6jWZr6ttZmZWo5YmHETEDb1RCUk/BL4LHBoR4wqbZuZ1VatlHd7cIprZST6obj0REUtN2S7VbQ5u/ZiZ9aiWZ7tJeidwIPAe0o+9SlkiInZoobzjgaOA0RFxRmnzfXm9BWl2W9GWwK2lvHtJWqk07tO4bqhq3MjMzNqgpeAjaSfStTSrAS/SQWuihfKOBY4BjomIU8vbI+IpSXcC+0j6aWGq9Q7AhsCEQvaJwNdJ1wIVx6S+CjzomW5mZn1Hqy2fk4AXgBERceeyHFjSd4ExwOXANcULS4FFEXFP/vcRpFbPeZLGAhsAJwO3ARcV9pkEXA+cLWkw6Xqh/YBPAnssS13NzKxntRp8NgWOXtbAk+2W17vmpegJ0t0UiIjrJO0KHAdcQWpxXUzqpnu9sUO+pmcEcGJeBpGmVo+MiMt6oL5mZtZDWg0+zwOv9MSBI2JYC3mvBK5sIt884JC8mJlZH9Xqvd1+x5Lb3piZmXVLqy2fccB2ki4BTieNq7xezhQRTy571czMrL9qNfg8QLpYUyw9TlO0crdrZGZm/V6rwed4fKcAMzNbRq3e4WBML9XDzMxWIH6MtpmZ1a7VOxx8upl8EXFj96pjZmYrglbHfCbT3JiPJxyYmVmHWg0++3dQxruBUcB04Kxlq5KZmfV3rU44GN/RNkmnAncvc43MzKzf67EJBxExG/gVMLqnyjQzs/6pp2e7zQaG9nCZZmbWz/RY8JG0OvAV4JmeKtPMzPqnVqda/7qDTesAHwPeDnx/WStlZmb9W6uz3UZ1kD4LeAg4PCJ+v0w1MjOzfq/V2W6+I4KZmS0zBxMzM6tdq91uAEhaG9iRJTPbHgOujogXe6piZmbWf7UcfCQdAJwGrEl6rg+kW+68JOk7EXF2D9bPzMz6oZa63STtDowFnge+AwzPy+HAc8BYSbu1UN5Gkk6XdLOklySFpGEV+abnbeXlRxV515c0XtILkuZLuknSx1s5TzMz612ttnxGA/cDH4mIlwrp10r6DTAFOAK4rMnyNgG+RLotz7XA7p3kvTGXXfR08UW+1uhaUqvs28BM4LBcv49HxD1N1svMzHpRq8Hn34DjS4EHgIh4UdJ44JgWyrsxItYDkDSCzoPP7IiY0kV5XwPeD2wdEXfncm8gBcwTgZ1aqJuZmfWS7sx2UyfbWnrEdkQs7sbxO7MncG8j8ORjLALOA4ZLWquHj2dmZt3QavD5G7CfpAHlDZLWJF2E+rceqFeV7fO40CuS7pX0TUnlQLgFMLVi37+TnjG0WS/VzczMWtBqt9uPgQnA3ZLOAKbl9PeTxlg2AUb2XPXecDlwJ2lK92BgX+AXwHtJkx0aBpPutlA2q7D9TSTN6eLYA1utrJmZda7VOxxcLOkQ4GTgZyzpZhMwHzgkIi7p2SpCRBxSSpoo6VzgvyT9NCKeKGbvrKierpuZmbWu5et8IuIXkn5PmmL9LlLgeZR0kencHq5fZ8YDXwY+DDSCz0wqWjekG59CRasoIgZ1dpDcMnLrx8ysB3XrDgcRMQe4qIfr0qrGeFVx0sJ9pHGfsi2B14EHertSZmbWtS4nHEhaWdKPJB3URb5vSjqxYhJAb/kqKfDcUUibCGwp6YOFeq1GupbomoiYV1PdzMysE820fPYlPaPnw13kux04kzTbrOnHKkj6fP7nNnm9raR1gfkR8SdJXwL2AK4AniJ1oe0LjABOjYgnC8WdDXwLmCDpB6RutkOBDYC9m62TmZn1rmaCz96kVsNdnWWKiLsk/ZnUymjlmT7l7rsxef0EMAR4HFgXOIU0nrMIuBcYFRHjS3VYKGl74FTgl8DqpLsnDO+q/mZmVp9mgs/WpBuJNuN60j3fmhYRnXbT5bsa7NhCec+QHudtZmZ9VDMXma5DumloM55nycwyMzOzSs0EnxdJ3V7NGAwsdd83MzOzomaCz33AZ5osb3jOb2Zm1qFmgs8EYEdJe3SWKT/rZzjwx56omJmZ9V/NBJ+zgEeACyX9UNKQ4kZJQySdAFwIPJTzm5mZdajL2W4RsUDSLqSbe/4AOFLSi8A8YC1gbdItdh4Edo2Ihb1YXzMz6weaeqRCRDwCfJB0webNwGvAv5BuWXNTTt8qIh7tpXqamVk/0vS93XKL5md5MTMz67buPMnUzMxsmTj4mJlZ7Rx8zMysdg4+ZmZWOwcfMzOrnYOPmZnVzsHHzMxq5+BjZma1c/AxM7PaOfiYmVntHHzMzKx2bQ0+kjaSdLqkmyW9JCkkDesg75cl/U3SQklPSfqRpNUr8q0vabykFyTNl3STpI/3+smYmVnT2t3y2QT4EunR29d2lEnSvsC5wC3ATsCJwLeAcaV8q+dytgW+DexJegz4tZI+1PPVNzOz7mj6rta95MaIWA9A0ghg93IGSSsDpwKXRsTBOfl6Sa8CYyX9JCJuy+lfA94PbB0Rd+f9bwDuJwWsnXr1bMzMrCltbflExOImsn2U9Oyg8aX0c4FXgb0KaXsC9zYCTz7GIuA8YLiktZatxmZm1hPa3fJpxhZ5PbWYGBEvS3q0sL2R9/qKMv4OrAxsBtxe3CBpThfHH9hSbc3MrEvtHvNpxuC8nlWxbVZheyNvR/ko5TUzszZZHlo+DdFkekf5KrdFxKDODppbRm79mJn1oOWh5TMzr6taLevw5pbOzE7yQXWryMzMarY8BJ/78ro4toOkNYB38+axoPvK+bItgdeBB3qjgmZm1prlIfhMAZ4BvlJK/xKwKjChkDYR2FLSBxsJklbLea+JiHm9XFczM2tC28d8JH0+/3ObvN5W0rrA/Ij4U0S8JulIYJykM4E/kGatnQz8ISKmFIo7m3Tx6QRJPyB1sx0KbADsXcPpmJlZE9oefICLSq/H5PUTwBCAiBgv6XXgCOAbwAvA/wLHFneMiIWStiddlPpLYHXgbmB4RNzVS/U3M7MWtT34RISazHcOcE4T+aq66MzMrA9ZHsZ8zMysn3HwMTOz2jn4mJlZ7Rx8zMysdg4+ZmZWOwcfMzOrnYOPmZnVzsHHzMxq5+BjZma1c/AxM7PaOfiYmVntHHzMzKx2Dj5mZlY7Bx8zM6udg4+ZmdXOwcfMzGrn4GNmZrVz8DEzs9otF8FH0jBJ0cGyaSnvcElTJC2Q9JyksyQNalfdzcxsaau0uwItOgK4sZQ2vfEPScOAScDFwNHABsDJwBaSPhURi+upppmZdWZ5Cz4PRcSUTrafAkwFvtAINJJmAFcB/wFc0PtVNDOzriwX3W7NkLQhsA3wu2ILJyKuBp4G9mpX3czM7M2Wt+BzlqTXJM2VdLmkrQvbtsjrqRX73VvYbmZmbba8dLvNBX4KTAZmAZsBRwK3SNo2Im4DBue8syr2nwVsVVWwpDldHHtgdypsZmYdWy6CT0TcA9xTSLpJ0qWkVs4PgR2L2TsqppeqZ2ZmLVougk+ViHhG0lXA7jlpZl4Prsi+DtUtIiKi02nYuWXk1o+ZWQ9a3sZ8ylZiSYvmvryuGtvZkuqxIDMza4PlNvhI+hdgODAFICKeAu4E9pG0UiHfDsCGwIR21NPMzJa2XHS7SToXeAy4G5gNbEq64PStwA8KWY8gXdNznqSxLLnI9DbgojrrbGZmHVsugg9pqvQXgW8DA0jjO5OBEyLije60iLhO0q7AccAVwIukux2MjojX6660mZlVWy6CT0T8CPhRk3mvBK7s3RqZmdmyWG7HfMzMbPnl4GNmZrVz8DEzs9o5+JiZWe0cfMzMrHYOPmZmVjsHHzMzq52Dj5mZ1c7Bx8zMaufgY2ZmtXPwMTOz2jn4mJlZ7Rx8zMysdg4+ZmZWOwcfMzOrnYOPmZnVzsHHzMxq5+BjZma1c/AxM7Pa9bvgI2lNSWdImiFpgaQ7Je3e7nqZmdkS/S74ABOBfYCjgV2AacBESTu3tVZmZvaGVdpdgZ6UA8yOwMiImJjTrgeGAqcBk9pYPTMzy/pby2dPYC5wSSMhIgIYD2wqafN2VczMzJZQ+m3uHyT9hRRvPl5K/wgwBfhCRFxY2jani2IHAgwcOHCZ6jZ/4aJl2t/6pwGrv6XdVWDha6+1uwrWB62+yrJ1jM2dOxfS73FlI6dfdbsBg4GHKtJnFbZ3R8ydO3deN/e1N2tE8bltrUUfMXfRwnZXwZbwd7OgB/5cXhtY3NHG/hZ8ADpryi21LSIG9WJdrKTR0vT7bn2Nv5v16m9jPjOpbt2sk9ezKraZmVnN+lvwuQ/YTFL5vLbM66k118fMzCr0t+AzERgE7FZK/yrwYERMq79KZmZW1t/GfCYB1wNnSxoMPA7sB3wS2KOdFTMzsyX6VfCJiJA0AjgxL4NIdzgYGRGXtbVyZmb2hn51nY/1fZ5RZH2Vv5v16m9jPmZmthxwy8fMzGrnlo+ZmdXOwcfMzGrn4GNmZrVz8DEzs9o5+JiZWZXAfLAAAAh/SURBVO0cfMzMrHYOPtajJI2RFJI2k3SBpHmSnpX0a0kDC/kGSDpN0pOSXsnrUyW9tZ31t/5B0pfz9/CjFdv+n6QXJa2dX+8s6YacNl/StZK2Ke3z7vx9niFpUV5fKWmTus6pv3Hwsd4yAbgfGAmcDHwZ+AlAvuv4ZcAhwFnALsBY4FDgEklqR4WtX7kImAEcXEzMf9yMAs6JiHmSvgZcDjxN+o7uA6wK3CBpy8Kuk4B3k76jw4FvAw+THphm3RERXrz02AKMIT207/BS+s+BBYCAnXKeQ0p5Ds3pn233eXhZ/hfgf4CFwLqFtK/n79gWwABgNnBhab81gKeAi/LrdfM+e7T7nPrT4paP9ZZLS6//DqwOrA9sl9POKeX5bV5vh9myO4v0x87XCmnfBG6MiKnAx0g3Hz5H0iqNBXgFmAxsm/eZCTwKnCLpIEmb1XUC/ZmDj/WWmaXXjUfCr056suyiiJhTzBARs3O+qqfRmrUkIp4FLgQOkrRSHv/ZmtQKh/SHEMAlwKulZR9Si4dIzZ8dgFuA44Bpkv4p6QRJb6nrfPqbfvVIBVtuzATeImlQMQBJehvwFpYOXGbd9TNgX+BzwBdJ40AT87YX8vpg4I7OComIJ8gtKEnvzWUeDSwmde9Zi9zysXa4Lq/3LaXvW9putkwi4nbgNuAoYG9gbES8mjffAswDNo2IO6uWDsp8KCL+B3gC+LcaTqNfcsvH2uEq4Brgx3n69e3Ah0l/Qf4ZuLqNdbP+52ek8cXXSLMqAYiIlyQdBvxK0jqkFtFMUnfcv5O6ho+R9IFcxoXAI7mcXYAhpJmc1g0OPla7iAhJewDHAweSZsjNAE4Hjs197GY95Y/Ab4CLI+KfxQ0R8RtJTwLfB84G3go8C9wJ/G/O9gzwGGl69UakrrZHgAMjYizWLX6ej5n1a5JGkgLQsIi4od31scTBx8z6JUnvAzYGfgk8FxEfa3OVrMATDsysvzqLdPeC54CvtrkuVuKWj5mZ1c4tHzMzq52Dj5mZ1c7Bx8zMaufgY2ZmtXPwMWuCpDUkHSbpJkmzJL2aH5I3SdKofDfk7pQ7Kl9lb7ZC8Ww3sy7kp1VeAbyXdFugq0g3pVwP2DEvp0bE6G6UPRkYEhFDeqq+ZssD317HrBP5yZeXA0OBvSJiQinLyfmRy9sstXM/lZ80OyAiXmp3XWz55W43s84dALwPOK0i8AAQEXdExC8aryV9RtIFkh6TtEDSHElXSdq2uJ+k6aQHlm0sKQrLsEKe90j6naQZkl6RNF3SqZIGlOshaVtJf8nHfEbS6ZLen8scU8o7QNJJkh6VtCjn/62kjUv5huX9R0n6lqRppKeDfk/SpZLmS1rqUdKSPpz3O6bLd9hWSG75mHXu83ndyg0kR5EemPdb0uOYNyQFsWslbRcRN+V8hwEnkR5adnhh//sBJG1NerzEHNLV+k+TbuH/X8AnJG3beDyApE+SugNnAz/K++wNfKJcuTw+9ee87Q/AacB7SE/5/Iykf4+Ip0q7HUZ6yN//kW60+Q/SzTd3A76U61f0NdINOMd18V7Ziqrdz/H24qUvL6Rb7M9rcZ8BFWnrk8aJJpXSJwPTOyjnb8ADwFql9D2BAEYV0m4ntUiGFtJWJT2zJoAxhfRv5LRTSuXuktN/V0gbltNmAeuV8q8MPAncXkpfA5hbPlcvXoqLu93MOrc26YFjTYuI+Y1/S1pT0mDgddJDzT7STBmStgQ+APye9NTXdRsLcDMwH/hMzrs+aczpkoh4rFCPV0mPqSjbk9QqOalU7yuAvwJ7SCr/Nvw2Ip4r5X8d+DWwTa5vw+dJ79vZzZyrrZgcfMw6Nw9Yq5UdJL1b0vmSZgMvklo8zwM7A29rspjN8vq4vG9xeQ4YQGpNAbwrrx+sKKcq7V3APyNidsW2+0jnu24p/aEO6nk2KbB+vZD29VzHSzvYx8xjPmZdmAp8WtLQYquiI5LWBG4kBYefAveSAtBi4AfA9k0eV3l9GnBlB3lml/I2q9X8AC9XJUbEPyRdCewraTTwTuDTwI9jyeOqzZbi4GPWuT+SfkwPAI5qIv8OwAbA1yLiN8UNkk6oyN/RhXYP5/XrEXFNF8dsBMX3VWyrSnsU+JykQRExp7Rtc1Jr74Uujlk0ljReNAL4UE5zl5t1yt1uZp37Fanr6nv50d9LkbS1pIPzy9cbyaU8n6F6vOcl4G352pmie0itroMkDa045iqS1gGIiMZjn/co5pW0KnBoxTEvJv3fP7JU5k6k4HFpRCyuOtcOXEGaiXcgsB9wS0Q80ML+tgJyy8esExHxsqRdST+wF0u6CriaNAvu7cB2wGeBU/IuN5OmIp8maQhpqvUHga+QuuCKA/MAU4BdgTMl3UoKXtdFxHOSvkKaav13Sb8mjcesAWwCjCR1443L5Xwv1+tWSb8gzTbbG1itcSqFY44jBYkjch1vzGUeDDxLcy284nv0uqTfAEfnpJb2txVUu6fbefGyPCykH/3DScFlNvAq6Yf6ClJgWbmQ9wOkcZrGhIPJwKdIP/pRKncAqYvqWVLgCWBYYfvGwP8C04FXSEHvLtJMtX8tlbU9KZgtzOWdTmptBTC64rgnkbrsXiFNEPgdsHEp3zBK07o7eH82zvWfR8VUcy9eyovv7WbWj0nai3Qh6Zci4vxePM47SBeenh0RB/bWcaz/8JiPWT+gZPVS2qrAd4DXSK2v3vRN0kWnrdwJwlZgHvMx6x/eAjwh6VzSBInBwBdIXYAnR8QzvXFQSV8kTa/+PvDniLirN45j/Y+73cz6AUkrk+67ti3wDtJsuweBsVG46WkvHDdIY0w3AftHxNO9dSzrXxx8zMysdh7zMTOz2jn4mJlZ7Rx8zMysdg4+ZmZWOwcfMzOrnYOPmZnV7v8DjdgneNtxOUAAAAAASUVORK5CYII=\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"category_bar_plot(co_defendants_df, \"Codefendant Breakdown\", 0)"
]
},
{
"cell_type": "code",
"execution_count": 137,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" count \n",
" category \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" 299 \n",
" white \n",
" \n",
" \n",
" 1 \n",
" 110 \n",
" unknown \n",
" \n",
" \n",
" 2 \n",
" 86 \n",
" hispanic \n",
" \n",
" \n",
" 3 \n",
" 59 \n",
" black \n",
" \n",
" \n",
" 4 \n",
" 12 \n",
" other \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" count category\n",
"0 299 white\n",
"1 110 unknown\n",
"2 86 hispanic \n",
"3 59 black\n",
"4 12 other"
]
},
"execution_count": 137,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"race_vic_df = get_value_counts(death_row, \"race_vic\")\n",
"race_vic_df"
]
},
{
"cell_type": "code",
"execution_count": 138,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 138,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ8AAAFpCAYAAABDKSWQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3dd5xcVd3H8c+XLi2BUAR8BFEREBQFRBEllKB0CAooCgF5xC5FigiPgIIi8gjog4ICQVRESigSaYHQFBBRepGqoUMKNZTk9/xxzrg3k9ndmc3uvTOz3/frNa/ZvffcO7+ZnZ3fnHLPUURgZmZWpvmqDsDMzIYfJx8zMyudk4+ZmZXOycfMzErn5GNmZqVz8jEzs9I5+VjXkzSfpCMkPSzpTUmDen1BPndIWqUTztvpJI3Or8u4eTjHuHyO0YMXmbXCyWcYKfzTFm8vSbpN0n6SFqg6xiGyB/Bd4BrgC8DnGxWStHV+TU7o62SSjszlPjuvgUnaQdIR83qewSBplQbvj9clPSbpPEkbVB2jdQ/5ItPhI3/LuwY4G5gICHgrsDuwFvDLiPhiZQEOEUm/A7YCloo+3vCS5gceAxYGVoyINxqUEfAIMAJYISJm5qS9APBaX+fv5THHA3tEhBrsG/B5ByLXsB4BrgR+nTcvDKwGfBFYHPhoRNwy1LH0pfA+3jMixg/wHOOAM4BNImLyYMVmzevWb7rWt9si4je1XySdDNwH7C3pOxHxbHWhDYm3AtP7+wCPiFmSzgQOBbYFLmhQbFNgZeDkiJiZj3sTeHNwQx668zbhgeL7A0DSjcBFwG5An8lH0hIR8eIQxmddwM1uRkS8DNxEqgm9s7hP0haSzsn9Ja9Kmi7pCkkbNzqXpHdJOkPSlNxk84SkiyStW1duPUkTJD0n6TVJ90v6TitNf5L2zk2Gr0qakePaqLB/dO7f2QRYudCUNL6P054OBLBXL/v3KpSrPU7DvhlJS0o6WtK9kmZKel7SDZJ2zfsnk5oEqWvqGtfbeQvb1pR0gqQnJb0saZKk9+QyYwuvy6OSBqM2+0S+f73uOYak8ZI2y8/tJeCSwv4Rko6V9GD+Oz8r6WxJq9adZwlJ35d0c+E98aCkH0patJkAJe0h6Y3cRLhwYfveku4rnPObpPd6o3OsIuksSU/n8g9JOqYYg3rpc5L0QN6+Q932pyRNLPw+Of9dVsyvxbT8N7xc0mrNPNdu4JqP1dSSztS67eOApUnNMFOAlYC9gUmSNomI62sFJa0HTAIWBE4D7srHbgxsCPwtl9sKmAA8CByfH/MjwFHAOsCn+wtW0rHAQaRv4YcCS5Cahq6RtH1ETATuJfXvfAdYBtgvH/5Qb+eNiIckXQd8UtIKEfFk4TFHADsCt0fE3/qJbyRwA/Be4Dzg58D8wAeAbYDfA0eTvgB+jDn7of7c3/MHzgReAo4BlgUOAC6XdDjwo/x4p5P6uE6RdE9E3NDEeQEWkbRM/nkhUrPbD4BXgLMalF8P2An4ZY4L+M/r9Wfg7TmWu4EVgK8AN0taLyIey8Vr76vzgd+Ranwbk/7GHwA+0VfAkg4lvZ7/B3wjImbn7fsCPwFuJ71PFgUOBJ5pcI6VSe+nEaTX7wFgNPBt4KOSNsu10b8ArwKbAePzsSsB7wZm5+0X5u3vBZYHrq57uMWA60hf+g4F3gF8E7hI0loRMauv59sVIsK3YXIj/SMF8D+kD+NlgbVJ/7AB3NLgmMUabFseeA6YWNgmUrKZCbyvwTHz5ftFgKdI/3gL1JXZL8cxup/n8R7SP/kNwEKF7SsC04FHgfkL2ycDj7bwOn0+x3FQ3fZ98vZv1G0/Im9fpbDt5Lzti729Fvnn8enfsGEcjc5b23YJuc82b/9G3v4i8PbC9mXz3+TsJp73KvkcjW7/BjZscExt/+YN9p1I+pB+f932lYEXgPGFbQsBCzY4x/fy+T/U4H08jpS8a+/fQ+uOHQm8DNwDLFrY/jZS4p7jvQb8Nm/bqu48x+XtXyhsuwqYUvh9d2AWKXHeU9j+9XzsB+vej43eXwfm7Z+Yl//zTrm52W14OhJ4lvTt7w7SN9ELgO3qC0ZqkgNA0uKSRpH+yW4GiqOf1iF9yz8jIu5ocJ7Z+ccxpOR1BjBS0jK1G2kQBMAW/cS/PSnZ/Sgi/tMMFBFPkD7MVyZ9Wx6o84AZwJ512/cEXiN9SPVK0nzArqSa1y/r9xdei3lxUuRPrKxWA70oIv5VeKxngftJ38qbdRHp7zSGNFDjG6TmtoslNXpdb4+Iq4obJInUP3Qd8Hjd37nWzPufv3NEvB55gIekBSQtlcvWzttopN0ipL/VF4FxEXFM3f4tSDWd/4uIVwqPNYW6v2H+m20H/D1SrbnoB6QvOzsWtl0NrFRr6iT1Bf6NVHNbQ9IKefsmwDTgH3XnnA2cVLetVjtq5W/VsdzsNjydCpxLah5bGziY9G1wZn1BSe8kNWd8gvRNsqj44Vf7h/l7P4+9Rr4/vY8yy/dzjnfk+7sb7Lsr368K3NrPeRqKiFclnQ18SdJHIuIvktYkfQD+ISKe7+cUywBLAZfVJYjB9HDd79Py/SMNyk4jJeRmTWmQTC4mJbGfAx+uK/9Ag3MsC4wiJYDeBrDMkYQlfQX4EulLTP0X46UaHP8jUnPrbhHxuwb7a/1K9zXYd0+DeBenwXsqIqZKerJwPuhJFJuSXpdNSKNIryH9X2ya30MbA5MbfOF4IvKAlYLa+2pUg3i7jpPP8PTPwofLnyTdQGrC+gXpGzuQajqkb66LAScAd5KadWaT2sE3LZyz1oHb34dtrdyBzP1tsOaJXrbXn2MonU76INyT1MZfqwWd1sSxzb4W86K3PoHets/TaxYRj0m6D9hA0mLFGjGpL6i3x7sKOLa/80van9T/dwWpRvAEqba1Eqk226iV5kJSX9OBki5v8KWgr79D/evR6uvzV1LT4aaSriT1a12dE9XtpH6fe0l9nvX9PdD732kgsXQkJx8jIv4s6Sxgd0knRUStw3szUj/KXhFxRvEYSd+vO839+b6/5q5/5vuX679dt6A2YOC9zD14YM18X18zaElE/FXSHcAukr4FfI7U79FMzM+SahvrNPNQA4+ydAvm+8VJTWd9eZbU/7Zkk3/nz5P66rYs1hIkfbKPY64mfRm4lDTQZPOIKA4kqL031mDuBLBG3e/PkL5Yvbf+QSQtRRoo8Z8vS5GG5V9PqvFsTkqUtQEdk0iDZmq1qEbJZ9hzn4/VfI/0beyowrbat7M5volJ2oK52+BvJ/2z7ZVH+FB3TO0cl5P+0Q+RtHSDcm+RtEQ/sV5M+tA+UFLtA5Hczr4n6ULR/pr/mnE6sCTwK9K1Qmc001+Ty5wNrCnpC/X7C68FpI5vGr0W7SQ3O64GPB4RT/dXPr8GvwU+JOlTvZxzucKvs0h/UxX2LwAc0s/jXAt8kjRYYrKktxZ2X0ka8PDVuqHSbwM+W3ee2aRBHB9okPAOIX1WTqjbfjWpiewbwE2FfqWrSTWhvYCnIqK+ic9wzceyiHhQ0u+B3SR9LNIQ6htII9OOV7rWZArp2/znSU1waxeOD0l7kr713SKpNtR6JKnd+zLgpxHxsqTdSU0m90s6nTTkeiSwOjCW1LE7uY9Y75d0HGkY7nWSzqFnqPXipD6AwRiq+htSv8KnSR+MZ/RdfA6HkZolf5WT9Q2kD9YPkP7vakOrbwK+Bpws6VLgDeDmiGjUd1OW1SR9Lv+8IGkY/j6kuA9u4TzfAT4K/EHSH0jP9XVS/9NWpA76cbnseaSO/T9JuoCU9D9Lej36FBE35Nf4MlIC2jQinoiIaXno+Y+BP0v6NWkAwpdINfD6WvqhpEEWFypdeP0g8HFgF1Lz85l15Ws1mjWAcwrbryMNFV+T9CXEGql6uJ1v5d3oGaL6rV72r0H6BnpNYdv7SP/U00jNEpNJ16WMp8EQYdIw6N+QktbrpLb7CykMNc3l1srlHs/lniZdE3I4sHSTz+e/STWcmaT29yuBjzUoN5kWhlrXHXtOfs0m9VHmCOqGROftI0nJ68H8HJ8njUrbuVBmPtKH4xR6vv2P6+28fTzWKnn7EQN9/jQeaj2bdB3W5cCYBscEhSHTDfYvmv+md5JqIS/SMwpwg0K5+Un9iA+SRhQ+ll+7NeqfV+F9PK7usdbLsf4T+K/C9n1IzcKv5fPvS6ohzzWsnzSY5SxS7fx1UvPtMRSGahfKitS8GPXvO+DGvH3vZv8eff0Nu/Hmud3MzKx07vMxM7PSOfmYmVnpnHzMzKx0Tj5mZlY6D7Xuh6Q3SUn6hapjMTPrIEsCsyOiYZ7xaLd+SJoNaMSIEVWHYmbWMWbMmAHpcoyGLWyu+fTvhREjRoyYPn161XGYmXWMkSNHMmPGjF5bjNznY2ZmpXPyMTOz0lWWfCRtmNcsf1xpfftnJV0tacsGZcdIuklpTfpnJJ2SlymuL7e4pJOU1rV/VdKtkuZaIM3MzKpVZc1nKdJ8SweQZqX9ImnupYmSimvKjCatcPlvYFvgW6QVBy/Nqw8WTSCtnngYsDVpwagJkrYa0mdiZmYtaavRbnkK9UdIi51tmrfdQppZd93I09lLGkNadGrXiDgnb9uKtK7H2IiYkLeJNJHjqIioX7+j2Zime8CBmVlr8oCDGRExVysVtFmfT0S8CcwgT6MuaSVgfeCsKKyjEhFXkmZD3qlw+I752IsK5YI0DfrqeT0SMzNrA5UPtc5NZ/MBy5GmPl+N1LQGadp9SOvC1LuzsL9W9p6Ye7GvO4r7Gzx+f1UaX+BjZjbI2qHm8wdSTedx0jobO0fEZXnfqHw/tcFxUwv7a2V7K0ddWTMzq1DlNR/SapTHkpYp/ixp1cM9IqK4AmBvHVP12/vqwGq4r7f2yJpcM+q19rPxLnv2dXhHuvacVhbsNDNrXeXJJyIeJq0WCHCJpEuA/8tLIz+ftzeqtSzNnDWd5/soB41rRWZmVoF2aHardwtpGPaywN1521oNyq3NnH1BdwNrNBh+vXa+b9RvZGZmFWir5JOHRo8GpgPPR8QU4FZgt2JSkbQZsBJwQeHwCcBI0rVARbsD90fEXIMNzMysGpU1u0n6LfAY8DfgOWAFYA9gU+Dredg1wMGka3rOlnQqsCKpj+hm4NzCKScC1wCnSRpFul5oD2AjYPshf0JmZta0Kvt8/kKajWAfUof+DFItZ7uIuKRWKCKulrQNcCTpItIXgQuBgyJiVqFcSNoBOCbfRpKGVo8tns/MzKpXWfKJiJ8BP2uy7GXAZU2UewH4Wr6ZmVmbaqs+HzMzGx6cfMzMrHROPmZmVjonHzMzK52Tj5mZlc7Jx8zMSufkY2ZmpXPyMTOz0jn5mJlZ6Zx8zMysdE4+ZmZWOicfMzMrnZOPmZmVzsnHzMxK5+RjZmalc/IxM7PSOfmYmVnpnHzMzKx0Tj5mZlY6Jx8zMyudk4+ZmZWusuQjaTNJ4yXdL+kVSVMkXSBp7bpykyVFg9vvG5xzcUknSXpS0quSbpW0XXnPyszMmrFAhY/9JWAU8BPgXmB54CDgr5JGR8RNhbL/BHavO/65BuecAHwwn+cRYBwwQdK2ETFxcMM3M7OBqjL5fDUinilukHQFKWkcCOxU2PVKXTKai6StgM2BsRExIW+7BlgVOB5w8jEzaxOVNbvVJ568bTqplvO2AZxyR2AGcFHhfAGcCawuac0BhmpmZoOsrQYcSFoWWAu4q27XeyRNk/SmpH9KOkzSgnVl1gLuiYjZddvvKOw3M7M2UGWz2xwkCTiVlBB/XNh1PfB74D5gcWAH4ChgXVJtp2YU8ECDU08t7G/0uNP7CW1Ef7GbmVlr2ib5AMeREsueEXFvbWNEHF5X7o+SngYOlbRRRNxQ2Bd9nL+vfWZmVqK2aHaTdDRwAPDNiBjfxCFn5vuPFLY9T+PazdL5fmqDfUTEyL5upH4kMzMbRJUnH0lHAYcCB0XESU0eVou72L9zN7CGpPrnVLtuqL4fyczMKlJp8pH0XeBw4PCIOK6FQ2vX/BSHX08ARgLbNih7f0TcM+BAzcxsUFXW5yPpAOAI4I/AVZI+XNj9WkT8XdLHgEOA84HHgMWA7YE9gXMj4sbCMROBa4DTJI0iXS+0B7BRPsbMzNpElQMOajWUbfKt6DFgFeDJ/PtRwDKkZrb7gf2BnxYPiIiQtANwTL6NBO4hXXR6yRDEb2ZmA1RZ8omI0U2UeRDYuoVzvgB8Ld/MzKxNVT7gwMzMhh8nHzMzK52Tj5mZlc7Jx8zMSufkY2ZmpXPyMTOz0jn5mJlZ6Zx8zMysdE4+ZmZWOicfMzMrnZOPmZmVzsnHzMxK5+RjZmalc/IxM7PSOfmYmVnpnHzMzKx0Tj5mZlY6Jx8zMyudk4+ZmZXOycfMzErn5GNmZqVz8jEzs9JVlnwkbSZpvKT7Jb0iaYqkCySt3aDsGEk3SXpV0jOSTpE0skG5xSWdJOnJXPZWSduV84zMzKxZVdZ8vgS8HfgJsCWwf/79r5I+XCskaTQwEfg3sC3wLWA74FJJ9fFPAHYDDgO2Bu4BJkjaakifiZmZtWSBCh/7qxHxTHGDpCuAR4ADgZ3y5h8BdwG7RMTsXO5J4Arg08A5edtWwObA2IiYkLddA6wKHE9KYGZm1gYqq/nUJ568bTrwT+BtAJJWAtYHzqolnlzuSuBxehIUwI7ADOCiQrkAzgRWl7TmEDwNMzMbgLYacCBpWWAtUk2H/DOF34vuLOyvlb2nmKSyO+rOZWZmFauy2W0OkgScSkqIP86bR+X7qQ0OmQp8sPD7KOCBXsoVz1X/uNP7CW1EP/vNzKxFbZN8gOOAHYA9I+Leun3RyzH123sr198+MzMrUVskH0lHAwcA34yI8YVdz+f7RrWWpZmzRvR8H+Wgce2JiJhryHZdbNNx7cfMbFBV3ucj6SjgUOCgiDipbvfd+b5Rf83azNkXdDewRoPh17Xrhhr1G5mZWQUqTT6SvgscDhweEcfV74+IKcCtwG7FpCJpM2Al4IJC8QnASNK1QEW7A/dHxD2DHL6ZmQ1QZc1ukg4AjgD+CFxVvLAUeC0i/p5/Pph0Tc/Zkk4FVgSOBW4Gzi0cMxG4BjhN0ijS9UJ7ABsB2w/hUzEzsxZV2edTq6Fsk29FjwGrAETE1ZK2AY4ELgVeBC4kNdPNqh0QESFpB+CYfBtJmuFgbERcMoTPw8zMWtRS8pH0MLBvRFzcy/5tgJMiYtX+zhURo5t93Ii4DLisiXIvAF/LNzMza1Ot9vmsAizex/7FgJUHHI2ZmQ0Lgz3gYHnglUE+p5mZdZl+m90kfRwYXdg0VtK7GhRdGtgV+MfghGZmZt2qmT6fTYDv5p8DGJtvjTwI7DcIcZmZWRdrJvmcAIwHBDwM7Eth5ugsgJciouEsAmZmZkX9Jp+ImEFaqgBJmwD3NloOwczMrFktDbWOiGuHKhAzMxs+Wr7IVNLbgX2Ad5Mm8lRdkYiIzQYhNjMz61KtXmS6JWkOtYVIMw24j8fMzFrWas3nB8BzwA4RcesQxGNmZsNAqxeZrg6c4MRjZmbzotXk8yzw+lAEYmZmw0eryecsYKehCMTMzIaPVvt8xgObSLoIOJG0Zs6s+kIR8a95D83MzLpVq8nnPtJsBmLuNXiK5h9wRGZm1vVaTT5HkZKPmZnZgLU6w8ERQxSHmZkNI4O9no+ZmVm/Wp3h4OPNlIuI6wYWjpmZDQet9vlMprk+Hw84MDOzXrWafPbs5RzvBMYBjwKnzFtIZmbW7VodcHBmb/skHQfcNs8RmZlZ1xu0AQcRMQ34FXBQs8dIepukEyXdIOklSSFpdINyj+Z99bcfNii7vKQzJT0n6WVJ10vacJ6enJmZDaqW1/PpxzRg1RbKvwv4DKnGNAnYro+y1wEH1217vPiLpEXyeRYHvg48T1r2e5KkDSPi7y3EZmZmQ2TQkk/+4P888FQLh10XEcvl43eg7+QzLSJu6ud8ewHvBdaNiNvyea8F7gWOAbZsITYzMxsirQ61Pr2XXUsDHwGWBQ5s9nwRMbuVx2/CjsCdtcSTH+M1SWcDB0taIiJeHOTHNDOzFrVa8xnXy/apwAPAfhHxu3mKqHebSnqJtIrq/cDJwC8iojj0ey3gmgbH3kEa/r0GcEtxh6Tp/TzuiAFHbGZmDbU62q2qGRH+CNwKPAyMAj5HSj6rAfsVyo2i8dLeUwv7zcysYoM94GBIRMTX6jZNkPRb4BuSToiIx4rF+zpVg3OP7Ouxc83ItR8zs0E0oOQjaUlgc3pGtj0MXFlyf8qZwGeBDwG15PM8jWs3S+f7RrUiMzMrWcvJR9LewPGk4czKmwN4SdL+EXHaIMbXl1oTYHHQwt2kfp96a5MWvbtvqIMyM7P+tdSHI2k74FTgWWB/YEy+7Qc8A5wqadvBDrIXu5MSz18L2yYAa0tapxDzQqRria6KiBdKis3MzPrQas3nINI1MxtExEuF7ZMknQHcRLoQ9JJmTyjpU/nH9fP9xpKWAV6OiD9J+gywPXApMIXUhPY5YAfguLolu08DvgpcIOnbpGa2bwIrAju39EzNzGzItJp83g8cVZd4AIiIFyWdCRze4jnPrfv9iHz/GLAK8AiwDPAjUn/Oa8CdwLj6ueYiYqakTYHjgJ8Di5BmTxgTEX9rMS4zMxsiAxlwoD72tbzEdkT0dT7yrAabt3C+p0gzLZiZWZtq9bqd24E9JC1Wv0PS4qSLUG8fhLjMzKyLtVrz+TFwAXCbpJOAe/L295Im8nwXMHbwwjMzs27U6gwHF0r6GnAs8FN6mtkEvAx8LSIuGtwQzcys27Tc5xMRJ0v6HWmI9TtIiech0kWmMwY5PjMz60IDmuEgIqYz9yg1MzOzpvQ74EDS/JJ+KOlL/ZT7sqRjJPU5es3MzKyZ0W6fI63R89d+yt1CusD0M/MalJmZdbdmks/OpKlp+rxIM++/HCcfMzPrRzPJZ13gqibPdw2w3sDDMTOz4aCZ5LM0adLQZjxLz/IFZmZmDTWTfF4kza3WjFHAXPO+mZmZFTWTfO4GtmjyfGNyeTMzs141k3wuADaXtH1fhfJaP2OA8wcjMDMz617NJJ9TgAeBP0g6WtIqxZ2SVpH0feAPwAO5vJmZWa/6neEgIl6VtDXwR+DbwCGSXgReAJYAliRNsXM/sE1EzBzCeM3MrAs0taRCRDwIrENaFfQG4E3grcAs4Pq8/YMR8dAQxWlmZl2k6bndco3mp/lmZmY2YK0uJmdmZjbPnHzMzKx0Tj5mZla6Aa3nY9bIVof9pOoQBt3E7+9XdQhmXanSmo+kt0k6UdINkl6SFJJG91L2s5JulzRT0pS8xtAiDcotL+lMSc9JelnS9ZI2HPInY2ZmTau62e1dpCUYXgIm9VZI0ueA3wI3AlsCxwBfBcbXlVskn2dj4OvAjqS56SZJ+sDgh29mZgNRdbPbdRGxHICkHYDt6gtImh84Drg4Ir6SN18j6Q3gVEk/iYib8/a9gPcC60bEbfn4a4F7SQlryyF9NmZm1pRKaz4RMbuJYh8mXdB6Zt323wJvADsVtu0I3FlLPPkxXgPOBsZIWmLeIjYzs8FQdbNbM9bK93cVN0bEK8BDhf21snOUy+4A5gfWGIoAzcysNVU3uzVjVL6f2mDf1ML+WtneylFXFgBJ0/t5/BH9BWhmZq3phJpPTTS5vbdy/e0zM7OSdELN5/l8P6rwc83SwCN1Zeeq3dCztPdctaKIGNnXg+eakWs/ZmaDqBNqPrWVUYt9O0haFHgnc/bx3F1fLlubNAP3fUMRoJmZtaYTks9NwFPA5+u2fwZYkLTSas0EYG1J69Q2SFool70qIl4Y4ljNzKwJlTe7SfpU/nH9fL+xpGWAlyPiTxHxpqRDgPGSfgacRxq1dixwXkTcVDjdaaSLTy+Q9G1SM9s3gRWBnUt4OmZm1oTKkw9wbt3vR+T7x4BVACLiTEmzgIOB/waeA34BfLd4YETMlLQp6aLUnwOLALcBYyLib0MUv5mZtajy5BMRarLcb4DfNFGuUROdmZm1kU7o8zEzsy7j5GNmZqVz8jEzs9JV3udj1o0+Pf6qqkMYdOeO27zqEKyLuOZjZmalc/IxM7PSOfmYmVnpnHzMzKx0Tj5mZlY6Jx8zMyudk4+ZmZXOycfMzErn5GNmZqVz8jEzs9I5+ZiZWemcfMzMrHROPmZmVjonHzMzK52Tj5mZlc7Jx8zMSufkY2ZmpfNKpmY2pA68+MqqQxh0x203puoQOl5H1HwkjZYUvdxWrys7RtJNkl6V9IykUySNrCp2MzObW6fVfA4Grqvb9mjtB0mjgYnAhcBhwIrAscBakj4WEbPLCdPMzPrSacnngYi4qY/9PwLuAnapJRpJTwJXAJ8Gzhn6EM3MrD8d0ezWDEkrAesDZxVrOBFxJfA4sFNVsZmZ2Zw6LfmcIulNSTMk/VHSuoV9a+X7uxocd2dhv5mZVaxTmt1mACcAk4GpwBrAIcCNkjaOiJuBUbns1AbHTwU+2OjEkqb389gjBhKwmZn1riOST0T8Hfh7YdP1ki4m1XKOBjYvFu/tNEMUnpmZtagjkk8jEfGUpCuA7fKm5/P9qAbFl6ZxjYiI6HMYdq4ZufZjZjaIOq3Pp9589NRo7s73jfp21qZxX5CZmVWgY5OPpLcCY4CbACJiCnArsJuk+QrlNgNWAi6oIk4zM5tbRzS7Sfot8DBwGzANWJ10welbgG8Xih5MuqbnbEmn0nOR6c3AuWXGbGZmveuI5EMaKr0r8HVgMVL/zmTg+xHxn+a0iLha0jbAkcClwIuk2Q4OiohZZQdtZmaNdUTyiYgfAj9ssuxlwGVDG5GZmc2Lju3zMTOzzuXkY2ZmpXPyMTOz0jn5mJlZ6Zx8zMysdE4+ZmZWOicfMzMrnZOPmZmVzsnHzMxK5+RjZmalc/IxM7PSOfmYmVnpnHzMzKx0Tj5mZlY6Jx8zMyudk4+ZmZXOycfMzErn5GNmZqVz8jEzs9ItUHUAZmbDxc//MqnqEAbdlz+y2YCOc83HzMxK5+RjZmal67rkI2lxSSdJelLSq5JulbRd1XGZmVmPrks+wARgN+AwYGvgHmCCpK0qjS9QLHwAABdnSURBVMrMzP6jqwYc5ASzOTA2IibkbdcAqwLHAxMrDM/MzLJuq/nsCMwALqptiIgAzgRWl7RmVYGZmVkPpc/m7iDpL6R8s2Hd9g2Am4BdIuIPdfum93PaEQAjRoxouPOlV14ZcLztavFFFx3QcS/PfG2QI6neYossPKDjXnn9zUGOpHqLLjSwhpKZb3bfa7HIAgN7LV6f1X2vxULzN34tZsyYAenzuGElp6ua3YBRwAMNtk8t7B+ImDFjxgsDPHaw1LLfjKF+oPymaWflvRavzRzqh5hX5b0Wrw71I8yz0l6LDviaVdpr0cfbYklgdm87uy35APRVlZtrX0SMHMJYBk2thtYp8Q4lvxY9/Fr08GvRoxNei27r83mexrWbpfP91Ab7zMysZN2WfO4G1pBU/7zWzvd3lRyPmZk10G3JZwIwEti2bvvuwP0RcU/5IZmZWb1u6/OZCFwDnCZpFPAIsAewEbB9lYGZmVmPrko+ERGSdgCOybeRpBkOxkbEJZUGZ2Zm/9FV1/l0s04YvVIWvxY9/Fr08GvRoxNei27r8zEzsw7gmo+ZmZXONR8zMyudk4+ZmZXOycfMzErn5GNmZqVz8jEzs9I5+XQASatL2kjSYlXHYmbtRdJCkh6StE3VsbTCyaeNSdpT0hOkCVOvBd6Tt58naZ9KgzNrA5JW7Gf/hn3t7wYR8TppNpf2X3GpwMmnTUn6DHAaaQXWLwEq7L4F2LmKuKqUa38/lzRR0tV1t0lVx2eVmNhbi4Ck9YBLS46nKhOBjqr5dNXcbl3mEOCXEbGPpPmBUwr77gP2rSasakjak5SMp5JWq61fTFJzHWTDwULABZK2iohZtY2S3gdcDtxQWWTlOhM4XdJbgAuBJ6lbPDMi7qgisN54hoM2JWkmsE1EXJWTzxvAehFxm6SPA1dExCLVRlkeSfcCdwC7R0QHrGJsZZC0MvAX4PKI2DNvW53UTH0XsGVulupqkorLVdd/qIs07/L8JYbUL9d82teL9KzAWu/twHMlxtIOVga+PpwTj6T/ApaLiL812PdB4JmImFJ+ZNWJiMdyR/u1kv5FqgFMAh4Eth0OiSfbs+oAWuXk074mAwdIuphU6wGIvErrPsBVVQVWkfuA5aoOomInAU8AcyUfYBzwNmBsmQG1g9wasAupuekrwGPAJyPilWojK09EnFl1DK1ys1ubyk0HtwDPAhcA+5P6PNYB3g2sGxEPVxdhuSRtBRwLjImIp6qOpwqSngS+EhETGuzbATg5Ivoc/dUNcn9OI3sDuwCfodAy0G59HUMtf3YsA/w9Il6uOp7euObTpiLiPkkbAT8Gvklqt92L1Jb98eGUeLK9gSWBf0q6DXi+bn9ExE7lh1WqpYAZvex7gd6babvNP5i7X6NGwJWFnwNoq76OoZIH5RwNLJ83rQ/cJuk84MqIOKXXgyvg5NPG8je2LSQtDIwCpkVER43lH0QfBGaTvtG+Pd+KhkMV/nFgPeDqBvvWB54uN5zKdFz/xlArXJpxIfAn5hwdW7s0o62Sj5vd2pSk04HvRcQjDfatDHw3IvYqPzKriqSfkD54t46IGwvbNwL+CJwZEd+sKj6rjqTbgZsKl2YUR8duB/yi3ZpkfZFp+xoHLNvLvmWAPcoLxdrEkaTrN66TdKekP0m6k9QU+wTw3Uqjq4CkJSSt0Mu+FSQtXnZMFXkPcG4v+6bThk2yTj6daXlgZtVBlEnSXyR9T9ImkhaqOp4qRMR0YAPgKNJQ/HeS+nqOADbI+4ebU4Af9rLvGODnJcZSpY67NMPNbm1E0vbA9vnXcaSpQZ6tK/YWYGPgkYj4aHnRVUvSBaTnvRQp8d5Iup5jEnBr+I08LEmaAuwfEX9osO9TwP9GRH3/YNeRdC4pyWxManJ7A1gXuJ1UM34oIsZVFmADHnDQXlYHdsw/B+mNNKuuzGukK7f3LzGuykXEWEkidaxvDmxGamY6GpghaXJEDLtrXIxlgWd62fccw+fasMNJAwvuJl2aEcCX6bk0o+2a6V3zaVN5uowPR8QtVcfSriR9hNTkNIY2nD5kMEi6mnRtz335575ERGxWRlztQtK/gR9ExMkN9n0NOLTdOtqHSr7+6cfAaFLFYjap1rNvRNxZYWgNuebTpiLC/XF1JK1KqvFsDmxCGn7+AHAyqfmtGxUnTJ2PvoeUD8fJVS8HDpN0WfHat/xe+Q5p2PGw0GmXZrjmYx1B0iOkNu0nSNe5TAImRcTjlQZmlZK0Emm6oRGkKaemkKYZ2hyYBnxouM131ymcfNqIpFnARyLiltzs1tcfJyJi2NRc8+vxKnA+6UPmqoh4otqorB1IehvwPeATpMsQngUuI10LN2wSj6RVSNMLrQzUz3gfEfGFsmPqy7D58OoQR5G+udV+9jeDHqvSM9DgOGAZSQ+QExFwTUS8UGF8pciDLj5E4w8YIuLXpQdVsZxghvWsB5K2Jg00mJ80AKN+9ve2+yxxzcc6Uu5c3QzYDvg4MCsiuvr6H0mrAReTRi816t/pykEX1j9J/yAttLhrRPQ2+q+tuOZjHaXwzX/zfPsI6YN4OEyf/3+k67x2IS2sN2zXNiqStAxpJuvVSa9PUds1Nw2RdwNjOyXxgJNPW+u0NtyhJOmrpGQzmjS79eukFSy/Rxp88NfKgivPh4AvRsR5VQfSLiS9E7gZWBhYlHRtz9Kk5qdp9D4LeLf5F9BRUwm52a1NNdOGGxGrlh5YRSS9CdxGz6wGN0TEcJti6Algr4i4rOpY2kW+sn8pYFvgZdKs33cCXyBdeLlFRNxdXYTlkLQHaZHJTTvl/8I1n/Z1NGkKmY5pwx1iywzTucuKzgR2JY3ksmQDYD96vpwpIt4AfiFpOeB44JNVBTeUJP1v3aa3kta7uprG610dUE5kzXHNp01JepnUhnt51bG0m9zxPgp4PiIeqDqeskj6NGkSzduBS5j7A4aIuLjsuKok6RVS7eYGSS8CO0TEpLxvU+DCiFiy0iCHSL78oFltNxjFNZ/21XFtuENN0m6kD98VC9seBw6MiHMqC6w8tef4DmCHBvuHzaqdBU/QM5vzo8DH6JntYm3StWFdqdNnQXHyaV8/BA6QdGmntOEOJUk7AGeR+n2OJ61rsyLwWeB3kl6JiEsqDLEMm1QdQBu6HtiQNAT918DRedaDN0gzw/++utDKI+ntwJO5ybF+3wLAihHxr/Ij652b3dpIgzbcHYAFSdPJtH0b7lCSdAvpn2v7BvsuBpaLiA+XH5lVKY92WzEirpe0IHACadh1kJYk+XpEdP2It+LsKA32rQvc0m7Nbk4+baTT23CHUm7b/3REXNpg39bAuRGxaPmRmVWvr1nwJX0YuD4iFiw/st652a2NdHob7hB7HVisl32L5/1dT9LqwH/T+wWVw2pJheFM0pLAyMKmt+bmt6K3AJ+j9zWPKuPk06YknU2as2xSRDxacTjt4EbgfyRdHRH/WRJY0rKk6zmuryyykkj6AOl1+DfwLtIsB6NIszhPAR6sLrrySPqfFopHRHxvyIKp1n5A7bUIYEIv5QT8oJSIWuBmtzYl6Tbg/fnXx+i5uPLq4Xjdj6R16EkwVwJPka5rGENaNGujdlwwazBJmki6kPIzpJreehFxm6RPAuNJzZLDIQm7eRqQtAHwYVJy+V9Sf9djdcVeA+6KiBtKDq9fTj5tTNLS9MxhthlpiG2Qlsq9KiKG1VLaktYkLZ09mjS89nnSYIyjIuK+CkMrRZ7h4IvAROBN0lo1t+Z9+wE7RcRGFYZoFZH0XeCXEfGEpEVIsz5Ma+eRsk4+HUTSeqSZD7p22WjrnaSXgC3zyK5ppNkvLs/7NgEuiYhheW1YrgVsTGqGfA64drgtQS9pY+AY0hyA85FaBG4CDomIG6uMrRH3+bSx/A3mY/TUfNYhzd48ke5dNtp69y9g2fzzg8BWpGWkIS0rMeymH5K0GOlanq2Yc5mJkHQpKUF3/Yznkj5Oao5+ljT7ee06uLHAJEmbRsSfKwxxLq75tClJ19DTnnszPX0+N0fEm1XGVhVJGwG70fss31090kvSycCbEfENSXsDp5KaHV8HtgBOHE7XfsF/XpPaJKK/B54Glif1ix0FnBYRX6kuwnLkz4sFgc2LTW35C+xVwOsRsWlV8TXi5NOmCstG/wK4CPjzcE06AJL2BE4jLZj1AA3WsomIrp4BIK9bs3RtPjtJBzLnBZXfj4hhMeS8RtJzwP9GxDEN9n0H2C8ilik/snLlJtnPR8RcI94kjQXOjIglyo+sd252a1+bFW7fAGZKuoG8bHRE3F5lcBU4CDgX2D0ihuUianmI+XOF348jLSk+nC1Mahlo5Gagq1e3rdNbTaKV0YGlcc2nA+SLyUaTEtGmwJrAcxGxfJVxlSnPcLBdRFxVdSztIC8XUJvZe9gNva+R9EfgtoiY69ofSUcB60bE1uVHVi5Jk0lN9JsX53eTtBCpuf7NdmsZcM2nM7wFWIK0gudI0pus65sS6twHLFd1EFWT9CnS6q2rFbY9ABwWEedXFliJ8pexmsOA8yXNR5r1u3b91675tmP5EVbiSOAK4CFJ59HzOnyK1Ac2psLYGnLNp03l+cpq1/isSUo4jzJMLzaVtBVwLDAmIp6qOp4qSPos8BvgHuAPpM71twI7k6bb+VxEnF1dhOXI/aHFD67aKLf6DzMxjC5JkLQZaaj1euTnTmp6PDQiJlcYWkNOPm0q/4M9SxrNNIk0zc4j1UZVHUkXAOuSLi69jcazfO9UemAlknQvabDFDlH4x5Uk0pIC74qINaqKryySjqD3/o25RMSRQxdN+5G0KD0XmbbtMHMnnzYl6X0RcUfVcbQLSY/S9wdORMSqJYVTCUmvkmYxmNhg31bA+RFRP9moWVtyn0+bcuKZU0SsUnUMbeAR5pzFuGipvN+sI3gKf+sIkvq8RkHSe8qKpUJHAkdJWq24MS+zcES+mXUEN7tZR5B0FfDJRhfaSlqVNJfXf5UfWXkkTSB1Jq8A3E7PiKb3kaZTubVQvOv7wKyzOflYR5A0hTToYo+67f8FXAc8ExEbVBJcSZro9yrq+j4w62xOPtYR8no+1wI/jYjD8ra3khLPq8DGETHsJtY061QecGAdISL+IWln4BJJjwEXkIagzyZd1e3EY9ZBXPOxjiJpL+AU0siuBYCPRcTj1UZVDknrkyYWra3hMwI4kbTi7UTSLAf+h7aO4NFu1rYkLVl/A84DfgaMIK1V8mJhX7c7jrRgWs3RwC7ANOBb+WbWEVzzsbbVYBqVOXbX7+v2aVQkPQ18MSIuynOZPQN8LyJOlHQYsEtErF1tlGbNcZ+PtbOjaGEalWFgBD3TCq1NurD0vPz79cDBVQRlNhBOPta2IuKIqmNoM8+QVnG9gbS8xr8L/V2LAbOqCsysVU4+Zp3jcuC7kpYG9ictrlezOvBYJVGZDYD7fKxjSFqF1MG+MrBI3e6IiC+UHVOZ8jLavwU2JE2Vv3NETM37bgVujoivVhiiWdOcfKwj5PWNLgDmJzU/1S+lPayv6M+j/WZGxOtVx2LWDCcf6wiS/gFMBXYdTovomXUr9/lYp3g3MHa4JR5J/wP8KiKeyD/3JSLie2XEZTavXPOxjpBX8TwsIs6vOpYy5WudPhwRt+Sf+zJsloy2zufkYx1B0h7APsCmETGz6njMbN642c06xfuB5YF/SrqanostayIiDig/LDMbCNd8rCO4yWlOkpZj7uHmRMS/KgjHrGWu+VhHiIhhPwluXkr8J8BnaJB4smGTgK2zOfmYdY4TgM8CpwF3MPe1TmYdw81u1hH6meEaGBazWj8F/DAiTqg6FrN55ZqPdYpGM1wvC2xBamr6dekRle8tpBqPWcdz8rGO0NsM15IWIk24ORwuPv0TsBFwddWBmM0rN7tZx5M0Fjg2It5ddSyDrW6F1hWB80nLiF/C3MPNiYgXSgrNbJ44+VjHk7QlcG5ELF51LIOtQV/XXCu4FnV7v5d1Dze7WUeTtCxwIHB/1bEMEa/mal3JNR/rCJIeYe4P4YWB5YDZwHYRcXnpgZnZgLjmY53iWuZOPjOBR4FzIuLRsgMys4FzzcfMzEo37KcsMTOz8jn5mJlZ6Zx8zMysdE4+Zk2QtKikfSVdL2mqpDckPS1poqRxkgY0eCcfu+9gx2vW7jzgwKwfkt4FXAqsBlwFXAE8RxrmvXm+HRcRBw3g3JOBVSJilcGK16wTeKi1WR8kvQX4I7AqsFNEXFBX5FhJ6wPrlx5cRSQJWCwiXqo6FutcbnYz69vewHuA4xskHgAi4q8RcXLtd0lbSDpH0sOSXpU0XdIVkjYuHifpUWBjYGVJUbiNLpR5t6SzJD0p6XVJj0o6TtJi9XFI2ljSX/JjPiXpREnvzec8oq7sYpJ+IOkhSa/l8r+WtHJdudH5+HGSvirpHtL1Vd+SdLGkl+vmn6sd96F83OH9vsI2LLnmY9a3T+X7U1s4ZhywNGmZhynASqQkNknSJhFxfS63L/ADYBlgv8Lx9wJIWpc0g/V00mSijwPvB74BfFTSxhHxRi67Eak5cBrww3zMzsBH64PL/VOX533nAccD7wa+DGwhab2ImFJ32L7AKOCXwFPAv4FbgW1JK6ueUld+L9LME+P7ea1suIoI33zzrZcbaeboF1o8ZrEG25Yn9RNNrNs+GXi0l/PcDtwHLFG3fUfSbA/jCttuIdVIVi1sWxC4MZc9orD9v/O2H9Wdd+u8/azCttF521Rgubry8wP/Am6p274oMKP+ufrmW/HmZjezvi0JtLRMQUS8XPtZ0uKSRgGzgJuBDZo5h6S1gfcBvwMWlrRM7QbcALxMWkgPScuT+pwuioiHC3G8AZzY4PQ7kmolP6iL+1LgH8D2kuo/G34dEc/UlZ8FnA6sn+Ot+RTpdTutmedqw5OTj1nfXgCWaOUASe+U9HtJ04AXSTWeZ4GtgKWaPM0a+f7IfGzx9gywGKk2BfCOfN9oZu9G294BPBER0xrsu5v0fJep2/5AL3GeRkqsXyhs+0KO8eJejjFzn49ZP+4CPi5p1WKtojeSFgeuIyWHE4A7SQloNvBtYNMmH1f5/njgsl7KTKsr26xWywO80mhjRPxb0mXA5yQdBLwd+Djw41zzMmvIycesb+eTPkz3Bg5tovxmpBVH94qIM4o7JH2/QfneLrT7Z76fFRFX9fOYtaT4ngb7Gm17CPikpJERMb1u35qk2t5z/Txm0amk/qIdgA/kbW5ysz652c2sb78iNV19S9L2jQpIWlfSV/Kvs2qb68psQeP+npeApfK1M0V/J9W6viRp1QaPuYCkpQEi4mnSyLPti2UlLQh8s8FjXkj63z+k7pxbkpLHxRExu9Fz7cWlpJF4+wB7ADdGxH0tHG/DkGs+Zn2IiFckbUP6gL1Q0hXAlaRRcMsCmwCfAH6UD7mBNBT5eEmrkIZarwN8ntQEV+yYB7gJ2Ab4maQ/k5LX1RHxjKTPk4Za3yHpdFJ/zKLAu4CxpGa88fk838px/VnSyaTRZjsDC9WeSuExx5OSxME5xuvyOb8CPE1zNbziazRL0hnAYXlTS8fbMFX1cDvffOuEG+lDfz9ScpkGvEH6oL6UlFjmL5R9H6mfpjbgYDLwMdKHftSddzFSE9XTpMQTwOjC/pWBX5AWzXudlPT+Rhqp9l9159qUlMxm5vOdSKptBXBQg8f9AanJ7nXSAIGzgJXryo2mblh3L6/Pyjn+F2gw1Nw33+pvntvNrItJ2ol0IelnIuL3Q/g4K5AuPD0tIvYZqsex7uE+H7MuoGSRum0LAvsDb5JqX0Ppy6SLTluZCcKGMff5mHWHhYHHJP2WNEBiFLALqQnw2Ih4aigeVNKupOHVBwKXR8TfhuJxrPu42c2sC0ianzTv2sbACqTRdvcDp0Zh0tMheNwg9TFdD+wZEY8P1WNZd3HyMTOz0rnPx8zMSufkY2ZmpXPyMTOz0jn5mJlZ6Zx8zMysdE4+ZmZWuv8HifpM7/kMfNAAAAAASUVORK5CYII=\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"category_bar_plot(race_vic_df, \"Race of Victim Breakdown\", 90)"
]
},
{
"cell_type": "code",
"execution_count": 139,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" count \n",
" category \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" 460 \n",
" no \n",
" \n",
" \n",
" 1 \n",
" 106 \n",
" yes \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" count category\n",
"0 460 no\n",
"1 106 yes"
]
},
"execution_count": 139,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"vic_kid_df = get_value_counts(death_row, \"vic_kid\")\n",
"vic_kid_df"
]
},
{
"cell_type": "code",
"execution_count": 140,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 140,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ8AAAE6CAYAAADJM1/JAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deZhcVZ3G8e87BEQCJCYICI7EsMgWlwHUUQbC6ojsKIuIgMqIiiOMLDKDY3RmQARcEB2JBoLIJpiAmAgBArJIWFVIIiCbyhpJSEICAZL85o9zanJzU9Vd1em+1al+P89zn+o+59xzz63qrl+d5d5SRGBmZlalv2t3A8zMbOBx8DEzs8o5+JiZWeUcfMzMrHIOPmZmVjkHHzMzq5yDjzVN0pOSbllV6u1PJI2WFJKOarL8LZKeLKWNl9TUtRGSRuTjjWm5sf2UpDH5nEasRB1NP4fWtxx8BiBJV+Z/4nd3UUaSnpA0V9Ibe+GYYyTtv7L19DeStpD0Q0kPSVoo6RVJj0gaK2mHdrevGZKOyn8PxW1hPo9zJf19u9tonWdQuxtgbTEO+ChwNPClBmV2AUYA50fEKzntHUBPPzV+DbgIuLpO3srU2zaSPg38L7AIuAz4PbAY2AI4CDhG0jYRMbMH1e8JqLfa2qRzgXvyz+sAOwBfAA6QtHVEvFRxe6yDOfgMTFOAvwKHSzopIl6rU+bo/DiulhARr/ZFY/qq3r4kaXdgLDAT+FBEPFPKPxX4Yk/rb/Ca9LXbIuKqwu//K2kucAKwOzCx0Y6SBAyOiAV93EbrEB52G4AiYikwHhgO7FvOl7QucCAwPSLuKaTXnZuR9J48lPe8pFcl/VXSZZI2rc095KJHFod2uqq3libpXZJulLRA0ixJZ0saJGnN/PPTkhZJulXSVs2cv6Qt81DZDEkvSXpZ0n2Sjmlm/+xMUs/kkHLgAYiIxRHxnXq9HklH52O/KunPkk6uU2aFOZ8uzmdHSXfkIb/nJZ0HrN3CuXSldm7/HwyL81eSviBpJqn3d2KhzOaSLpb0rKTX8ut5lqTBpbav1GshaTVJP5K0tPg85r+PsyQ9k5+XuyXt2UU9O0m6QdK8XP7+3LMtlqnNOb29kPaWnLZE0rBC+lY5vdimUJpz+kdJv8lDmy9I+omk3nq9Vhnu+QxcFwKnkXo4V5XyDgXWotDraUTS3sAvgIXAT4BHgQ2BDwHbAjcCRwAXA7eRegvNeitwA3BFbuOewJeBJcA2wBuBbwLrkd74rpa0VQ6uXRkN7AT8CngCGAx8DBgrab2IOKObc3478A+knkKrQ2rHAhuQntu5wCeAMyU9FRGXtlgXkt5Heo5fIgXEuaTX76et1gWsI2m9/PPawPbASaTXdGqd8seTPsD8GHiO1JtG0na5/FzgfOBp4F3AvwIflLRzRLye6xhND18LpbnIy4C9gE9GxM8K2ZcB+wPXAtcDmwIT8jHK9exD6tU9B5xDei4PBX4iaWRE/EcuOpU0fLwry/43dgOWkj7I70L6XyCXqe1T9O58rhcCl+bz/3Su418anWtHighvA3QDbiLNUWxUSr8TeBVYr5T+JHBL4fe1gL8Bs4CN69T/d4WfAxjfoB3L1VtIC+BjpfT7SP+o1wAqpP9rLv+hJs57cL22ArcA84DVu9l/n3ysc1t4rkfnfZ4BhtZ5Du8slb8FeLKUNj79yy6X9ltSr2SLQtoawN35eGOaaNtRuWy97XZgwwbnMgdYv059fwAeAtYppR+Q9zuqJ68FMCbvPwIYBtxBChR7lvbfs97fGykYRfE5BFYD/kwKlBsV0tfI9S8BNi+kLQQuKZS7IP9NzgR+WEj/BfAiK/4PLAXeX2rXJOB1YO1W/n9X9c3DbgPbONI/3xG1BElbAu8HfhkRL3Sz/4dIvY5zIuLpcmZ03wPpztMRcWUp7XbScNf3I//nZrflx827qzQiFtZ+zsMzw0lvZlOAdYEtu6li3fw4v7tj1XFhRMwttOVlYBpNtLtM0vrAPwLXRMQjhTpfA77Tg7Z9A9gjb/sD/wW8E5gk6U11yv80ImaV2jQq73Mp8AZJ69U20mu3kBQcam3tyWuxCSkwbArsHBFTSvm1VZVnFRMj4mrg4VLZ7YC3ARdEYfg0P4dnkQLhfoW0O0g9nJpdSB/ibiL1gmrzXzsDv6nzP3BnREwrpU0ljUKNqHOuHcvDbgPbBNInvqNJQzYAn8qPFzSxf+0N83e93K6aFYZISJ8m6+XV0od3V2keXx8DHAzUW0Zc7422qBZ01unuWHU8XidtNk20u46R+fGhOnk9WWH3YETcWPj9GkkzgMuBU4CvlMo/wopq825fz1s9G9R+6OFrcS3pveudEfFonfyRpB5Gvfb9kbS6sqY2fzOjTtnphfpqpgJ75PnFV0kBYyppCPg4SRsDbya9nvWGKhu9/tCzv4FVloPPABYRiyRdCnxe0geAu0i9oKdInzy7U1sK3FfLpJf0IK+Z5cmXAnuT5p9uJQ0fLSbNHZxA9wtxam9K72niWGVdnVOrunr+e2uZ9vX5cdc6eS93cdxzgOsa1Pli4eeevBaXAp8Fvirp6Dq9i67OvZzX6vNUCyi7koLP66Re9xqkgLcbaTSgWLaoq9e/6qX1beXgY+OAz5N6P8NIiwX+JyKaeZOsDWG8h7QwoN+TNJT0ZndxRBxbytu9mToi4glJvyNNnm8ZEfV6HlV4LD/WW+XX1Mq/JqyeH5vt5f0pPy4p9aJWsBKvxTdJiyDOAgZJ+mTp7/Ux0tDeFqzYoykP49Wew23qHGfr/FjsrdxHmovajRR87spDhwvz38RupP+jWXWObQWe8xngIuJ+0sWRhwDHkT5FX9jk7lOAF4AvS3pLOTOPfdcsIP1TtlvtTWq5T5m5/Z9poZ5T8uPlkjYsZ+YlwMdL2rqc11vyfMs0YD9JWxSOvQap19AbavMn9zVZ/neknuGxkkaWM5WWydf+Dnr8WkTE2aTVdh8HLpVU/CB9TX48qVTv/iw/5AZwP/AX4Oji6yhp9bx/FOojB7lbSXM6u7B872YqKfjsBNxcmpO0Evd8DFLv5/ukBQS3RMRj3ZQH0mR5vhbiKmC6pNpS6zfnur7Nsn/cacDukk4h/bNHRFzeu6fRVJtfkjQF+ISkV0hX9G9CGsZ5gibH3SPiBkn/QrrDwcOSinc42Ix0h4NNScvN+9K/kVaG3SHpByxbat2T/+1/krRm/nkt0mT80aQ5rv9ppoKICElHkN6IH5B0AakHsBbpeTkQOJW0Em2lXouI+J6k14HzSD2gQyPi9Yi4XtK1pOvKhpGG/zbN9U6n8JpExBJJx5GWWt8jaSxpBd0hpIU3p0fEn5Y/MlNJKx5rPxfTT6qTbvW0e7mdt/ZvpEndV0if8o7ootyTlJZE5/T3km6b8wJpKOIvpHH5kYUym5N6SvNZcbnrCvV2cawxef8RpfQRNL+0eD3SNUnPkC6OfBA4hmVLjke38Ny9gxSAHiHNgSwiDUeeD7ynUG40pWXGhbzxxecjp91CE0utc/pOpCXXi0jDPT8gvcGuzFLrxaTrcy6msIy7u3MplNkE+FF+HV8jTarfB5wB/H1PXosuXvtjWLb8fo2c9kbSvNNzpL/te0gfiBo9hzuTho7n53b8DvhMg3Mbldvxcu14OX1wPtcANquzX93LDXryd9cJm/LJm5mZVcZzPmZmVjkHHzMzq5yDj5mZVc6r3bohaTEpSPfkVipmZgPVusDSiKgbZ7zgoBuSlgIaMmRIu5tiZrbKmDdvHqSVhXVH2Nzz6d78IUOGDJk7d273Jc3MDIChQ4cyb968hiNGnvMxM7PKOfiYmVnlHHzMzKxyDj5mZlY5Bx8zM6ucg4+ZmVXOwcfMzCrn4GNmZpVz8DEzs8r5DgcV2eu077S7CdYPTf7v3vq2a7NVi3s+ZmZWOQcfMzOrnIOPmZlVzsHHzMwq5+BjZmaVc/AxM7PKOfiYmVnlHHzMzKxyDj5mZlY5Bx8zM6ucg4+ZmVXOwcfMzCrn4GNmZpVz8DEzs8o5+JiZWeUcfMzMrHIOPmZmVjkHHzMzq5yDj5mZVc7Bx8zMKufgY2ZmletXwUfSGEkh6fd18vaQNE3SK5JmSTpf0tA65daWdK6kZ3PZeyXtW80ZmJlZM/pN8JG0DXAK8HydvNHAZOCvwD7AicC+wCRJ5XOYCBwOnAZ8BJgJTJS0V5813szMWjKo3Q0AyAFkHPATYBRQ7tF8C5gOHBIRS/M+zwJTgI8BV+S0vYDdgQMjYmJOuxkYCZxDCmBmZtZm/aXncwLwVuA/yhmSNgZ2AC6uBR6AiLgBeBo4qFD8AGAecE2hXAAXAVtK2rpPWm9mZi1pe89H0kjgG8DhETFfUrnItvlxep3dHyzk18rOLAap7IFifun4c7tp4pBu8s3MrEVt7fkoRZofA9dHxNUNig3Pj3Pq5M0p5NfKNipHqayZmbVJu3s+xwDbA80Mh0WT6Y3K1c2LiBVWzBXlnpF7P2ZmvahtwUfSeqSFBGcACwvLpgcBq+XfFwGzc3q9Xsswlu/pzO6iHNTvFZmZWcXaOez2VlKP4gzgxcL2QdLczIvAGGBGLr/tilUwiuXngmYAW9VZfj0qP9abNzIzs4q1M/g8CuxSZ/sD8Fj+eWxEPAXcCxxeDCqSdgM2BiYU6pxIWqa9T+lYnwQejoiZmJlZ27Vt2C0iFgC3lNNrq88ioph3CumansskjQU2As4E7gKuLJSbDNwMjJM0HHgCOBLYEdiv10/CzMx6pL9c59OliJgK7A2MACYB386PH46IJYVyAewPXA6cDvwaeCfpotNrK262mZk10O7VbiuIiNEN0q8Drmti//nAcXkzM7N+aJXo+ZiZWWdx8DEzs8o5+JiZWeUcfMzMrHIOPmZmVjkHHzMzq5yDj5mZVc7Bx8zMKufgY2ZmlXPwMTOzyjn4mJlZ5Rx8zMyscg4+ZmZWOQcfMzOrnIOPmZlVzsHHzMwq5+BjZmaVc/AxM7PKOfiYmVnlHHzMzKxyDj5mZlY5Bx8zM6ucg4+ZmVXOwcfMzCrn4GNmZpVz8DEzs8o5+JiZWeUcfMzMrHIOPmZmVjkHHzMzq5yDj5mZVc7Bx8zMKte24CPpA5Kul/S0pEWS/iZpqqQP1ym7h6Rpkl6RNEvS+ZKG1im3tqRzJT2by94rad9qzsjMzJrVzp7Pm4CHgS8D/wz8C/AqMFnSobVCkkYDk4G/AvsAJwL7ApMklds/ETgcOA34CDATmChprz49EzMza8mgdh04IiYBk4ppkq4FniAFostz8reA6cAhEbE0l3sWmAJ8DLgip+0F7A4cGBETc9rNwEjgHFIAMzOzfqBfzflExGJgHvA6gKSNgR2Ai2uBJ5e7AXgaOKiw+wF532sK5QK4CNhS0tZ9fgJmZtaUtvV8avLQ2d8B6wOfBbYgDa0BbJsfp9fZ9cFCfq3szGKQyh4o5tc5/txumjikm3wzM2tRf+j5/JzU03kaOB44OCKuy3nD8+OcOvvNKeTXyjYqR6msmZm1UX8IPicD7yUtIpgM/FzSYaUy0WDfcnqjcg3zImJoVxtpKM/MzHpR24fdIuJx4PH867V50cEPJF0BzM7p9Xotw1i+pzO7i3JQv1dkZmZt0FLPR9LjXV03I2lvSY83ym/S3aRl2G8GZuS0beuUG8Xyc0EzgK3qLL8elR/rzRuZmVkbtDrsNgJYu4v8wcAmPW2MJAGjgbnA7Ih4CrgXOLwYVCTtBmwMTCjsPhEYSroWqOiTwMMRscJiAzMza4/eHnbbAHi5mYKSLgH+DNwHvAC8BTgS2BX4Yl52DXAK6ZqeyySNBTYCzgTuAq4sVDkZuBkYJ2k46XqhI4Edgf1W7rTMzKw3dRt8JO1E6o3UHChpszpFhwGHAr9v8th3ku5G8FnScuZ5pF7OvhFxba1QREyVtDfwddJFqS8BVwMnR8SSQrmQtD9wet6GkpZWH1isz8zM2q+Zns8uwNfyzwEcmLd6HgVOaObAEXEecF6TZa8Drmui3HzguLyZmVk/1Uzw+S4wHhBpVdrxFO4ikAWwICK8oszMzLrVbfCJiHnka10k7QL8MSJm9XXDzMysc7W04CAiftNXDTEzs4Gj5dVukt5GWiSwOemiTpWKRETs1gttMzOzDtVS8Mlf9DYRWIO06sxzPGZm1rJWez5nkK7J2T8i7u2D9piZ2QDQ6h0OtgS+68BjZmYro9Xg8zfgtb5oiJmZDRytBp+LWf7bQ83MzFrW6pzPeGAXSdcA3yPdP21JuVBE/GXlm2ZmZp2q1eDzEOluBgL27qLcaj1ukZmZdbxWg8836PrbQs3MzLrV6h0OxvRRO8zMbABpdcGBmZnZSmv1Dgc7NVMuIm7tWXPMzGwgaHXO5xaam/PxggMzM2uo1eBzdIM6NgWOAp4Ezl+5JpmZWadrdcHBRY3yJJ0F3L/SLTIzs47XawsOIuJF4CfAyb1Vp5mZdabeXu32IjCyl+s0M7MO02vBR9KawBHAc71Vp5mZdaZWl1pf0CBrGPCPwJuBk1a2UWZm1tlaXe12VIP0OcAjwAkRcelKtcjMzDpeq6vdfEcEMzNbaQ4mZmZWuVaH3QCQtC6wO8tWtj0O3BARL/VWw8zMrHO1HHwkfQY4B1ib9L0+kG65s0DSv0XEuF5sn5mZdaBWV7vtC4wl9XT+E5ies7YBvgiMlTQrIq7t1VaamVlHabXnczLwR+B9EbGgkH6TpAuBacApgIOPmZk11OqCg3cB40uBB4A833NRLmNmZtZQT1a7qYs8f8W2mZl1q9Xg8wfgSEmDyxmS1iZdhPqHXmiXmZl1sFaDz9nAVsD9kr4gaZe8HQfcB2wJnNVMRZJ2kzRe0sOSXpb0lKQJkkbVKbuHpGmSXpE0S9L5kobWKbe2pHMlPZvL3psXSZiZWT/S6h0Ors6B5kzg+ywbZhOwEDguIq5psrpjgeHAd0iLGDYgLWi4R9LoiJgGIGk0MBm4GjgN2Cgff1tJ/xQRSwt1TgT+IdfzBKknNlHSPhExuZVzNTOzvtPydT4R8UNJlwJ7AG8nBZ7HSBeZzmuhqi9ExKxigqQppKBxEnBQTv4WaUn3IbVAI+lZYArwMeCKnLYX6cLXAyNiYk67mXQh7DmkAGZmZv1Aj+5wEBFzgStX5sDlwFOrV9KfgLcCSNoY2AH4crGHExE3SHqaFKCuyMkHAPOAawrlQtJFpOuPto6ImSvTZjMz6x3dzvlIWk3SNyUd2025z0k6XVJXq+G6O9abgW1ZdvHqtvlxep3iDxbya2VnlobhAB4o1VU+5tyuNmBIj07GzMwaambBwSdIw2D3dFPubtIFpof1pCE5aI3NbTo7Jw/Pj3Pq7DKnkF8r26gcpbJmZtZGzQy7HQzcGBH3dVUoIu6TdD0p+PTkO33OAvYHjo6IP5arb3TYJss1zIuIFVbNFbn3Y2bW+5rp+WwH3NhkfTcD27faCEn/A3wZ+FJEjC9kzc6P9Xotw1i+pzO7i3JQv1dkZmZt0EzwGQassDiggb+x7M2+KZK+Afw7cHJEnFvKnpEf683XjGL5uaAZwFaSyudUu26o3ryRmZm1QTPB5yVgvSbrGw6scN+3RiR9Dfgq8NWIWOHi1Ih4CrgXOLwYVCTtBmwMTCgUnwgMBfYpVfNJ4GGvdDMz6z+amfOZAexJulamO3uwrLfSJUlfBsYAvwJulPT+QvarEfG7/PMppGt6LpM0lmUXmd7F8su9J5OG/cZJGk66XuhIYEdgv2baZGZm1Wim5zMB2F1Sl2/g+TY2ewC/aPLYtR7K3sCdpW1irVBETM1lRgCTgG/nxw9HxJJCuSAtWLgcOB34NfBO0kWn/ooHM7N+pJmez/nA54CfSzob+HFEPFnLlDQC+AxwIvBILt+tiBjdbCMj4jrguibKzQeOy5uZmfVT3QafiHhF0kdIw2OnAl+R9BIwH1gHWJd0i52Hgb0jYlEfttfMzDpAU3e1johHgXcDXwJuBxYDGwJLgNty+j9ExGN91E4zM+sgTd/bLfdovp83MzOzHuvJN5mamZmtFAcfMzOrnIOPmZlVzsHHzMwq5+BjZmaVc/AxM7PKOfiYmVnlHHzMzKxyDj5mZlY5Bx8zM6ucg4+ZmVXOwcfMzCrn4GNmZpVz8DEzs8o5+JiZWeUcfMzMrHIOPmZmVjkHHzMzq5yDj5mZVc7Bx8zMKufgY2ZmlXPwMTOzyjn4mJlZ5Rx8zMyscg4+ZmZWOQcfMzOrnIOPmZlVzsHHzMwq5+BjZmaVa2vwkfRWSd+TdLukBZJC0ugGZT8u6Q+SFkl6StI3Ja1Zp9wGki6S9IKkhZJuk/SBPj8ZMzNrWrt7PpsBhwELgJsaFZL0CeAS4A7gw8DpwBeA8aVya+Z6dga+CBwAvATcJOk9vd98MzPriUFtPv6tEbE+gKT9gX3LBSStBpwF/DIiPp+Tb5b0OjBW0nci4q6c/ilgG2C7iLg/7/8b4I+kgPXhPj0bs1XQSb+8od1NsH7orH336NP629rziYilTRR7P7AhcFEp/RLgdeCgQtoBwIO1wJOP8SpwGbCHpHVWrsVmZtYb2t3zaca2+XF6MTEiXpb0WCG/VvbmOnU8AKwGbAXcXcyQNLeb4w9pqbVmZtatds/5NGN4fpxTJ29OIb9WtlE5SmXNzKxNVoWeT000md6oXN28iBja1UFzz8i9HzOzXrQq9Hxm58d6vZZhLN/Tmd1FOajfKzIzs4qtCsFnRn4szu0gaS1gU5afC5pRLpeNApYAD/VFA83MrDWrQvCZBjwHHFFKPwxYHZhQSJsIjJL07lqCpDVy2RsjYn4ft9XMzJrQ9jkfSR/NP+6QH3eWtB6wMCJ+HRGLJX0FGC/pPOAq0qq1M4GrImJaobpxpItPJ0g6lTTM9iVgI+DgCk7HzMya0PbgA1xZ+n1MfvwzMAIgIi6StAQ4BTgGeAH4EfC14o4RsUjSrqSLUv8XWBO4H9gjIu7ro/abmVmL2h58IkJNlvsZ8LMmytUbojMzs35kVZjzMTOzDuPgY2ZmlXPwMTOzyjn4mJlZ5Rx8zMyscg4+ZmZWOQcfMzOrnIOPmZlVzsHHzMwq5+BjZmaVc/AxM7PKOfiYmVnlHHzMzKxyDj5mZlY5Bx8zM6ucg4+ZmVXOwcfMzCrn4GNmZpVz8DEzs8o5+JiZWeUcfMzMrHIOPmZmVjkHHzMzq5yDj5mZVc7Bx8zMKufgY2ZmlXPwMTOzyjn4mJlZ5Rx8zMyscg4+ZmZWOQcfMzOrnIOPmZlVruOCj6S1JZ0r6VlJr0i6V9K+7W6XmZkt03HBB5gIHA6cBnwEmAlMlLRXW1tlZmb/b1C7G9CbcoDZHTgwIibmtJuBkcA5wOQ2Ns/MzLJO6/kcAMwDrqklREQAFwFbStq6XQ0zM7NllN6bO4OkO0nx5gOl9PcB04BDIuLnpby53VQ7BGDIkCEr1baFi15dqf2tMw1e8w3tbgKLFi9udxOsH1pz0MoNjM2bNw/S+3HdTk5HDbsBw4FH6qTPKeT3RMybN29+D/e15dWi+Ly2tqKfmPfqonY3wZbx32ZBL3xcXhdY2iiz04IPQFdduRXyImJoH7bFSmo9TT/v1t/4b7NanTbnM5v6vZth+XFOnTwzM6tYpwWfGcBWksrnNSo/Tq+4PWZmVkenBZ+JwFBgn1L6J4GHI2Jm9U0yM7OyTpvzmQzcDIyTNBx4AjgS2BHYr50NMzOzZToq+ERESNofOD1vQ0l3ODgwIq5ta+PMzOz/ddR1Ptb/eUWR9Vf+26xWp835mJnZKsA9HzMzq5x7PmZmVjkHHzMzq5yDj5mZVc7Bx8zMKufgY2ZmlXPwMTOzyjn4mNmAJGmkpHcXfl9D0hhJEyUd0862DQQddXsd698k7QHsQvrai9nATRFxU3tbZQPYecCfgC/l378K/DvwZ2BfSUsjYly7GtfpfJGp9TlJawJXA3sAIn1J4htIX+53Henee/6ecauUpGeA4yJiQv79aeDHETFG0reBnSJi+7Y2soN52M2q8A1Sj+cEYFhEvJH0BX/HA7sBY9rXNBvAhgGzACRtCWwI/Czn/QrYrE3tGhAcfKwKhwBfj4hzI6J288a5EfF94L+Aw9raOhuo5gAb5J93BmZFxKP590H4/bFP+cm1KmwI3NUg7y7gLRW2xazmNuAUSfuQeuGTCnmbAU+1pVUDhIOPVeE5YIcGee8Fnq2wLWY1pwJDgGtIPZ2vF/IOBu5sR6MGCq92sypcBXxN0jzgkoiYL2ld4BPAaaRVR2aViojHgXdIGh4Rs0vZXyR9aLI+4tVu1uckrUWawB1NWuFWW+0m4EZg34hY1LYGmlnlHHysEpIE/DNp1dubSNf5TI2IKW1tmA1okrYB/pO04GA48L6IuF/S14FbfR1a3/Gwm1Ui0qecX0u6D1izli7pbTn/L+1qmw1MkrYHfkNa9XYD8PFC9prAsYCDTx9x8LE+J2kd4DukJdVrNii2WnUtMgPgm8C9wIeAxcDhhbx7SYsOrI84+FgVvkv6VDkOeIA052PWbu8HPh4RiySVP/w8z7JrgKwPOPhYFT4CnBoR3213Q8wKlgJLGuQNB16psC0Djq/zsSq8kdTjMetP7gcObZB3AI0vjLZe4J6PVeHXwI7A1HY3xKzgW8C1kgYBl5AuA9he0hGk+ck929m4Tuel1tbn8k0bfwGcD1xLWma9nIiYX3W7zCR9CjibdKcD5eT5wPERMb5d7RoIHHysz0lamn9s+McWEV7tZpWStHZELMgXQX8AWB94AbgjIha2t3Wdz8NuVoVv0EXgMWuTZyT9FPhBRNzY7sYMNO75mNmAlL8w7khgKOli0x8AV0dEoxVw1oscfMxswMrfsns46W4G2wHPkOYmfxwRvrFoH3LwMTMDJL0f+DzwMdJlKBNIQ3K3t7VhHcrX+ZiZARExDbiMdGud1YEDgd9Iul3Spm1tXAdy8DGzAU3SMEknSnqU9NUfg0jfNbUuqRe0IXBRG5vYkbzazcwGJEnvJQ2zHUz6IP5z4LCIuKdQbIKkBcAv29DEjubgY2YD1TTSV7ifAZwfEbMalHsSf6V2r/OCAzMbkCQdBlwZEYvb3ZaByMHHzMwq5xKaroUAAAV9SURBVAUHZmZWOQcfMzOrnIOPmZlVzsHHrAmS1pJ0vKTbJM2R9Lqk5yVNlnRU/k6YntR7lKTje7u9Zv2dFxyYdUPSZsAkYAvgRmAK6db76wO75+2siDi5B3XfAoyIiBG91V6zVYGv8zHrgqQ3kq56HwkcFBETSkXOlLQDsEPljWsTSQIGR8SCdrfFVl0edjPr2meAdwDn1Ak8AETEPRHxw9rvkvaUdIWkxyW9ImmupCmSdi7uJ+lJYGdgE0lR2EYXymwu6WJJz0p6TdKTks6SNLjcDkk7S7ozH/M5Sd+TtE2uc0yp7GBJZ0h6TNKrufxPJW1SKjc673+UpC9ImgksAk6U9EtJCyWtW6ct7837fbXbZ9gGJPd8zLr20fw4toV9jgKGAT8FngI2JgWxmyTtEhG35XLHk66uXw84obD/HwEkbQdMBeaSbvP/NPAu4F+BD0raOSJez2V3JA0Hvgh8M+9zMPDBcuPy/NT1Oe8q4Bxgc+BzwJ6Sto+Ip0q7HQ8MB34MPAf8lXQDzn2Aw3L7ij4FLAXGd/Nc2UAVEd68eWuwAbOB+S3uM7hO2gakeaLJpfRbgCcb1PMH4CFgnVL6AaRvhj2qkHY3qUcyspC2OnBHLjumkH5MTvtWqd6P5PSLC2mjc9ocYP1S+dWAvwB3l9LXAuaVz9Wbt+LmYTezrq0LzG9lh4hYWPtZ0tqShgNLgLuA9zVTh6RRwDuBS4E3SFqvtgG3AwuBPXPZDUhzTtdExOOFdrwOfK9O9QeQeiVnlNo9Cfg9sJ+k8nvDT6N077NI3/h5AbBDbm/NR0nP27hmztUGJgcfs67NB9ZpZQdJm0q6XNKLwEukHs/fgL2ANzVZzVb58et53+I2CxhM6k0BvD0/PlynnnppbweeiYgX6+TNIJ3veqX0Rxq0cxwpsH66kPbp3EbfCdoa8pyPWdemAztJGlnsVTQiaW3gVlJw+C7wICkALQVOBXZt8rjKj+cA1zUo82KpbLNaLQ/wcr3EiPirpOuAT0g6GXgbsBNwdu55mdXl4GPWtV+Q3kw/A/x7E+V3AzYCPhURFxYzJP13nfKNLrT7U35cEhE3dnPMWlB8R528emmPAf8saWhEzC3lbU3q7b3QzTGLxpLmi/YH3pPTPORmXfKwm1nXfkIaujpR0n71CkjaTtLn869LasmlMntSf75nAfCmfO1M0e9Iva5jJY2sc8xBkoYBRMTzpJVn+xXLSlod+FKdY15N+t//SqnOD5OCxy8jYmm9c21gEmkl3meBI4E7IuKhFva3Acg9H7MuRMTLkvYmvcFeLWkKcANpFdybgV2ADwHfyrvcTlqKfI6kEaSl1u8GjiANwRUn5iF9odnewHmSfksKXlMjYpakI0hLrR+QdAFpPmYtYDPgQNIw3vhcz4m5Xb+V9EPSarODgTVqp1I45nhSkDglt/HWXOfngedprodXfI6WSLoQOC0ntbS/DVDtXm7nzduqsJHe9E8gBZcXgddJb9STSIFltULZd5LmaWoLDm4B/on0ph+legeThqieJwWeAEYX8jcBfkT6Ns3XSEHvPtJKtb8v1bUrKZgtyvV9j9TbCuDkOsc9gzRk9xppgcDFwCalcqMpLetu8Pxskts/nzpLzb15K2++t5tZB5N0EOlC0sMi4vI+PM5bSBeejouIz/bVcaxzeM7HrAMoWbOUtjrwb8BiUu+rL32OdNFpK3eCsAHMcz5mneENwJ8lXUJaIDEcOIQ0BHhmRDzXFweVdChpefVJwPURcV9fHMc6j4fdzDqApNVI913bGXgLabXdw8DYKNz0tA+OG6Q5ptuAoyPi6b46lnUWBx8zM6uc53zMzKxyDj5mZlY5Bx8zM6ucg4+ZmVXOwcfMzCr3f4iAyNKtocRPAAAAAElFTkSuQmCC\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"category_bar_plot(vic_kid_df, \"Victim a Child Breakdown\", 90)"
]
},
{
"cell_type": "code",
"execution_count": 141,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" count \n",
" category \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" 356 \n",
" yes \n",
" \n",
" \n",
" 1 \n",
" 210 \n",
" no \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" count category\n",
"0 356 yes\n",
"1 210 no"
]
},
"execution_count": 141,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"vic_male_df = get_value_counts(death_row, \"vic_male\")\n",
"vic_male_df"
]
},
{
"cell_type": "code",
"execution_count": 142,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 142,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ8AAAEtCAYAAADX4G3qAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deZgcVb3G8e/LLkESSBAFlQguwCUqcnFBlBAICrKEoCiyBVBRhAuIgHJBlqso20UEF6KRREQ2JayRfZULsiqQsGlYBIFIVrYEQn73j3PaVCrdM92TmeqZyft5nnpq+tSpU6dmevrXZ6kqRQRmZmZVWqbdFTAzs6WPg4+ZmVXOwcfMzCrn4GNmZpVz8DEzs8o5+JiZWeUcfKwlkp6UdHNfKbe/kBSSxre7Hu0gaWg+/+OWoIzhuYwx3VczWxIOPkspSRfnf8YPd5BHkp6QNEvSW7rhmMdJGrWk5fQWksbn32FI+s8GeQ4t5BlTcRU7VahbbZkv6VlJf5S0TbvrZ/2Xg8/Sa1xe79NBni2BocAFEfFaTvsA0NUPpWOBRsFnScptt7k0/j3uk7f3Zn8B9szLV4FfAR8ErpE0up0Vs/7LwWfpdS3wD2B3SSs0yFP7QK0FKiJiXkS83t2V6alyKzIR2E3SisVESZsCw4BL2lKr5j0bEb/NyzkRcSywbd62d2c7S3prz1bP+iMHn6VURCwAxgODgR3L2yWtCowGHoqIuwvpdcdmJG2cu/JekDRP0j8knS9pvVqffc66d7Gbp6Nya2mSPiTpekkvS5om6VRJy0laKf/8rKS5km6VtEEz5y9pfUk/kzRZ0kuSXpV0r6SvNrN/ya+B1Vi8VbcP8C/gyjrHX0bSf+c6Py/pdUlPS/q5pMHNHljS1pKuzV2jcyU9IOnrXTiHsn/m9SJfCAp/k40lXSNpNvBAYfuKko7Kv9e5uV5XSNq4VM4Sn7+kz+S/3W2SViuk7yTp/nz8f0g6AVi+QRlDJP0053s9r39arIOkdeqNOeXfe0g6pJT+Z0lTCq9r3bMD8/lNy3W7XdLHmjnX/mi5dlfA2uoc4GjSh+TvS9u+BKxModXTiKTtgT8Ar5C6bP4GvB34DLARcD2pS+dc4DZgbAt1fCdwHXBhruM2wGHAm8B/AG8BfgQMAb4NXCppgxxcOzIc+DQpMDwBDAC+AIyVNCQifthCHf+Sl31zPZG0ErAb6Xf8Rp19VgAOJ/3eLiP97jYF9gM2l7RJZy1BSV8DfgHcCfwglzES+Lmk9SLi8Cbrv7ykIfnn5YB1gGNIv+N6f/93AzcCF+f6r5LrszxwNbAZ6W99FjCQ1JV3u6RPR8Q93XH+kvYmvdeuAL4cEXNz+s65zCeBE4D5pPf39nXKGAj8H/Be0heI+4CNgW8AIyR9NCJeioinJD0BbAUcl/ddAfgksCCn/zinrwpsQvq7lF1D+jJyAulL37eASZKGRsRLjc6134oIL0vxAtxA+gddq5R+BzAPGFJKfxK4ufB6ZdI/1DRg7TrlL1P4OYDxDeqxSLmFtAC+UEq/l/RPfxmgQvp/5fyfaeK8B9SrK3AzMBtYvokyxufjDQEOIn1Yvytv+3LethHw+fzzmMK+At5Sp8z9ct5dS+mL/O6Ad5DGkn5Xp4wzcl3Wa+IcosEyA9ixwd8pgK/U2XZovd8/sCrwdOl90/T5k8YdAzguv/5Ofv2z0vtr2XycF4vvW1IAfKrO3+AHOe2AUh2+mdP/p5D2K1IrcEB+/emc51xgDrBcTt8hp4+u8z75Wek4X8jp+3fn/3RfWdztZuNI/7R71hIkrQ98HLg8Il7sZP/PkD58T4uIZ8sbo/MWSGeejYiLS2l/In14nRn5vzi7La/f11mhEfFK7efcfTcYWJ00FrYqsH6L9TyP1MLZK7/eB7g7Ih5qcPyIPIlD0rKSBuXWx405S2fdMZ8HVgTG5a6jfy+k1sAypG/kzfgzqcU0Evgs8DXSh/gFkj5TJ/8MUouubA/gEeDeUn1WILVeN1eeNdnF819G0lnAD4FjIuKA0vtrE+BdwDnF921EzKZ+S2Rn0henckv8bFIA27mQdiOp627z/HoE6QvXGcBbSa02SJN0FpC+xJSdXnpdO9dO36/9kbvd7BJgFunD8qSctm9e/7qJ/Wv/OPd3c71qnqiTNrPBtlp6p2MGklYhdaHsSvrAKlutTlpDETFD0uXAGEm/JX04HdhJHXYldSFuzOJjEp0dvza2dX0HedbspIyaFyNikXIkXQg8Dvwyd+EVuw7/HhFvNqjTW0gf6I0MIU106cr5H0L6oP/viDixzvZ18/qROtum1El7D3BPRMwvJkbEfEmPAh8pJNcCxQhS99kI4CZSV93M/PqOvP5rRMyoc7yppeNMlwRNvF/7IwefpVxEzJX0O+AASZuRvgXvCTxDagV0RrWieqiK9T7kOtumBulFvyONA4wFbiV9m58PbEfqPupKr8CvgT8CvyR10ZzfKKPSFOYLgbuAg0kfyHNJrdCrmzh+7Rz3Ap5rkGdqg/RORcQcSXcAO5G+YBQ/vF/toE4PksYyGvkXdPn8ryN1d+0v6YKIKJ9fR+/FZt4TDUXE85IeJo0FrUxqmR0UEQsk3QJsJekXpCnq/9ugjCV5v/Y7Dj4GqevtAFLrZ3XSZIEfdPDPUvRoXm9M+nDo9SQNIgWecyPi66VtWy9B0deSgvZI0ljMrA7y7kn6sN0yIv79YZ67PJvxeF4v1mrpRrXWSLNTqR8H1gBubKK7tSvn/yDwPdI45S2SRkTE44Xtf8/rejMe66VNBT4gabli60fScsD7WTx430iajLADqSvxhpx+A3AqaXq6WNhKsg54zMeIiPtIs7W+SOoqCur36ddzLal//DBJ7yhvVO5XyF4mBbd2qwXVRb5x5vp/pauF5g/cbwLHs7ALs6M6BIX/wfy7OrrJw11EmhByvOrcfSJP611x8d2aI2kN0qy1udTvsqrnN6QvLnVbPpKK3YBdOv+ImEyaqbgsKQAVg9W9pOC/T2H2Xm0GWr3p55eSgmX5b/7VnD6xlH5jru+xwNMR8fdC+orAd0mt59uwTrnlYzXjgDNJEwhuLvxjdSgiXpW0H2ka9EOSalOt18hl/S9pVhqkKcFbSzqSNKAdEXFB955GU3V+SdK1wB6SXgPuJk0v3p80jtTlPviIuBy4vImsvwd2AW6U9BtSK2MUafZgM8d5RtI3SLOwHpZ0LmlG1xqkC1tHARuSZqd1Zm1Je+SflyVNpd4PGEQaX2l2GvAZpFbfKZJGkD6U5+TytiK3dHLeLp9/RDwiaYtc/s2StoqIyRHxpqRDSYH5Lkm/JAWDfYHpuR5FJ5NmnP1U0kdI45Yb53N/NG8vuok0mWAD0gy2Wn2mSHqe9Pu+o4Xf19Kt3dPtvPSOhTTA+xrp2+ieHeR7ktKU6Jz+UdI3yRdJ38ifJo2rrFvI8z5SS2lOPk50VG4Hxzou7z+0lD6UwpTcTs53COmD+5+kD8UHSd94x+QyhjdRxvicd0gn+Rabap3Tv0pqVcwljduMJbUMF5uSXi8tp3+S9A19Gmmc6Z+kD8nDgJWaOId606znkMbBvtTs37+wfTnSlPe7SdfuvELqjjsP2KYr59/o70qaYPBkPvcPFtJHk1ry80hjSf9DCor1/gZrkKZsP0OarfgM8NNGf1NS62qx/5F8fgF8v9H7pIPf/2J/16VhUf4FmJmZVcZjPmZmVjkHHzMzq5yDj5mZVc7Bx8zMKuep1p2QNJ8UpOe0uy5mZn3IqsCCiKgbZzzbrROSFgAaOHBgu6tiZtZnzJ49G9IU87o9bG75dG7OwIEDB86a1dGdUszMrGjQoEHMnj27YY+Rx3zMzKxyDj5mZlY5Bx8zM6ucg4+ZmVXOwcfMzCrn4GNmZpVrW/CRtJmkayQ9K2mupH9JulHStqV8N0uKOstiz4GRtIqkn0h6TtJrku6RtGN1Z2VmZs1o53U+q5Ee2HQO8Hx+/TVgkqTdYtGHjD1OelZ90Yt1ypwIfAQ4gvRQsDHAREk7RMSk7q2+mZl1Va+6w0F+dvoTwOMRMSKn3QwMiogPd7LvdsBVwOiImJjTRHqk7eCIqPcM92bqNMsXmVp/dvjl17W7CtYLnbLjyCXaP19kOjsiBtXb3qvGfCJiPjCb9ETBVu2c9609sjk9OhAmAOtL2rBbKmlmZkus7cFH0jKSlpO0lqTjgfcDp5eyfUDSTEnzJT0u6WhJy5fybARMiYgFpfQHCtvNzKwX6A33drsI2CX/PAfYNSKuLmy/DbgAeARYBRgFnABsQmrt1AwGHqtT/ozC9sVI6qw/zXcUNTPrZr0h+BwBnAS8HfgycJGkvSPifICIOKaU/0pJLwBHSdo8Iv5U2NbRAFbvGdwyM1vKtb3bLSKmRsTdEXFFROwGXAP8VFJHdZuQ158opE2nfutm9byeUWcbETGoo4U0jmRmZt2o7cGnjrtI067X6CBPrd7F8Z3JwAZ1gtawvH6oe6pnZmZLqlcFnzw1ejgwi9SSaaR2zc+dhbSJwCBghzp5H42IKd1UTTMzW0JtG/ORdB7wFHAv6YLRdwB7AyOAgyJivqRPAd8B/pDzDgB2AvYBLo6I2wtFTgJuAsZJGky6XmhvYPO8j5mZ9RLtnHBwB7A7sD9pRtls4B5gx4i4Iud5Lq9PAIaQutkeBb4FnFksLCJC0ijgxLwMAqaQLjq9AjMz6zXaFnwi4izgrE7y/A34XAtlzgEOzIuZmfVSvWrMx8zMlg4OPmZmVjkHHzMzq5yDj5mZVc7Bx8zMKufgY2ZmlXPwMTOzyjn4mJlZ5Rx8zMyscg4+ZmZWOQcfMzOrnIOPmZlVzsHHzMwq5+BjZmaVc/AxM7PKOfiYmVnl2hZ8JG0m6RpJz0qaK+lfkm6UtG2dvCMl3SnpNUnTJJ0taVCdfKtI+omk53LeeyTtWM0ZmZlZs9rZ8lmN9Ejsw4DPAl8D5gGTJH2plknScGAS8A9gB+DbwI7AVZLK9Z9IejT30aQnoE4BJkrarkfPxMzMWtLOx2hfBVxVTJN0BfAEKRBdkJNPBh4CvhgRC3K+54BrgS8AF+a07YCtgdERMTGn3QSsC5xGCmBmZtYL9Koxn4iYD8wG3gCQtDawKXBuLfDkfNcBzwK7FHbfOe97WSFfABOA9SVt2OMnYGZmTWl78JG0jKTlJK0l6Xjg/cDpefNGef1QnV0fLGyv5Z1SDFLZA6WyzMyszdrW7VZwEQtbMHOAXSPi6vx6cF7PqLPfDOAjhdeDgcca5CuWtQhJszqp38BOtpuZWYva3vIBjgA+SppEMAm4SNJupTzRYN9yeqN8nW0zM7MKtb3lExFTgan55RV50sFPJV0ITM/p9Votq7Noi2h6B/mgfuuJiFhsynZRbhm59WNm1o16Q8un7C7SNOw1gMk5rd54zTAWHQuaDGxQZ/r1sLyuN25kZmZt0KuCjyQBw4FZwPSIeAa4B9i9GFQkbQWsDVxS2H0iMIh0LVDRXsCjETGlB6tuZmYtaFu3m6TzgKeAe4EXgXcAewMjgIPytGuAI0nX9JwvaSywFnAS8Gfg4kKRk4CbgHGSBpOuF9ob2BzYqcdPyMzMmtbOMZ87SHcj2J80pjKb1MrZMSKuqGWKiBslbQ8cT7oo9SXgUuCIiHizkC8kjQJOzMsg0h0ORhfLMzOz9mvnHQ7OAs5qMu/VwNVN5JsDHJgXMzPrpXrVmI+ZmS0dHHzMzKxyDj5mZlY5Bx8zM6ucg4+ZmVXOwcfMzCrn4GNmZpVz8DEzs8o5+JiZWeUcfMzMrHIOPmZmVjkHHzMzq5yDj5mZVc7Bx8zMKufgY2ZmlXPwMTOzyrUt+EjaStJ4SY9KelXSM5IukTSslO9mSVFnuaBOmatI+omk5yS9JukeSTtWd1ZmZtaMdj5G++vAYOB04GFgTeAI4G5JwyPizkLex4G9Svu/WKfMicBHcjlPAGOAiZJ2iIhJ3Vt9MzPrqnYGn29GxLRigqRrSUHjcGCXwqZXS8FoMZK2A7YGRkfExJx2E7AucBrg4GNm1ku0rdutHHhy2ixSK+edXShyZ2A2cFmhvAAmAOtL2rCLVTUzs27WqyYcSFoD2Ah4qLTpA5JmSpov6XFJR0tavpRnI2BKRCwopT9Q2G5mZr1AO7vdFiFJwFhSQDy1sOk24ALgEWAVYBRwArAJqbVTMxh4rE7RMwrb6x13VidVG9hZ3c3MrDW9JvgAp5ACyz4R8XAtMSKOKeW7UtILwFGSNo+IPxW2RQfld7TNzMwq1Cu63ST9ADgMODgixjexy4S8/kQhbTr1Wzer5/WMOtuIiEEdLaRxJDMz60ZtDz6STgCOAo6IiJ80uVut3sXxncnABpLK51S7bqg8jmRmZm3S1uAj6VjgGOCYiDilhV1r1/wUp19PBAYBO9TJ+2hETOlyRc3MrFu1bcxH0mHAccCVwPWSPl7YPC8i7pf0KeA7wB+Ap4ABwE7APsDFEXF7YZ9JwE3AOEmDSdcL7Q1snvcxM7Neop0TDmotlO3zUvQUMBR4Lr8+ARhC6mZ7FPgWcGZxh4gISaOAE/MyCJhCuuj0ih6ov5mZdVHbgk9EDG8iz9+Az7VQ5hzgwLyYmVkv1fYJB2ZmtvRx8DEzs8o5+JiZWeUcfMzMrHIOPmZmVjkHHzMzq1xLwUfS1I4eSy1pe0lTl7xaZmbWn7Xa8hlKeqxBIwOAdbpcGzMzWyp0d7fbmsCr3VymmZn1M53e4UDSp4HhhaTRkt5bJ+vqwJeAv3RP1czMrL9q5vY6WwLH5p8DGJ2Xev4GHNoN9TIzs36smeDzY2A8IGAqcAhwWSlPAC9HRN0HtpmZmRV1GnwiYjb5aZ6StgQejohpPV0xMzPrv1q6q3VE3NJTFTEzs6VHy49UkPRuYH/gfcBgUndcUUTEVt1QNzMz66daCj6StiU9rnoF4CXAYzxmZtayVls+PwReBEZFxD1LcmBJWwF7Ap8A3kUKZHcBx0bEg6W8I4H/AT5ECnoTgSMjYlYp3yqkp5h+gfQk08nACRFx+ZLUtTtsd/Tp7a6C9UKTvu/JobZ0avUi0/WBHy9p4Mm+DrwbOB3YlvRo7HcDd0v6eC2TpOHAJOAfpEdvfxvYEbhKUrn+E4HdgaNJT0CdAkyUtF031NfMzLpJqy2ffwGvd9Oxv1meNSfpWuAJ4HBgl5x8MvAQ8MWIWJDzPQdcS2rhXJjTtgO2BkZHxMScdhOwLnAaKYCZmVkv0GrL51wWBoUlUm+6du5Gexx4J4CktYFNgXNrgSfnuw54tlSXnUlTwi8r5AtgArC+pA27o95mZrbkWg0+44EVJF0maYSk90h6d3npamUkrQFsRGrpkH+m8LrowcL2Wt4pxSCVPVAqy8zM2qzVbrdHSHczELB9B/mWbbUikgSMJQXEU3Py4LyuN6tuBvCRwuvBwGMN8hXLKh93Vr30goGdbDczsxa1GnxOIAWfnnAKMArYJyIeLm1rdMxyekd166l6m5lZi1q9w8FxPVEJST8ADgMOjojxhU3T87peq2V1Fm0RTe8gHzS4JikiBnVSt1m49WNm1q3a/hhtSScARwFHRMRPSpsn53W98ZphLDoWNBnYoM7062F5XW/cyMzM2qDVOxx8upl8EXFrk+UdCxwDHBMRp9Qp5xlJ9wC7S/pxYar1VsDawCWF7BOB/UjXAhXvur0X8GhETGmmTmZm1vNaHfO5mebGTjqdcCDpMOA44Erg+uKFpcC8iLg//3wk6Zqe8yWNBdYCTgL+DFxc2GcScBMwTtJg0vVCewObAzs1UWczM6tIq8FnnwZlrAeMAZ4Ezm6yrB3yensWnzn3FDAUICJulLQ9cDxwFen2OpeSuunerO0QESFpFOn2OieSbq8zhXTR6RVN1snMzCrQ6oSDCY22SToFuK+Fsoa3kPdq4Oom8s0BDsyLmZn1Ut024SAiZgK/Ao7orjLNzKx/6u7ZbjNJ91IzMzNrqNuCj6SVSI9IeL67yjQzs/6p1anWv26waXXSc3nWIN2R2szMrKFWZ7uNaZA+g3RftUMj4ndLVCMzM+v3Wp3t1vY7IpiZWd/nYGJmZpVrtdsNAEmrkp4aWpvZNhW4LiJe6q6KmZlZ/9Vy8JH0FdJjqVchPdcH0i13Xpb0rYgY1431MzOzfqjV2W47kh74NhX4HgvvFP0fwEHAWEnTfDsbMzPrSKstnyOAh4GPRcTLhfQbJJ0D3Em6EaiDj5mZNdTqhIMPAeNLgQeAPN4zIecxMzNrqCuz3dTBNj+q2szMOtVq8PkrsLekAeUNklYhXYT6126ol5mZ9WOtjvmcSnp66H2SfkJ6Xg4snHDwXmB091XPzMz6o1bvcHCppANJTxI9k4XdbAJeAQ6MiMsa7W9mZgZdGPOJiJ8B7wK+CHwXOArYFXhnRPy8lbIkvVPSGZL+JOllSSFpeJ18T+Zt5eVHdfKuKWmCpBclvSLpNkmbtXqeZmbWc7p0h4OImAVc3A3Hfy+wG+kJqDcAO3aQ91bSNO6iZ4sv8mMdbiBdAHsQMB04hDQVfLOIuL8b6mxmZkuo0+AjaVngB8CTEfGLDvJ9g9Qi+u+IaHbW260R8ba8/yg6Dj4zI+LOTsrblzT+tElE3JfLvYV0bdKJwLZN1svMzHpQM91ue5Ce0XN3J/nuIrVMdmv24BGxoNm8TdoZeLAWePIx5gHnAyMlvbWbj2dmZl3QTPDZFbg+Iu7tKFPefg0tBJ8WjcjjQq9LelDSNySVrznaiIW3/Cl6AFgW2KCH6mZmZi1oZsxnE9KNRJtxE/CtrlenoSuBe0j3lBtMao39DHg/cGgh32DSg+3KZhS2L0LSrE6OPbDVypqZWceaCT6rA9OaLO9fOX+3iogDS0kTJZ0H/JekH0fEU8XsHRXV3XUzM7PWNdPt9hIwpMnyBgOL3feth0wg1f+jhbTp1GndsDAgLtYqiohBHS3A7G6vuZnZUq6Z4DMZ2KbJ8kbm/FWo1b04aWEyadynbBjwJvBIT1fKzMw610zwuQTYWtJOHWXKz/oZCfyhOyrWhL1Igac4C28iMEzShwv1WoE0CeL6iJhTUd3MzKwDzYz5nA18A7hI0qnALyPiydpGSUOBrwDfBh7L+Zsm6fP5x03zegtJQ4BXIuKPknYDdgKuAp4hdaHtAYwCTomIpwvFjQO+CVwi6bukbraDgbVIs/bMzKwX6DT4RMRrkj5HmnH2XeA7kl4C5gBvBVYl3dvtUWD7iJjbYh3Kd0o4Lq+fAoYCT5DGnE4mjefMAx4ExkTEhFJd50oaAZwC/BxYiXT3hJGdTRU3M7PqNHV7nYj4W+7K+irwedJdBN5OCkC3kbrafhURr7VagYjo6PlA5LsabN1Cec8De7ZaDzMzq07T93bLLZoz82JmZtZlXXmSqZmZ2RJx8DEzs8o5+JiZWeUcfMzMrHIOPmZmVjkHHzMzq5yDj5mZVc7Bx8zMKufgY2ZmlXPwMTOzyjn4mJlZ5Rx8zMyscg4+ZmZWOQcfMzOrnIOPmZlVrq3BR9I7JZ0h6U+SXpYUkoY3yPtlSX+VNFfSM5J+JGmlOvnWlDRB0ouSXpF0m6TNevxkzMysae1u+bwX2A14GbihUSZJewDnAbcD2wInAt8ExpfyrZTL2QI4CNgZeAm4QdLG3V99MzPriqafZNpDbo2ItwFIGgXsWM4gaVngFODyiDggJ98k6Q1grKTTI+LPOX1f0iO+N4mI+/L+twAPkwLWtj16NmZm1pS2tnwiYkET2T4OvB2YUEo/D3gD2KWQtjPwYC3w5GPMA84HRkp665LV2MzMukO7u92asVFeP1RMjIhXgb8XttfyLpIvewBYFtigJypoZmataXe3WzMG5/WMOttmFLbX8jbKRykvAJJmdXL8gZ1V0MzMWtMXWj410WR6o3ydbTMzs4r0hZbP9LweXPi5ZnXgiVLexVo3OR/UaRVFxKCODp5bRm79mJl1o77Q8pmc18WxHSStDKzHomM8k8v5smHAm8AjPVFBMzNrTV8IPncCzwN7ltJ3A5YHLimkTQSGSfpwLUHSCjnv9RExp4framZmTWh7t5ukz+cfN83rLSQNAV6JiD9GxHxJ3wHGSzoL+D1p1tpJwO8j4s5CceNIF59eIum7pG62g4G1gF0rOB0zM2tC24MPcHHp9XF5/RQwFCAiJkh6EzgS+CrwIvAL4NjijhExV9II0kWpPwdWAu4DRkbEvT1UfzMza1Hbg09EqMl8vwV+20S+el10ZmbWi/SFMR8zM+tnHHzMzKxyDj5mZlY5Bx8zM6ucg4+ZmVXOwcfMzCrn4GNmZpVz8DEzs8o5+JiZWeUcfMzMrHIOPmZmVjkHHzMzq5yDj5mZVc7Bx8zMKufgY2ZmlXPwMTOzyjn4mJlZ5fpE8JE0XFI0WNYv5R0p6U5Jr0maJulsSYPaVXczM1tc2x+j3aIjgVtLaU/WfpA0HJgEXAocDawFnARsJOlTEbGgmmqamVlH+lrweSwi7uxg+8nAQ8AXa4FG0nPAtcAXgAt7vopmZtaZPtHt1gxJawObAucWWzgRcR3wLLBLu+pmZmaL6mvB52xJ8yXNlnSlpE0K2zbK64fq7PdgYfsiJM3qaAEGdvM5mJkt9fpK8JkN/Bj4GrAlcDiwIXC7pI/lPIPzekad/WcUtpuZWZv1iTGfiLgfuL+QdJuky0mtnB8AWxezNyqmQdkdzoRz68fMrPv1lZbPYiLiedJEgo/npOl5Xa+Fszr1W0RmZtYGfTb4ZMuwsEUzOa/rje0Mo/5YkJmZtUGfDT6S3g6MBO4EiIhngHuA3SUtU8i3FbA2cEk76mlmZovrE2M+ks4DpgL3ATOB9UkXnL4F+G4h65GkrrjzJY1l4UWmfwYurrLOZmbWWJ8IPqSp0l8CDgIGkMZ3bga+HxH/7k6LiBslbQ8cD1wFvES628EREfFm1ZU2M7P6+kTwiYgfAT9qMu/VwNU9WyMzM1sSfXbMx8zM+i4HHzMzq5yDj5mZVc7Bx8zMKufgY2ZmlXPwMTOzyjn4mJlZ5Rx8zMyscg4+ZmZWOQcfMzOrnIOPmZlVzsHHzMwq5+BjZmaVc/AxM7PKOfiYmVnlHHzMzKxy/S74SFpF0k8kPWu28cIAAAocSURBVCfpNUn3SNqx3fUyM7OF+l3wASYCuwNHA58DpgATJW3X1lqZmdm/9YnHaDcrB5itgdERMTGn3QSsC5wGTGpj9czMLOtvLZ+dgdnAZbWEiAhgArC+pA3bVTEzM1tI6bO5f5B0BynebFZK/xhwJ/DFiLiotG1WJ8UOBBg4cOAS1e2VufOWaH/rnwastGK7q8Dc+fPbXQXrhVZabsk6xmbPng3p87huI6dfdbsBg4HH6qTPKGzvipg9e/acLu5ri6pF8dltrUUvMXve3HZXwRbye7OgG74urwosaLSxvwUfgI6acotti4hBPVgXK6m1NP17t97G781q9bcxn+nUb92sntcz6mwzM7OK9bfgMxnYQFL5vIbl9UMV18fMzOrob8FnIjAI2KGUvhfwaERMqb5KZmZW1t/GfCYBNwHjJA0GngD2BjYHdmpnxczMbKF+FXwiIiSNAk7MyyDSHQ5GR8QVba2cmZn9W7+6zsd6P88ost7K781q9bcxHzMz6wPc8jEzs8q55WNmZpVz8DEzs8o5+JiZWeUcfMzMrHIOPmZmVjkHHzMzq5yDj3UrScdJCkkbSLpQ0hxJL0j6taSBhXwDJJ0m6WlJr+f1KZLe0s76W/8g6cv5ffjxOtv+V9JLklbNr7eTdEtOe0XSDZI2Le2zXn4/PydpXl5fLem9VZ1Tf+PgYz3lEuBhYDRwEvBl4HSAfNfxK4ADgbOBzwFjgYOByySpHRW2fuVi4DnggGJi/nIzBvhtRMyRtC9wJfAs6T26O7A8cIukYYVdJwHrkd6jI4GDgMdJD0yzrogIL166bQGOIz2079BS+k+B1wAB2+Y8B5byHJzTP9Pu8/DS9xfge8BcYEghbb/8HtsIGADMBC4q7bcy8AxwcX49JO+zU7vPqT8tbvlYT7m89PoBYCVgTWDLnPbbUp7f5PWWmC25s0lfdvYtpH0DuDUiHgI+Qbr58G8lLVdbgNeBm4Et8j7Tgb8DJ0v6uqQNqjqB/szBx3rK9NLr2iPhVyI9WXZeRMwqZoiImTlfvafRmrUkIl4ALgK+LmmZPP6zCakVDumLEMBlwBulZXdSi4dIzZ+tgNuB44Epkv4p6fuSVqzqfPqbfvVIBeszpgMrShpUDECSVgNWZPHAZdZVZwJ7AJ8FvkQaB5qYt72Y1wcAd3dUSEQ8RW5BSXp/LvNoYAGpe89a5JaPtcONeb1HKX2P0nazJRIRdwF/Bo4CdgXGRsQbefPtwBxg/Yi4p97SoMzHIuJ7wFPAhyo4jX7JLR9rh2uB64FT8/Tru4CPkr5BXgNc18a6Wf9zJml8cT5pViUAEfGypEOAX0landQimk7qjvtPUtfwMZI+mMu4CPhbLudzwFDSTE7rAgcfq1xEhKSdgBOA/Ukz5J4DzgCOzX3sZt3lD8A5wKUR8c/ihog4R9LTwOHAOOAtwAvAPcAvcrbngamk6dXvJHW1/Q3YPyLGYl3i5/mYWb8maTQpAA2PiFvaXR9LHHzMrF+S9AFgHeDnwLSI+ESbq2QFnnBgZv3V2aS7F0wD9mpzXazELR8zM6ucWz5mZlY5Bx8zM6ucg4+ZmVXOwcfMzCrn4GPWBEkrSzpE0m2SZkh6Iz8kb5KkMfluyF0pd0y+yt5sqeLZbmadyE+rvAp4P+m2QNeSbkr5NmDrvJwSEUd0oeybgaERMbS76mvWF/j2OmYdyE++vBJYF9glIi4pZTkpP3J508V27qfyk2YHRMTL7a6L9V3udjPr2FeADwCn1Qk8AETE3RHxs9prSdtIulDSVEmvSZol6VpJWxT3k/Qk6YFl60iKwjK8kOd9ks6V9Jyk1yU9KekUSQPK9ZC0haQ78jGfl3SGpP/IZR5XyjtA0g8l/V3SvJz/N5LWKeUbnvcfI+mbkqaQng76bUmXS3pF0mKPkpb00bzfMZ3+hm2p5JaPWcc+n9et3EByDOmBeb8hPY55bVIQu0HSlhFxW853CPBD0kPLDi3s/zCApE1Ij5eYRbpa/1nSLfz/C/ikpC1qjweQtDmpO3Am8KO8z67AJ8uVy+NT1+RtvwdOA95HesrnNpL+MyKeKe12COkhf78k3WjzH6Sbb+4A7JbrV7Qv6Qac4zv5XdnSqt3P8fbipTcvpFvsz2lxnwF10tYkjRNNKqXfDDzZoJy/Ao8Aby2l7wwEMKaQdhepRbJuIW150jNrAjiukP7VnHZyqdzP5fRzC2nDc9oM4G2l/MsCTwN3ldJXBmaXz9WLl+Libjezjq1KeuBY0yLildrPklaRNBh4k/RQs481U4akYcAHgd+Rnvo6pLYAfwJeAbbJedckjTldFhFTC/V4g/SYirKdSa2SH5bqfRXwF2AnSeXPht9ExLRS/jeBXwOb5vrWfJ70exvXzLna0snBx6xjc4C3trKDpPUkXSBpJvASqcXzL2A7YLUmi9kgr4/P+xaXacAAUmsK4D15/WidcuqlvQf4Z0TMrLNtMul8h5TSH2tQz3GkwLpfIW2/XMfLG+xj5jEfs048BHxa0rrFVkUjklYBbiUFhx8DD5IC0ALgu8CIJo+rvD4NuLpBnpmlvM1qNT/Aq/USI+Ifkq4G9pB0BPBu4NPAqbHwcdVmi3HwMevYH0gfpl8Bjmoi/1bAWsC+EXFOcYOk79fJ3+hCu8fz+s2IuL6TY9aC4gfqbKuX9nfgs5IGRcSs0rYNSa29Fzs5ZtFY0njRKGDjnOYuN+uQu93MOvYrUtfVt/OjvxcjaRNJB+SXb9aSS3m2of54z8vAavnamaL7Sa2ur0tat84xl5O0OkBE1B77vFMxr6TlgYPrHPNS0v/+d0plbksKHpdHxIJ659rAVaSZePsDewO3R8QjLexvSyG3fMw6EBGvStqe9AF7qaRrgetIs+DWALYEPgOcnHf5E2kq8mmShpKmWn8Y2JPUBVccmAe4E9geOEvS/5GC140RMU3SnqSp1g9I+jVpPGZl4L3AaFI33vhczrdzvf5P0s9Is812BVaonUrhmONJQeLIXMdbc5kHAC/QXAuv+Dt6U9I5wNE5qaX9bSnV7ul2Xrz0hYX0oX8oKbjMBN4gfVBfRQosyxbyfpA0TlObcHAz8CnSh36Uyh1A6qJ6gRR4Ahhe2L4O8AvgSeB1UtC7lzRT7V2lskaQgtncXN4ZpNZWAEfUOe4PSV12r5MmCJwLrFPKN5zStO4Gv591cv3nUGequRcv5cX3djPrxyTtQrqQdLeIuKAHj/MO0oWn4yJi/546jvUfHvMx6weUrFRKWx74FjCf1PrqSd8gXXTayp0gbCnmMR+z/mFF4ClJ55EmSAwGvkjqAjwpIp7viYNK+hJpevXhwDURcW9PHMf6H3e7mfUDkpYl3XdtC+AdpNl2jwJjo3DT0x44bpDGmG4D9omIZ3vqWNa/OPiYmVnlPOZjZmaVc/AxM7PKOfiYmVnlHHzMzKxyDj5mZlY5Bx8zM6vc/wOfZlWc7Jps8wAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"category_bar_plot(vic_male_df, \"Victim a Male Breakdown\", 0)"
]
},
{
"cell_type": "code",
"execution_count": 143,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" count \n",
" category \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" 329 \n",
" yes \n",
" \n",
" \n",
" 1 \n",
" 237 \n",
" no \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" count category\n",
"0 329 yes\n",
"1 237 no"
]
},
"execution_count": 143,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"vic_female_df = get_value_counts(death_row, \"vic_female\")\n",
"vic_female_df"
]
},
{
"cell_type": "code",
"execution_count": 144,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 144,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ8AAAEtCAYAAADX4G3qAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deZgcVb3/8feHRdEAiUkQBa4sbqDgVbmgIkqARGSRJSiKIJt6QcSLiID6wBX5obJeURQlP4MJoGyasOZCWMKqrKIQwiJbWGTNypawfe8f57RUKjUz3ZOZ6pnO5/U89dTMqVOnTvX09LfPUlWKCMzMzOq0TLsrYGZmSx8HHzMzq52Dj5mZ1c7Bx8zMaufgY2ZmtXPwMTOz2jn4LOUkPSzp6sFSrvVM0pmSXm13PdpF0vWS7l/CMh6TdEVf1ckW5+DTISSdJykkfbibPJL0kKS5kt7SB8c8UtKOS1rOQCFpQn4Nq5Z72l2/dstBrfy6zJF0u6TvSlqh3XW0wWO5dlfA+sx44PPA3sCBXeTZHFgLODUiXspp7wd6e6XxD4GJwPkV25ak3Hb7BvB8KW1eOyoyQO0LvJh/HgHsCBwPfALYuV2VssHFwadzTAUeBXaTdEhEvFyRZ++8Ht9IiIiF/VGZ/iq3Jn+MiGfbXYkB7NyImNv4RdLJwG3ATpJWjoj5Xe0o6U2ABvn7w/qAu906RES8DkwgfRPdvrxd0srAWGB6RNxSSK8cm5H0kdyV95SkhZIelXSWpHdLWktSo1WzZ7EbprtyG2mS/l3SFZKel/S0pBMkLSdphfzz45IWSLpW0nrNnL+kdSWdIukuSc9JelHSbZK+3sz+rZI0TNJxkh7Ir88zkv4gae1Svq/l12ZU7qacKeklSX+RtHHOs7mkG3Kd/ynpBxXH+6ykc3O36YLc3XWZpE+1UOfVJf0m/y1fzq/zbySNXJLXIr/3nsq/vlI43tH53NeVdJKkx4GXgI0KebaSdLmkefm8/i7pPyvqvkTnL2kVSTflLudRhfR3SfqjpPm5DheU/4alcvbN3Ywv5bIuk7RJKc9iY06S9sivxa2l9G/l9I/m30fn33eX9FVJM/L762FJBzdzroOFWz6d5XfA4aQWzh9L274EvJVCq6crkrYD/gS8APwWuB94B7AVsD5wBfAV4AzgOmBcC3VcA7gcOCfX8TPAwcBrwAeBtwDHACOB7wLnS1ovf8B1ZxTwaeBi4CFgCPAFYJykkRHx0xbqOFxSOW1eRLwCIOltwJ+B1YHTgBnAasD+wGhJG0bEo6X9jwcEnASskM9tqqS9Sa/xqcCZpL/TjyU9GBFnF/bfBxhG+oLxOOl1/BpwlaTNIuLP3Z1Q/kD9M7As6T3wIPBeUhfj5pI26q7FUjJcUuOzYzip220McHqhO7fobNJ76QRSV+xTuU7fAH6V6/X/SF15WwGnSlo7Ir7fF+cvaR3gMtL7/9MRcUdOH056/64G/Aa4m9Q1PY30PiyXcyLwHeBG4PvAUFIX5NWStouIqTnrVcARktaMiJk5bQvgdeAjkoZHxOxC+hzgb6XDHQC8nfS3mgfsAZwg6dGIOLercx1UIsJLBy3AlcCrwGql9L8AC4GRpfSHgasLv78VeAZ4Gli9ovxlCj8HMKGLeixSbiEtgC+U0m8j/WNeQOqSaaT/V86/VRPnPaSqrsDVpH/e5ZsoY0I+XtXy2UK+X5E+KNcv7b82aazot4W0r+X9bynWgdQKDVJL4SOF9Dfn1/66Js7vncBs4MJS+pnAq6W0S4AnK94XHyMF/sObeH3O7Ob1OQVYtpT/6Lztyopta+T34+kVx/lVfg+v2cvzvx64P/+8ISnYzQDeVcp3XK7fV0rpv8zpVxTSPpDTrin9HdcA5gMPkP83SF+EAti7kG8m6ctaAGML78/ZwKRCvtE5z6PAyoX0FYFZ5ffFYF7c7dZ5xpO+3X6lkSBpXeDjpH/SnsYytiK1Ok6MiMfLG6PnFkhPHo+I80pp15NaBSdH/k/Lrsvr9/ZUaES80Pg5d9+NIH0rnwqsDKzbQh13Jn2TLy635LKXAb5MCmpPShrZWIDngJtJrbmyUyK3nErndkNE3F44j4X5WIucc+n8Vszn90o+3se6O5n8DX9r0sSQl0t1foDUUqyqc1caLZ0xwK6koL0f8Osu8v8sIl4rpX0BeBNwWrE+uU4Xkd7DWzYy9+b8JW1F+jvdD2waEY9UnMc/gd+X0o/t4pwBji3+HSPiMeB0YB3gQzn5L6TuxS1yPd4DvIsUfO4pnNeHgbeRWkplp0WhJRoRz+dz7fF/YbBwt1vnmQTMJXW9Nf6J9snr05rYv/Hmvr3bXL33UEXanC62NdJH9FSopBWBI4FdgH+ryPK2JusHcG03QfodpO6frUktxCpVkz0eLP3e1Tk3ti1yzvkD7MekLwdDS/lfoXvrkoL7vnmpUg4O3bkmChMOgLOVriv6uqRzI6J8fcx9FWU0xvKmdXOcVRs/9OL8Vyd1wd4BjI7q7sC1gevLX6gi4lFJ5dmOjXGguyrKmZ7X6wB/i4iFkv5MDj55/TLpS9ZVpXSoDj7l9wuklk+P/wuDhYNPh4mIBZL+AOyfB0JvIrWCHiO1AnrSGOzor2nS3X3IdbVtsQGYCn8AtiONP11L6s54FdgGOIi+m1zTqMtlpDGMKlWtw67OrcdzVposch1prOhnpA+75/JxDgc27b7K/yprIqnrrMqLXaQ36zJSF+MWpDHBnspu1Gk3Ujdjlfuh1+f/TM63FWkc7XddHKPZ93kz78Giq4AtJb2f9JrcFBEvSrqK9L+5Wk5/MiJmVOy/JP8Lg4KDT2caTxr83pvU9fQO4McVXR9V7s3rj5AmBgx4koaRAs8ZEbFfadvoPj7cU6QPvpUqvuH3lzGkv+EeEXFGcYOkY5rY/37Sh+zy/Vjn5fN6pSbz/yOvn2miTr05/5dJXWXnAeMlLR8R5YkxDwHvl7RMsfUj6d9IYyxFD+T1B0njN0UfyOtia6XRmhlNmsRwSv59GilobkUKmhd3Uf+O5zGfDhQRfyXNnvkiadZM0PU3v7KpwLPAwZLeWd6oRaeBPU8Kbu3WCKqLfCvM9f9aXx4oIl4ltbI2URd3d5D09r48Jl2f39akAfVuRcRTpL/rFyRtVN6uZJUlrGPjtbityfznkALEUaq4M4LSVPY35V97df6RrnX7PDAZ+I2kb5ayXECa6bZbKf2wiuIuyOtDCjP9kLQ6sCcp8NxRyH8LaSLCN0mz1q7KdZoN/J0023Elqrvclgpu+XSu8cDJpG9YV0fEAz3kByB3DXyVNA16uqTGVOtVcln/wxv/iDeSphYfBjySdl9kenAtIuI5SVOB3SW9RPrHX5M0vvEQfd9P/j1gE2CSpHNIr8MrpLtHbJN/78ugdy2pa+okSe8mTTX+KOlDczpvjJ90Z1/SmMP1kk4njektRxrL2JH0fjm6yfrsIql4h4OtSGNgfwPOaqaAiJgp6QDSFOcZks4kvYdWIQ3c7wC8j9Rd3Ovzj4hXJH2R1N34y9wCOilvPobUJXdaDsr3kFopG5G6bYvlzJD0P6Sp1tdIOpc0kWU/0rTs/Yutp4h4TdJ1wLakbsebCsVdRbq8oPHz0qnd0+289M9CGmB/iYqppKV8D1OaEp3TNybNjnqWNCX2EdI3/nUKed5L+kY9Px8nuiu3m2Mdmfdfq5S+Vk4/sonzHUm6XuafwALgTuDrwF65jFFNlDEh5x3ZRN4hpNsLTc+v83Ok60ROBTYq5GtMtd60tP9yOf23FWVXTZX+cH6t5+ZjTQM+2UXexdJy+irAiaQur4WkiQ13kMZR1m3inKumWi8kddX+lNQVWczfmGq9RjdlbprfZ8+QWkL/JH0gHwS8uZfn/6+p1oW0ZXljqvMhpffYpPweng9cSJo48BiFqdaF/PuSguyCnH8q8Mkuzu2gfLzLSulb5/SZFfs0plrv3sz7YjAvyidlZmZWG4/5mJlZ7Rx8zMysdg4+ZmZWOwcfMzOrnada9yDfNmQZ0swWMzNrzsrA6xFRGWc8260Hkl4HNHRo+XZSZmbWlXnz5kG6/KKyh80tn57NHzp06NC5c+f2nNPMzAAYNmwY8+bN67LHyGM+ZmZWOwcfMzOrnYOPmZnVzsHHzMxq5+BjZma1c/AxM7PaOfiYmVntHHzMzKx2vsjUbCl3yIWXt7sKNgAdv/2Yfi3fLR8zM6udg4+ZmdXOwcfMzGrn4GNmZrVz8DEzs9o5+JiZWe0cfMzMrHYOPmZmVjsHHzMzq52Dj5mZ1c7Bx8zMaufgY2ZmtWtb8JG0iaTLJD0uaYGkZyRdJWnrirxjJN0o6SVJT0s6VdKwinwrSvqFpCdy3lslbV/PGZmZWbPa2fJ5G3AvcDDwWeA/gYXAFElfamSSNAqYAjwKfA74LrA9cImkcv0nA7sBhwPbAjOAyZK26dczMTOzlrTtkQoRcQlwSTFN0kXAQ6RAdHZOPg6YDnwxIl7P+Z4ApgJfAM7JadsAo4GxETE5p00D1gFOJAUwMzMbAAbUmE9EvArMA14BkLQ6sBFwRiPw5HyXA48DOxd23ynve0EhXwATgXUlfaDfT8DMzJrS9ofJ5a6zZYC3A/sC7yN1rQGsn9fTK3a9s7C9kXdGMUhldxS3Vxx/bg9VHNrDdjMza9FAaPmcS2rpPA58G9glIi7N20bk9eyK/WYXtjfydpWPUl4zM2ujgRB8DgU2Jk0imAKcK2nXUp7oYt9yelf5utwWEcO6W0hdeWZm1ofa3u0WEQ8CD+ZfL8qTDn4l6RxgVk6varUMZ9GWzqxu8kF1q8jMzNpgILR8ym4mTcNeBbgrp61fkW8DFh0LugtYr2L69QZ5XTVuZGZmbTCggo8kAaOAucCsiHgMuBXYrRhUJG0JrA5MKuw+GRhGuhaoaA/g3ohYbLKBmZm1R9u63ST9HpgJ3AY8C7wT2BPYAvhWnnYNcBjpmp6zJI0DVgOOBW4CzisUOQWYBoyXNIJ0vdCewKbADv1+QmZm1rR2jvn8hXQ3gn1J05nnkVo520fERY1MEXGVpO2AH5EuSn0OOB84NCJeK+QLSTsCP8nLMNLU6rHF8szMrP3aeYeDXwK/bDLvpcClTeSbDxyQFzMzG6AG1JiPmZktHRx8zMysdg4+ZmZWOwcfMzOrnYOPmZnVzsHHzMxq5+BjZma1c/AxM7PaOfiYmVntHHzMzKx2Dj5mZlY7Bx8zM6udg4+ZmdXOwcfMzGrn4GNmZrVz8DEzs9o5+JiZWe0cfMzMrHZtCz6StpQ0QdK9kl6U9JikSZI2KOW7WlJULGdXlLmipF9IekLSS5JulbR9fWdlZmbNWK6Nx94PGAH8DLgbWBU4FLhF0qiIuLGQ9x/AHqX9n60oczLw0VzOQ8BewGRJn4uIKX1bfTMz6612Bp9vRsTTxQRJU0lB4xBg58KmF0vBaDGStgFGA2MjYnJOmwasA5wIOPiYmQ0Qbet2KweenDaX1MpZoxdF7gTMAy4olBfARGBdSR/oZVXNzKyPDagJB5JWAdYHppc2vV/SHEmvSvqHpMMlLV/Ksz4wIyJeL6XfUdhuZmYDQDu73RYhScA4UkA8obDpOuBs4B5gRWBH4ChgQ1Jrp2EEcF9F0bML26uOO7eHqg3tqe5mZtaaARN8gONJgWXviLi7kRgRR5TyXSzpKeAHkjaNiOsL26Kb8rvbZmZmNRoQ3W6SfgwcDBwYEROa2GViXn+ikDaL6tbN8LyeXbGNiBjW3UIaRzIzsz7U9uAj6SjgB8ChEfGLJndr1Ls4vnMXsJ6k8jk1rhsqjyOZmVmbtDX4SPohcARwREQc38KujWt+itOvJwPDgM9V5L03Imb0uqJmZtan2jbmI+lg4EjgYuAKSR8vbF4YEbdL+hTwPeBPwExgCLADsDdwXkTcUNhnCjANGC9pBOl6oT2BTfM+ZmY2QLRzwkGjhbJdXopmAmsBT+TfjwJGkrrZ7gW+A5xc3CEiQtKOwE/yMgyYQbro9KJ+qL+ZmfVS24JPRIxqIs/9wLYtlDkfOCAvZmY2QLV9woGZmS19BtJ1Ph1tm8N/1u4q2AA05eiD2l0Fs7Zwy8fMzGrn4GNmZrVz8DEzs9o5+JiZWe0cfMzMrHYOPmZmVjsHHzMzq52Dj5mZ1c7Bx8zMaufgY2ZmtXPwMTOz2jn4mJlZ7Rx8zMysdg4+ZmZWOwcfMzOrnYOPmZnVrqXgI+lBSdt3s307SQ8uebXMzKyTtdryWQtYsZvtQ4A1mylI0paSJki6V9KLkh6TNEnSBhV5x0i6UdJLkp6WdKqkYRX5VpT0C0lP5Ly3dhcszcysPfq6221V4MUm8+4HvAv4GbA18J38+y2SPt7IJGkUMAV4FPgc8F1ge+ASSeX6TwZ2Aw4HtgVmAJMlbdPL8zEzs36wXE8ZJH0aGFVIGivpPRVZhwNfAv7W5LG/GRFPl441FXgIOATYOScfB0wHvhgRr+d8TwBTgS8A5+S0bYDRwNiImJzTpgHrACeSApiZmQ0APQYfYHPgh/nnAMbmpcr9wEHNHLgceHLaXEn/ANYAkLQ6sBFwcCPw5HyXS3qcFKDOyck7AfOACwr5QtJEYJykD0TEjGbqZmZm/auZ4HMSMAEQ8CDwbQof8FkAz0fE7CWpjKRVgPWBs3LS+nk9vSL7nYXtjbwzikEqu6O4veKYc3uo1tAetpuZWYt6DD4RMY/UokDS5sDdVa2WJSVJwDjSONQJOXlEXlcFtdnARwu/jwDu6yJfsSwzM2uzZlo+/xIR1/RXRYDjgR2BvSPi7vKhu6pSk/m63BYRi82aK8otI7d+zMz6UEvBB0DSu4B9gfeSWhMqZYmI2LLFMn8MHAwcGBETCptm5XVVq2U4i7aIZnWTD6pbT2Zm1gYtBR9JW5OmM78JeI4++ECXdBTwA+DQiPhFafNdeb0+aXZb0QbAn0t5d5a0TGncp3HdUNW4kZmZtUGr1/n8FHgW2DgihkbE2lVLs4VJ+iFwBHBERBxf3h4RjwG3ArsVr+mRtCWwOjCpkH0yMIx0LVDRHsC9nulmZjZwtNrtti5weETcuqQHlnQwcCRwMXBF8cJSYGFE3J5/PozU6jlL0jhgNeBY4CbgvMI+U4BpwHhJI0jXC+0JbArssKT1NTOzvtNq8HkGeLmPjt1ooWyXl6KZpFv5EBFXSdoO+BFwCam773xSN91rjR3yNT07Aj/JyzDS1OqxEXFRH9XZzMz6QKvB5wzShZ3lsZmWRcSoFvJeClzaRL75wAF5MTOzAarV4DMB2FzSBcDPSV1br5UzRcQjS141MzPrVK0Gn3tI18uIxbvKipbtdY3MzKzjtRp8jqL7CznNzMx61OodDo7sp3qYmdlSxI/RNjOz2rV6h4NPN5MvIq7tXXXMzGxp0OqYz9U0N+bjCQdmZtalVoPP3l2U8W5gL+Bh4NQlq5KZmXW6ViccTOxqm6Tjgb8ucY3MzKzj9dmEg4iYA/wWOLSvyjQzs87U17Pd5gDr9HGZZmbWYfos+EhaAfgK8GRflWlmZp2p1anWp3WxaTjwCWAV4JAlrZSZmXW2Vme77dVF+mzgPuCgiPjDEtXIzMw6Xquz3XxHBDMzW2IOJmZmVrtWu90AkLQyMJo3ZrY9CFweEc/1VcXMzKxztRx8JH0NOBFYkfRcH0i33Hle0nciYnwf1s/MzDpQS91ukrYHxgHPAN8BxuTlIOBpYJykz7VQ3hqSfi7peknPSwpJoyryPZy3lZdjKvKuKmmipGclvSDpOkmbtHKeZmbWv1pt+RwK3A18LCKeL6RfKel3wI3AYcBFTZb3HmBX0m15rgS27ybvtbnsoseLv+Rrja4ktcq+BcwCvp3rt0lE3N5kvczMrB+1Gnz+HTiqFHgAiIjnJE0EjmihvGsj4u0Aknak++AzJyJu7KG8fYAPAhtGxF9zudeQAuZPgK1bqJuZmfWT3sx2UzfbWnrEdkS83ovjd2cn4M5G4MnHWAicBYyRtFIfH8/MzHqh1eDzd2BPSUPKGyStSLoI9e99UK8qW+RxoZcl3SnpG5LKgXB9YHrFvneQnjG0Xj/VzczMWtBqt9sJwCTgr5J+AczI6R8kjbG8Bxjbd9X7l4uBW0lTukcAuwOnAO8jTXZoGEG620LZ7ML2RUia28Oxh7ZaWTMz616rdzg4X9IBwLHAybzRzSbgBeCAiLigb6sIEXFAKWmypN8D/yXppIiYWczeXVF9XTczM2tdy9f5RMQpkv5AmmK9NinwPEC6yHReH9evOxOBLwMbA43gM4uK1g3pxqdQ0SqKiGHdHSS3jNz6MTPrQ726w0FEzAXO6+O6tKoxXlWctHAXadynbAPgNeCe/q6UmZn1rMcJB5KWlXSMpP16yPcNST+pmATQX/YgBZ5bCmmTgQ0kfbhQrzeRriW6IiLm11Q3MzPrRjMtn91Jz+jZuId8NwO/JM02a/qxCpI+n3/cKK83kzQSeCEi/lfSrsAOwCXAY6QutN2BHYHjI+KRQnHjgW8CkyR9n9TNdiCwGrBLs3UyM7P+1Uzw2YXUaritu0wRcZuky0itjFae6VPuvjsyr2cCawEPASOB40jjOQuBO4G9ImJiqQ4LJG0BHA/8GliBdPeEMT3V38zM6tNM8NmQdCPRZkwj3fOtaRHRbTddvqvB6BbKe5L0OG8zMxugmrnIdDjppqHNeIY3ZpaZmZlVaib4PEfq9mrGCGCx+76ZmZkVNRN87gI+02R5Y3J+MzOzLjUTfCYBoyXt0F2m/KyfMcCf+qJiZmbWuZoJPqcC9wPnSvqxpLWKGyWtJelo4FzgvpzfzMysSz3OdouIlyRtS7q55/eB70l6DpgPrASsTLrFzr3AdhGxoB/ra2ZmHaCpRypExP3Ah0kXbF4PvAq8g3TLmuty+kcj4oF+qqeZmXWQpu/tlls0J+fFzMys13rzJFMzM7Ml4uBjZma1c/AxM7PaOfiYmVntHHzMzKx2Dj5mZlY7Bx8zM6udg4+ZmdXOwcfMzGrn4GNmZrVz8DEzs9q1NfhIWkPSzyVdL+l5SSFpVBd5vyzp75IWSHpM0jGSVqjIt6qkiZKelfSCpOskbdLvJ2NmZk1rd8vnPcCupEdvX9lVJkm7A78HbgC2Bn4CfBOYUMq3Qi5nM+BbwE6kx4BfKekjfV99MzPrjabvat1Pro2ItwNI2hHYvpxB0rLA8cCFEbF/Tp4m6RVgnKSfRcRNOX0f4IPAhhHx17z/NcDdpIC1db+ejZmZNaWtLZ+IeL2JbB8nPTtoYin998ArwM6FtJ2AOxuBJx9jIXAWMEbSSktWYzMz6wvtbvk0Y/28nl5MjIgXJT1Q2N7IO62ijDuAZYH1gJuLGyTN7eH4Q1uqrZmZ9ajdYz7NGJHXsyu2zS5sb+TtKh+lvGZm1iaDoeXTEE2md5WvcltEDOvuoLll5NaPmVkfGgwtn1l5XdVqGc6iLZ1Z3eSD6laRmZnVbDAEn7vyuji2g6S3Au9m0bGgu8r5sg2A14B7+qOCZmbWmsEQfG4EngS+UkrfFVgemFRImwxsIOnDjQRJb8p5r4iI+f1cVzMza0Lbx3wkfT7/uFFebyZpJPBCRPxvRLwq6XvABEm/BP5ImrV2LPDHiLixUNx40sWnkyR9n9TNdiCwGrBLDadjZmZNaHvwAc4r/X5kXs8E1gKIiImSXgMOA74OPAv8BvhhcceIWCBpC9JFqb8GVgD+CoyJiNv6qf5mZtaitgefiFCT+c4EzmwiX1UXnZmZDSCDYczHzMw6jIOPmZnVzsHHzMxq5+BjZma1c/AxM7PaOfiYmVntHHzMzKx2Dj5mZlY7Bx8zM6udg4+ZmdXOwcfMzGrn4GNmZrVz8DEzs9o5+JiZWe0cfMzMrHYOPmZmVjsHHzMzq52Dj5mZ1W5QBB9JoyRFF8u6pbxjJN0o6SVJT0s6VdKwdtXdzMwWt1y7K9Ciw4BrS2kPN36QNAqYApwPHA6sBhwLrC/pUxHxej3VNDOz7gy24HNfRNzYzfbjgOnAFxuBRtITwFTgC8A5/V9FMzPryaDodmuGpNWBjYAzii2ciLgceBzYuV11MzOzRQ224HOqpFclzZN0saQNC9vWz+vpFfvdWdhuZmZtNli63eYBJwFXA7OB9YDvATdI2iwibgJG5LyzK/afDXy0qmBJc3s49tDeVNjMzLo2KIJPRNwO3F5Iuk7ShaRWzo+B0cXsXRXTT9UzM7MWDYrgUyUinpQ0Fdg+J83K6xEV2YdT3SIiIrqdhp1bRm79mJn1ocE25lO2DG+0aO7K66qxnQ2oHgsyM7M2GLTBR9I7gDHAjQAR8RhwK7CbpGUK+bYEVgcmtaOeZma2uEHR7Sbp98CDwF+BOcC6pAtO3wJ8v5D1MNI1PWdJGscbF5neBJxXZ53NzKxrgyL4kKZKfwn4FjCENL5zNXB0RPyrOy0irpK0HfAj4BLgOdLdDg6NiNfqrrSZmVUbFMEnIo4Bjmky76XApf1bIzMzWxKDdszHzMwGLwcfMzOrnYOPmZnVzsHHzMxq5+BjZma1c/AxM7PaOfiYmVntHHzMzKx2Dj5mZlY7Bx8zM6udg4+ZmdXOwcfMzGrn4GNmZrVz8DEzs9o5+JiZWe0cfMzMrHYOPmZmVjsHHzMzq52Dj5mZ1a7jgo+kFSX9QtITkl6SdKuk7dtdLzMze0PHBR9gMrAbcDiwLTADmCxpm7bWyszM/mW5dlegL+UAMxoYGxGTc9o0YB3gRGBKG6tnZmZZp7V8dgLmARc0EiIigInAupI+0K6KmZnZG5Q+mzuDpL+Q4s0mpfSPATcCX4yIc0vb5vZQ7FCAoUOHLlHdXliwcIn2t840ZIU3t7sKLHj11XZXwQagFZZbso6xefPmQfo8rmzkdFS3GzACuK8ifXZhe2/EvHnz5vdyX1tUI4rPa2stBoh5Cxe0uwr2Br83C/rg6/LKwOtdbey04APQXVNusW0RMawf62IljZamX3cbaPzerFenjfnMorp1MzyvZ1dsMzOzmnVa8LkLWE9S+bw2yOvpNdfHzMwqdFrwmQwMAz5XSt8DuDciZtRfJTMzK+u0MZ8pwDRgvKQRwEPAnsCmwA7trJiZmb2ho4JPRISkHaV03aoAAAjJSURBVIGf5GUY6Q4HYyPiorZWzszM/qWjrvOxgc8zimyg8nuzXp025mNmZoOAWz5mZlY7t3zMzKx2Dj5mZlY7Bx8zM6udg4+ZmdXOwcfMzGrn4GNmZrVz8LE+JelISSFpPUnnSJov6SlJp0kaWsg3RNKJkh6R9HJeHy/pLe2sv3UGSV/O78OPV2z7H0nPSVo5/76NpGty2guSrpS0UWmfd+f38xOSFub1pZLeU9c5dRoHH+svk4C7gbHAscCXgZ8B5LuOXwQcAJwKbAuMAw4ELpCkdlTYOsp5wBPA/sXE/OVmL+DMiJgvaR/gYuBx0nt0N2B54BpJGxR2nQK8m/QeHQN8C/gH6YFp1hsR4cVLny3AkaSH9h1USv8V8BIgYOuc54BSngNz+lbtPg8vg38B/htYAIwspH01v8fWB4YAc4BzS/u9FXgMOC//PjLvs0O7z6mTFrd8rL9cWPr9DmAFYFVg85x2ZinP6Xm9OWZL7lTSl519CmnfAK6NiOnAJ0g3Hz5T0nKNBXgZuBrYLO8zC3gAOE7SfpLWq+sEOpmDj/WXWaXfG4+EX4H0ZNmFETG3mCEi5uR8VU+jNWtJRDwFnAvsJ2mZPP6zIakVDumLEMAFwCulZTdSi4dIzZ8tgRuAHwEzJP1T0tGS3lzX+XSajnqkgg0as4A3SxpWDECS3ga8mcUDl1lvnQzsDnwW+BJpHGhy3vZsXu8P3NJdIRExk9yCkvS+XObhwOuk7j1rkVs+1g5X5fXupfTdS9vNlkhE3AzcBPwA2AUYFxGv5M03APOBdSPi1qqlizLvi4j/BmYC/17DaXQkt3ysHaYCVwAn5OnXNwMbk75BXgZc3sa6Wec5mTS++CppViUAEfG8pG8Dv5U0nNQimkXqjvsPUtfwEZI+lMs4F7g/l7MtsBZpJqf1goOP1S4iQtIOwFHAvqQZck8APwd+mPvYzfrKn4DfAedHxD+LGyLid5IeAQ4BxgNvAZ4CbgV+k7M9CTxIml69Bqmr7X5g34gYh/WKn+djZh1N0lhSABoVEde0uz6WOPiYWUeS9H5gTeDXwNMR8Yk2V8kKPOHAzDrVqaS7FzwN7NHmuliJWz5mZlY7t3zMzKx2Dj5mZlY7Bx8zM6udg4+ZmdXOwcesCZLeKunbkq6TNFvSK/kheVMk7ZXvhtybcvfKV9mbLVU8282sB/lplZcA7yPdFmgq6aaUbwdG5+X4iDi0F2VfDawVEWv1VX3NBgPfXsesG/nJlxcD6wA7R8SkUpZj8yOXN1ps5w6VnzQ7JCKeb3ddbPByt5tZ974GvB84sSLwABARt0TEKY3fJX1G0jmSHpT0kqS5kqZK2qy4n6SHSQ8sW1NSFJZRhTzvlXSGpCckvSzpYUnHSxpSroekzST9JR/zSUk/l/TBXOaRpbxDJP1U0gOSFub8p0tas5RvVN5/L0nflDSD9HTQ70q6UNILkhZ7lLSkjfN+R/T4CttSyS0fs+59Pq9buYHkXqQH5p1Oehzz6qQgdqWkzSPiupzv28BPSQ8tO6iw/90AkjYkPV5iLulq/cdJt/D/L+CTkjZrPB5A0qak7sA5wDF5n12AT5Yrl8enLsvb/gicCLyX9JTPz0j6j4h4rLTbt0kP+fv/pBttPkq6+ebngF1z/Yr2Id2Ac0IPr5Utrdr9HG8vXgbyQrrF/vwW9xlSkbYqaZxoSin9auDhLsr5O3APsFIpfScggL0KaTeTWiTrFNKWJz2zJoAjC+lfz2nHlcrdNqefUUgbldNmA28v5V8WeAS4uZT+VmBe+Vy9eCku7nYz697KpAeONS0iXmj8LGlFSSOA10gPNftYM2VI2gD4EPAH0lNfRzYW4HrgBeAzOe+qpDGnCyLiwUI9XiE9pqJsJ1Kr5Kelel8C/A3YQVL5s+H0iHi6lP814DRgo1zfhs+TXrfxzZyrLZ0cfMy6Nx9YqZUdJL1b0tmS5gDPkVo8zwDbAG9rspj18vpHed/i8jQwhNSaAlg7r++tKKcqbW3gnxExp2LbXaTzHVlKv6+Leo4nBdavFtK+mut4YRf7mHnMx6wH04FPS1qn2KroiqQVgWtJweEk4E5SAHod+D6wRZPHVV6fCFzaRZ45pbzNajU/wItViRHxqKRLgd0lHQq8C/g0cEK88bhqs8U4+Jh170+kD9OvAT9oIv+WwGrAPhHxu+IGSUdX5O/qQrt/5PVrEXFFD8dsBMX3V2yrSnsA+KykYRExt7TtA6TW3rM9HLNoHGm8aEfgIznNXW7WLXe7mXXvt6Suq+/mR38vRtKGkvbPv77WSC7l+QzV4z3PA2/L184U3U5qde0naZ2KYy4naThARDQe+7xDMa+k5YEDK455Pul//3ulMrcmBY8LI+L1qnPtwiWkmXj7AnsCN0TEPS3sb0sht3zMuhERL0rajvQBe76kqcDlpFlwqwCbA1sBx+VdridNRT5R0lqkqdYfBr5C6oIrDswD3AhsB/xS0p9JweuqiHha0ldIU63vkHQaaTzmrcB7gLGkbrwJuZzv5nr9WdIppNlmuwBvapxK4ZgTSEHisFzHa3OZ+wNP0VwLr/gavSbpd8DhOaml/W0p1e7pdl68DIaF9KF/ECm4zAFeIX1QX0IKLMsW8n6INE7TmHBwNfAp0od+lModQuqieooUeAIYVdi+JvAb4GHgZVLQu400U+3fSmVtQQpmC3J5Pye1tgI4tOK4PyV12b1MmiBwBrBmKd8oStO6u3h91sz1n0/FVHMvXsqL7+1m1sEk7Uy6kHTXiDi7H4/zTtKFp+MjYt/+Oo51Do/5mHUAJSuU0pYHvgO8Smp99advkC46beVOELYU85iPWWd4MzBT0u9JEyRGAF8kdQEeGxFP9sdBJX2JNL36EOCyiLitP45jncfdbmYdQNKypPuubQa8kzTb7l5gXBRuetoPxw3SGNN1wN4R8Xh/Hcs6i4OPmZnVzmM+ZmZWOwcfMzOrnYOPmZnVzsHHzMxq5+BjZma1c/AxM7Pa/R8WYmsBvNxgWgAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"category_bar_plot(vic_female_df, \"Victim a Female Breakdown\", 0)"
]
},
{
"cell_type": "code",
"execution_count": 145,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" count \n",
" category \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" 513 \n",
" no \n",
" \n",
" \n",
" 1 \n",
" 53 \n",
" yes \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" count category\n",
"0 513 no\n",
"1 53 yes"
]
},
"execution_count": 145,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"vic_police_df = get_value_counts(death_row, \"vic_police\")\n",
"vic_police_df"
]
},
{
"cell_type": "code",
"execution_count": 146,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 146,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ8AAAEtCAYAAADX4G3qAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deZgcVb3/8feHHQIkJlEQuBJBlCBBRXAXghCVNSQoiKwuXJCL1w1B7kWN/hQEjAuu5BoJiyCLDItE1oAgCggqS8IOAYFANMuEAGEJ398f5zSpVHpmuic91ZPJ5/U89dT0qVNVp3qq+9tnqSpFBGZmZlVapd0FMDOzlY+Dj5mZVc7Bx8zMKufgY2ZmlXPwMTOzyjn4mJlZ5Rx8VhCSZkq6fkXZ7opI0vWSZpbSpkhaIa9HkPQxSXdIel5SSBqd098u6VpJ83L6BEkjan+3t9T9m6RDi+9lL7cxIW9jRMsKtgJy8KmYpAvyiff2bvJI0iOS5ktauwX7nCBp7+XdTn9RCwiFabGk2ZIulfS+dpevL0jaIZ87T0p6MR/v1K7+r5LeDJwLdAJHAQcB90haDfgdsAXw9Zx+UTVH0TVJo0v/05C0SNLDkk6XNLLdZbTWWq3dBVgJTQY+BnwK+EIXeXYCRgCnRcTzOe0tQG9/gX8TOAO4uM6y5dluu30OWAisCYwCDgN2lbRLRPyxRfs4DDiiRdvqFUnfBf4HeJR0/jwCbAh8EuiQdBbwqYhYXFhtNOnz/cWI+FthW28GNgO+EhE/LaQLWBt4uW+PpkfnAlPz32sD2wCfBfaRNCoiHm1byaylHHyqdxXwT+AASV+NiBfr5PlUnk+uJUTEC31RmL7abkUujIh/115IuhG4EDgGaEnwiYiXgJdasa3ekPQZUuC5BhgbEc8Vlp1MOkcOBmYC3yisumGezy1tsm56pFudLGpZwXvvbxFxdjFB0gPAj4HxwA+7W1nSehHxTB+Wz1rEzW4Vi4hXgCnAMGCv8nJJ65M+ZHdHxF8L6XX7ZiS9IzfHPC3pBUn/lHSupM1r7fg56yHFJo3utltLk/Q2SddIWpibeb4vaTVJa+W/n8hNIzc02iwiaUtJP5c0XdIzkp6TdLukwxpZvwdX5vmbSvvcW9JN+TgW5r/HNljeun0+kjaUdGpuFnohvz9XSxpTyreFpLMkzcrNZTMlnSJpUAP7XgP4Dql298li4AGIiJeBw4HHgKMlvTavF8C3crZH8v+89n+uBeXTC+fDCHXT5yNpH0nX5Wbg5yTdl499jUIeSfpc/l8+l/+310naqafjbMCTef7qD7VieSXtl/f7PPCTQp7XS/qFpMfye/+kpEmSXlc6vo0kTZT0D6V+sEWSZkg6VtKqjRRQ0v/m8vxE0io5bRVJxyk1oS+SdJekA7rZxjaSOiTNKZThmGIZVKfPSdLq+bxeqjlf0nqSXpL080Ja7bO9paTL8/+pU9KFkjakQq75tMfpwPGkGs6FpWWfANahUOvpiqQ9SO33zwK/Ah4k/bL9CLA16dfyQcBZwI3ApCbKuAlwNXBeLuOHga8Ai4G3kppEvgcMB44GLpY0MgfX7owGdgB+T2o+GgR8HJgkaXhEnNhEGcu2yPNibehI4GfAvaQv8gAOzeU9PCKaeU9q2xwB3ARsAJwJ3EY6jvcAu5DeNyS9E5gGzAdOA54A3gb8N/B+STvmmlVX3k/6f/4mIv5VL0NELJJ0Nql2tBupefUg0g+YccCXSO/HQtJ5clPOO4l0TgD8C3htF8daa/KbQap1zAI2B/Yh1bRqAeEsYH/SuXI6qSn0AOBqSeMj4tJujrNoHUnD899rk87j7+Zj+F2d/HuT3s9fAL8EFuRyvwH4C7AG6bP0EOlHyeeAnSRtFxGdeRvbkN6vjpxvdWBX0vm9GSnA15UDzU/zdo+LiO8VFv+A1LR+A+m9ex3pXHy4zna2I/0weCnneQrYEziJdM7Ugta1eb4zcH3++92k8++VnP6PnL4D6Tt+Wml3G+d1O4Cv5u0fDqxP+pxXIyI8tWEinUQvAxuV0v8CvAAML6XPBK4vvF6H9KUxG9i4zvZXKfwdwJQuyrHUdgtpAXy8lH476QS/BFAh/b9z/o80cNyD6pWV9GHoBFZvYBtT8v7eTAp+GwEfBabn9MNzvteQvnQfBNYvrL8+6UvmGWBIIf16YGa9fZXSpnZ1vKX3/Q5S0FuvlGdcXv/QHo7z8znfl3vIt0/O9/1C2oScNqKUd3S9fZP6GAOYUEh7V06bBqxVyq/aOVA4nv8s5VmNFJgfKZ4vXRxDrVz1punAll2U9yVgZJ3tXUL6bGxSSt+O9LkrHufa9cpHCqiLgdcX0g7N+x2d1+sgBeCDS+u+hfRZuRZYtZC+bU5f6n9D+lHwMrBN6T0+P+fduZD+IHBT4fU3SN8FfwCmFtIn5n0NL6TNzNvbt1Ten+X0LcvvQ19NbnZrn8nAqqRfqUBqkiL9er40Cn0ZXfgI6Yt3YkQ8UV4YPddAevJERFxQSvsT6QPxk8hnbFb7Bb0FPYiIZ2t/KzXfDQOGkvrC1ge2bKKM95E+dE+QPngbAV+LiNPy8jGkX4SnRsSCQhkWkJpn1iXVVBomaSgp0F0REVeWl9fed0mjSL+ozwHWlDS8NpHex2fp+Vfm+nne2W2uJcsHN3YUDav92j4uIpbqD4osvzyQFMgvLh3nEOAyUqDo8dzIJpH+b2NIv/yPJZ3nUyVtWif/5RFxTzFB0mBgD+BSYFGpTDNJX96vvvcR8XztWCStIWloznsl6YfRdnX2O5RUw90F2DMiziwtH0v6rPwgCgNBIg3+uLpU3tcB7yN97u8s5A3ghPxyXGGVacD2ktbNrz8EXEdq6figpNVz+k7AnXW+S56MiPNLabXa0ZuoiJvd2uciUnPMp0hVa4BP5/mvG1i/9mH+e4vLVfNInbR5XSyrpQ/raaP5AzMB2Bf4jzpZXtNg+SD94l9A+nU6B7gnlm7GemOeT6+z7t15vlkT+4P04RQ9v++1PrBvsaT/pWyDHrZRC5g9BZVGg1SztiD9Gr6jh3wjgfWAp7vJswFwfwP7fCAirim8/r2kPwI3kz4nnyjlr7fNt5CCxmfyVM+rTV9Kw8+/Rhq4Ufv/FtU7J6eQfrzsEBF/qrO8dl7dW2fZDJb+4dHdeTqDVHspnqfTSKMwP5j78d4DfBG4Bfg+8C5JM0jNaT+us81lmv1Inx9o4DPcKg4+bRKprf4c4Eila1NuIdWCHifVAnpS+4D01TDpxb1YVv7Q1nMO6VfpJFJb+FxSc8NupP6JZmrjN/RQQ2ykPM1q9H2v5ZsIXNFFnnldpNfUAuS2PeSrLb+rh3zNEo2dXyLVQD/ZTZ67u1nWrYi4RVIn6Rd+2XN10mrv/dmkPrB6ni/8/QNSE+d5pP6l2aTmvG1JAa/eOXke6YfjNySNjSWXRJTLUO/9K5+XzZ6ntVrKh3I518xpD5CCyM6kYL8Ky/b3QPef7b74zNTl4NNek4EjSSfxUFLn8ndj6es1unJfnr+DUjW+v5I0hBR4zoqII0rLmmr+atBDef5WlnTU1myV5/V+BXbnAdIXyjsayAewuPRLvhl/JtUmxubBGMsEWklrkZq9FpGaHlvpPlIT4zbArd3ke4DU/3ZzRCxscRlqViN9yTbiQdL/aI0G3/uDSD9klqpVSequCeo3pHPqLFLtbM9YejRi7dwbybLnWHlkaG35W+vsZ0tSEHl1GxExW9J0UpB5GXg8Iu7PZb4+p7+WFGRu6OYY2sp9Pm2U23//AexHugo9SCOFGnEVaQTQVyS9vrxQUvEXzEJScGu3WlBd6tdVLv9n+2B/V5P6Vj4vab3C/tYj/dJdSJOBOyLmkr7kd60XMAvv+99Jv/aPkLRM057SkPVu/yeRrsH6Bql552yV7naRh+D+HNgUOCUiZjdzLA04J89PkLTMF3/hWM8kfZfUHakoqafmxW4pDV8fRBrw0qOImEMaFDJe0nvqbE/Kw9KzxSx7Tg4i1cS7289vSSP8Pgj8odAHA6m/KYAvl4ZKb0upnzH/3/4M7Clp62I5gePyy47S7qeRmtXGsXTtZhqpGW5X4LZiX2d/45pP+00mdX5/hDTq7KEe8gMQEc8pXYB4IXC3pNpQ69fmbf2ANOIHUnv5LpKOJV0TEvmDU6mIeEbSVcCBStdk/JX0xXk4qR+ppe3NETFf0jGkkTy3SJqSFx1Kats/PJYMt23GUaQviz9IOoP0pbg2acjrTODYiAhJB5G+DO6U9GtSm/46ed/jSV8sU5bZ+tLHMEnS5qQLZ2dIOjPvY0PSF98oUvNSV/1KvRYRt0o6idTpf7uk80hDgN9IukvHu4D5EXGhpNOBo/KX6+9JP4w2Ad5LOt5G+9a2lXRg/ntNUm3gMFLz0vFNFP9zpIEdN+T37O+kALkZaTDAmaS+R0ifocPz8V1DarL6NEv6QbqUj/0l0qi0KyXtGhELIuJeST8jnSvTJP2ONNT6KFIfWrnm/AXSUOsb83pPkVoJPgKcExHlmvs00g+ot7B00J9GGl6+eS5T/1XVsDpP9SdSZ+bzpF9JB3WTbyalIdE5/V2k2+b8mzRE+zHSL9bNCnm2INWUFuT9RHfb7WZfE6g/fHcEpWG63RzHcNI1SU+SmoruIn25HJq3MbqBbUzJeYf3lDfnH0cKFs/m6c/A3nXyXU8DQ61z+sak60oeIw21fTq/xzuX8m2a883M+eaQgtWJwH80cZ6MJl3nMitvpza0dlwX+bv6X42mwaHWhWX7k4YCP5Pfv3uBH5GatYr5DiKNfFyQ/7czSQNr9mvw+MpDrBeT+l8uArZv9pzL59oppEEJi0gDfO4idcJvVci3Ts73aM73AGkAws7l96qr8xTYPa97M3n4PinY/W/e7gukmvAB3fxv3kb6LM/N+e8h/ehYtc6xDSE1uUX5PCL1GwewSxPfI3XPi76cauP0zczMKuM+HzMzq5yDj5mZVc7Bx8zMKufgY2ZmlfNQ6x5IepkUpPvteHkzs35ofeCViKgbZzzarQeSXgE0eHCr79loZjZwdXZ2QrpMoW4Lm2s+PVswePDgwfPnz293OczMVhhDhgyhs7OzyxYj9/mYmVnlHHzMzKxyDj5mZlY5Bx8zM6ucg4+ZmVXOwcfMzCrn4GNmZpVz8DEzs8q17SJTSaOB67pYPDIi7i3kHQP8P9LDlp4hPVL22IhY6srP/BjbE4CPkx62NB34dkRc2vIDaNJux/+w3UWwfmjqd7p9UrPZgNUf7nBwLHBDKW1m7Y8cpKaSnvB3PLARcBKwtaQPRsQrhfU6gG1JT/97hPTUwQ5Je0bE1D4qv5mZNak/BJ/7I+LmbpafTHr87H61QCNpFumRxR8HzstpuwG7AOMjoiOnXUd6ZvtEUgAzM7N+oF/3+UjaGNgeOKtYw4mIq4EngH0K2ccBncAlhXwBnAFsKWmrSgptZmY96g/B5zRJL0vqlPR7Se8sLNs6z++us95dheW1vDNKzXAAd5a2tRRJ87ubAN/O2sysxdoZfDqBHwH/CewEfBXYCrhJ0rtznmF5PrfO+nMLy2t5u8pHKa+ZmbVR2/p8IuLvwN8LSTdKupRUy/kuqf/m1exdbaaH1z0ui4gh3ZXTtR8zs9brD81ur4qIp0gDCd6Tk+bkeb1ay1CWrunM6SYf1K8VmZlZG/Sr4JOtwpJayvQ8r9dfM4ql+4KmAyMllY9pVJ7X6zcyM7M26FfBR9KGwBjgZoCIeBy4DTigGFQk7QxsDFxUWL2DdGHpnqXNHgzcFxEz+rDoZmbWhHbe4eA3wMPA34B5wJakC07XBo4rZD2W1BR3rqRJLLnI9BbggkK+qaQ7JkyWNIx0kekhwAeAsX16MGZm1pR2XmR6F/AJ4PPAIFKfzfXAdyLi1SayiJgmaQ/gW8DlpNvrXAwcExGLC/lC0t6k2+ucQKoFzSBddHpZJUdkZmYNaedot+8B32sw7xXAFQ3kWwAclSczM+un+lWfj5mZrRwcfMzMrHIOPmZmVjkHHzMzq5yDj5mZVc7Bx8zMKufgY2ZmlXPwMTOzyjn4mJlZ5Rx8zMyscg4+ZmZWOQcfMzOrnIOPmZlVzsHHzMwq5+BjZmaVc/AxM7PKOfiYmVnlHHzMzKxyDj5mZlY5Bx8zM6ucg4+ZmVXOwcfMzCrn4GNmZpVz8DEzs8o5+JiZWeUcfMzMrHIOPmZmVrl+FXwkTZAUkv5RZ9kYSTdLel7SbEmnSRpSJ9+6kk6VNCvnvU3SXtUcgZmZNaLfBB9JbwWOBZ6us2w0MBX4J7AncDSwF3C5pPIxdAAHAMcDuwMzgA5Ju/VZ4c3MrCmrtbsAADmATAZ+BYwCyjWak4G7gf0i4pW8zizgKuDjwHk5bTdgF2B8RHTktOuAzYCJpABmZmZt1l9qPl8CNgH+t7xA0sbA9sBZtcADEBFXA08A+xSyjwM6gUsK+QI4A9hS0lZ9UnozM2tK24OPpM2AbwNHRcSCOlm2zvO76yy7q7C8lndGMUhld5a2ZWZmbdTWZjdJAv4PuDIiLu4i27A8n1tn2Vxg21Le+7vIV9xWsQzzeyjm4B6Wm5lZk9rd53MYsB3QSHNYNJjeVb6elpmZWUXaFnwkDScNJDgReLYwbHo1YNX8ehEwJ6cvU2sBhrJ0jWhON/mgTu0pIpYZrl0q53xc+zEza6l29vlsQvpSPxGYV5jeT+qbmQdMAKbn/PX6a0axdF/QdGBkneHXo/K8Xr+RmZlVrJ3B50FgpzrTHcBD+e9JEfE4cBtwQDGoSNoZ2Bi4qLDNDtIw7T1L+zoYuC8iZvTNoZiZWTPa1uwWEQuB68vptQEAEVFcdizpmp5zJU0CNgJOAm4BLijkmwpcB0yWNAx4BDgE+AAwtuUHYWZmvdL2odaNiIhpwB7ACOBy4Ad5vmtELC7kC2Bv4LfACcAfgG1IF51eVnGxzcysC+0e7baMiBjdRfoVwBUNrL8AOCpPZmbWD60QNR8zMxtYHHzMzKxyDj5mZlY5Bx8zM6ucg4+ZmVXOwcfMzCrn4GNmZpVz8DEzs8o5+JiZWeUcfMzMrHIOPmZmVjkHHzMzq5yDj5mZVc7Bx8zMKufgY2ZmlXPwMTOzyjn4mJlZ5Rx8zMyscg4+ZmZWOQcfMzOrnIOPmZlVzsHHzMwq11TwkfSwpL26Wb6HpIeXv1hmZjaQNVvzGQGs283yQcCmvS6NmZmtFFrd7LYB8FyLt2lmZgPMaj1lkLQDMLqQNF7Sm+pkHQp8AvhHa4pmZmYDVY/BB9gJ+Gb+O4DxearnQeBLLSiXmZkNYI0Enx8BUwABDwNfBC4p5QlgYUTMbWnpzMxsQOqxzyciOiPi0YiYSaoF/Ta/Lk6PNRt4JL1P0pWSnpC0SNK/JE2TtGudvGMk3SzpeUmzJZ0maUidfOtKOlXSrJz3tu5G55mZWXs0NeAgIv4YEbNbtO/XAPcBXwE+Cvwn8AIwVdInapkkjQamAv8E9gSOBvYCLpdULn8HcABwPLA7MAPokLRbi8psZmYt0Eiz21IkvQE4HNgCGEZqjiuKiNi5p+1ExOXA5aVtXwY8QgpEv83JJwN3A/tFxCs53yzgKuDjwHk5bTdgF2B8RHTktOuAzYCJpABmZmb9QFPBJzeJdQBrAM8ALe3jiYiXJXUCL+X9bQxsD3ylFnhyvqslPQHsQw4+wDigk0J/VESEpDOASZK2iogZrSyvmZn1TrM1nxOBfwN7R8RtrShAbjpbBXgdqUb1ZlLTGsDWeX53nVXvKiyv5Z1RDFLZncXldfY/v4ciDu5huZmZNanZi0y3BH7UqsCTnU+q6TxBGkm3b0RckZcNy/N6Nay5heW1vF3lo5TXzMzaqNng8y/gxRaX4RjgXaRBBFOB8yXtX8oTXaxbTu8qX5fLImJIdxOpKc/MzFqo2eBzFqmfpWUi4uGI+GtEXBYR+wNXAj/LzXFzcrZ6tZahLF3TmdNNPmhx/5SZmfVes8FnCrCGpEskfUjSGyW9oTwtZ5luJQ3Dfi0wPadtXSffKJbuC5oOjKwz/HpUntfrNzIzszZodsDBvaTmKwF7dJNv1d4URpJI95GbD8zJo99uAw6Q9KPCUOudgY2BiwqrdwCfIV0LVLwDw8HAfR7pZmbWfzQbfL5N9/0qDZP0G+BR4HbSCLrXA4cAHwI+HxEv56zHkq7pOVfSJGAj4CTgFuCCwianAtcBkyUNI10vdAjwAWBsK8psZmat0VTwiYgJLdz3X0h3IzicNJy5E7gN2CsiLivsc5qkPYBvkS5KfQa4GDgmIhYX8oWkvYET8jSENLR6fHF7ZmbWfk3f4aBVIuKnwE8bzHsFcEUD+RYAR+XJzMz6qWbvcLBDI/ki4obeFcfMzFYGzdZ8rqexPp9eDTgwM7OVQ7PB51NdbGNz4FBgJnDa8hXJzMwGumYHHJzR1TJJpwB/W+4SmZnZgNfsRaZdioh5wK9It8sxMzPrUsuCTzaP9PwcMzOzLrUs+EhaCzgIeKpV2zQzs4Gp2aHWv+5i0VDgvaT7sX11eQtlZmYDW7Oj3Q7tIn0ucD/wpYg4Z7lKZGZmA16zo91a3UdkZmYrIQcTMzOrXK/u7SZpfWAXloxsexi4OiKeaVXBzMxs4Go6+Ej6LDARWJf0XB9It9xZKOnLETG5heUzM7MBqNnRbnsBk0g1nW+w5OmgbwU+D0ySNNuPMDAzs+40W/M5BrgHeHdELCykXyvpdOBm0sPfHHzMzKxLzQ44eBswpRR4AMj9PWfkPGZmZl3qzWg3dbOsJY/YNjOzga3Z4HMHcIikQeUFktYlXYR6RwvKZWZmA1izfT7fBy4C/ibpVGBGTq8NOHgTML51xTMzs4Go2TscXCzpKOAk4CcsaWYT8CxwVERc0toimpnZQNP0dT4R8XNJ5wBjgDeSAs9DpItMO1tcPjMzG4B6dYeDiJgPXNDispiZ2UqixwEHklaV9D1JR/SQ73OSTpDU3Wg4MzOzhka7HUh6Rs9fe8h3K+kC0/2Xt1BmZjawNRJ89gWuiYjbu8uUl1+Jg4+ZmfWgkeDzTuCaBrd3HbBd74tjZmYrg0aCz1BgdoPb+1fOb2Zm1qVGgs8zwPAGtzcMWOa+b/VI2lnSFEn3SXpO0uOSLpI0qk7eMZJulvS8pNmSTpM0pE6+dSWdKmlWzntbvhO3mZn1I40En+nAhxvc3picvxFHAG8AfgjsCnw5v/6rpPfUMkkaDUwF/gnsCRwN7AVcLqlc/g7gAOB4YHfSHRg6JO3WYJnMzKwCjVzncxEwUdLY7u5ekGsYY0hBpBH/FRFLNedJugp4hDS6bp+cfDLpuUH7RcQrOd8s4Crg48B5OW030tNVx0dER067jvS01YmkAGZmZv1AIzWf04AHgfMlfVfSiOJCSSMkfQc4H7g/5+9ROfDktPnAA8AmedsbA9sDZ9UCT853NfAESwIUwDigE7ikkC9Ij3nYUtJWjZTLzMz6Xo/BJyKeJzVhPQIcBzwkab6kxyTNI91a53/y8j0iYlFvCyPptcDWLHlC6tZ5fned7HcVltfyzigGqezO0rbMzKzNGrq9TkQ8KOntwGHAx0h3sd4QWADcCPwO+FUOVL2S74wwiRQQv5+Th+X53DqrzAW2LbweRqp51ctX3FZ5v/N7KNrgHpabmVmTGr63W67R/CRPfeEUYG/gUxFxT3n3XRWrwXw9LTMzswr16sairSbpu8BXgC9ExJTCojl5Xq/WMpSla0RzuskH9WtPRMQyQ7ZLZZuPaz9mZi3Vm8dot5Skb5P6jI6JiFNLi2vDtuv114xi6b6g6cDIOsOva9cN1es3MjOzNmhr8JH0TeDrwNcj4pTy8oh4HLgNOKAYVCTtDGxMGgZe0wEMIV0LVHQwcF9EzMDMzPqFtjW7SfoKMAH4PXBN8cJS4IWI+Hv++1jSNT3nSpoEbER6kuotLP1Moamke8tNljSMNPruEOADwNg+PBQzM2tSO/t8ajWUPfJU9CgwAiAipknaA/gWcDnpdj8Xk5rpFtdWiIiQtDdwQp6GkO5wMD4iLuvD4zAzsya1LfhExOgm8l4BXNFAvgXAUXkyM7N+qu0DDszMbOXj4GNmZpVz8DEzs8o5+JiZWeUcfMzMrHIOPmZmVjkHHzMzq5yDj5mZVc7Bx8zMKufgY2ZmlXPwMTOzyjn4mJlZ5Rx8zMyscg4+ZmZWOQcfMzOrnIOPmZlVzsHHzMwq5+BjZmaVc/AxM7PKOfiYmVnlHHzMzKxyDj5mZlY5Bx8zM6ucg4+ZmVXOwcfMzCrn4GNmZpVz8DEzs8q1NfhI2kTSjyX9SdJCSSFpdBd5PynpDkmLJD0u6XuS1qqTbwNJZ0j6t6RnJd0o6X19fjBmZtawdtd83gTsDywEru0qk6QDgd8ANwG7AicA/wVMKeVbK29nR+DzwDjgGeBaSe9offHNzKw3Vmvz/m+IiNcBSNob2KucQdKqwCnApRFxZE6+TtJLwCRJP4yIW3L6p4G3Au+MiL/l9f8I3EMKWLv26dGYmVlD2lrziYhXGsj2HmBD4IxS+m+Al4B9CmnjgLtqgSfv4wXgXGCMpPWWr8RmZtYK7W52a8TWeX53MTEingMeKiyv5V0qX3YnsCowsi8KaGZmzWl3s1sjhuX53DrL5haW1/J2lY9SXgAkze9h/4N7KqCZmTVnRaj51ESD6V3l62mZmZlVZEWo+czJ82GFv2uGAo+U8i5Tu8n5oE6tKCKGdLfzXDNy7cfMrIVWhJrP9Dwv9u0gaR1gc5bu45lezpeNAhYD9/ZFAc3MrDkrQvC5GXgKOKiUvj+wOnBRIa0DGCXp7bUESWvkvNdExII+LquZmTWg7c1ukj6W/9w+z3eUNBx4NiL+EBEvS/oaMEXST4ELSaPWTgIujIibC5ubTLr49CJJx5Ga2b4AbATsW8HhmJlZA9oefIALSq8n5PmjwAiAiDhD0mLgWOAw4N/AL4FvFleMiEWSPkS6KPUXwFrA34AxEXF7H5XfzMya1PbgExFqMN/ZwNkN5KvXRGdmZv3IitDnY2ZmA4yDj5mZVc7Bx8zMKufgY2ZmlXPwMTOzyjn4mJlZ5Rx8zMyscg4+ZmZWOQcfMzOrnIOPmZlVzi9zCxwAAAqeSURBVMHHzMwq5+BjZmaVa/uNRc2svb566dXtLoL1Q6fsNaZPt++aj5mZVc7Bx8zMKufgY2ZmlXPwMTOzyjn4mJlZ5Rx8zMyscg4+ZmZWOQcfMzOrnIOPmZlVzsHHzMwq5+BjZmaVc/AxM7PKOfiYmVnlHHzMzKxyDj5mZla5ARd8JK0r6VRJsyQ9L+k2SXu1u1xmZrbEgAs+QAdwAHA8sDswA+iQtFtbS2VmZq8aUE8yzQFmF2B8RHTktOuAzYCJwNQ2Fs/MzLKBVvMZB3QCl9QSIiKAM4AtJW3VroKZmdkSSt/NA4Okv5DizftK6e8Gbgb2i4jzS8vm97DZwQCDBw9errI9u+iF5VrfBqZBa63Z7iKw6OWX210E64fWWm35GsY6OzshfR/XreQMqGY3YBhwf530uYXlvRGdnZ0LermuLa0WxTvbWop+ovOFRe0ugi3hc7OgBT+X1wde6WrhQAs+AN1V5ZZZFhFD+rAsVlKrafp9t/7G52a1Blqfzxzq126G5vncOsvMzKxiAy34TAdGSiof16g8v7vi8piZWR0DLfh0AEOAPUvpBwP3RcSM6otkZmZlA63PZypwHTBZ0jDgEeAQ4APA2HYWzMzMlhhQwSciQtLewAl5GkK6w8H4iLisrYUzM7NXDajrfKz/84gi6698blZroPX5mJnZCsA1HzMzq5xrPmZmVjkHHzMzq5yDj5mZVc7Bx8zMKufgY2ZmlXPwMTOzyjn4WEtJmiApJI2UdJ6kBZKelvRrSYML+QZJmijpMUkv5vkpktZuZ/ltYJD0yXwevqfOsh9IekbS+vn1bpL+mNOelXStpO1L62yez+dZkl7I8yskvamqYxpoHHysr1wE3AOMB04CPgn8ECDfdfwy4CjgNGB3YBLwBeASSWpHgW1AuQCYBRxZTMw/bg4Fzo6IBZI+DfweeIJ0jh4ArA78UdKowqpTgc1J5+gY4PPAA6QHpllvRIQnTy2bgAmkh/Z9qZT+M+B5QMCuOc9RpTxfyOkfafdxeFrxJ+AbwCJgeCHtM/kc2xoYBMwDzi+ttw7wOHBBfj08rzO23cc0kCbXfKyvXFp6fSewFrABsFNOO7uU58w83wmz5Xca6cfOpwtpnwNuiIi7gfeSbj58tqTVahPwInA9sGNeZw7wEHCypCMkjazqAAYyBx/rK3NKr2uPhF+L9GTZFyJifjFDRMzL+eo9jdasKRHxNHA+cISkVXL/zztJtXBIP4QALgFeKk0HkGo8RKr+7AzcBHwLmCHpSUnfkbRmVccz0AyoRyrYCmMOsKakIcUAJOk1wJosG7jMeusnwIHAR4FPkPqBOvKyf+f5kcBfu9tIRDxKrkFJenPe5vHAK6TmPWuSaz7WDtPy/MBS+oGl5WbLJSJuBW4B/gfYF5gUES/lxTcBC4AtI+K2elMX27w/Ir4BPAq8rYLDGJBc87F2uAq4Bvh+Hn59K/Au0i/IK4Gr21g2G3h+QupffJk0qhKAiFgo6YvAryQNJdWI5pCa47YjNQ1/XdI2eRvnAw/m7ewOjCCN5LRecPCxykVESBoLfBs4nDRCbhbwY+CbuY3drFV+B5wOXBwRTxYXRMTpkh4DvgpMBtYGngZuA36Zsz0FPEwaXr0JqantQeDwiJiE9Yqf52NmA5qk8aQANDoi/tju8lji4GNmA5KktwCbAr8AZkfEe9tcJCvwgAMzG6hOI929YDZwcJvLYiWu+ZiZWeVc8zEzs8o5+JiZWeUcfMzMrHIOPmZmVjkHH7MGSFpH0hcl3ShprqSX8kPypko6NN8NuTfbPTRfZW+2UvFoN7Me5KdVXg68mXRboKtIN6V8HbBLnk6JiGN6se3rgRERMaJV5TVbEfj2OmbdyE++/D2wGbBPRFxUynJSfuTy9susPEDlJ80OioiF7S6Lrbjc7GbWvc8CbwEm1gk8AETEXyPi57XXkj4s6TxJD0t6XtJ8SVdJ2rG4nqSZpAeWbSopCtPoQp4tJJ0laZakFyXNlHSKpEHlckjaUdJf8j6fkvRjSW/N25xQyjtI0omSHpL0Qs5/pqRNS/lG5/UPlfRfkmaQng56tKRLJT0raZlHSUt6V17v6z2+w7ZScs3HrHsfy/NmbiB5KOmBeWeSHse8MSmIXStpp4i4Mef7InAi6aFlXyqsfw+ApHeSHi8xn3S1/hOkW/j/N/B+STvWHg8g6QOk5sB5wPfyOvsC7y8XLvdPXZmXXQhMBLYgPeXzw5K2i4jHS6t9kfSQv/8j3Wjzn6Sbb+4J7J/LV/Rp0g04p/TwXtnKqt3P8fbkqT9PpFvsL2hynUF10jYg9RNNLaVfD8zsYjt3APcC65XSxwEBHFpIu5VUI9mskLY66Zk1AUwopB+W004ubXf3nH5WIW10TpsLvK6Uf1XgMeDWUvo6QGf5WD15Kk5udjPr3vqkB441LCKerf0taV1Jw4DFpIeavbuRbUgaBWwDnEN66uvw2gT8CXgW+HDOuwGpz+mSiHi4UI6XSI+pKBtHqpWcWCr35cA/gLGSyt8NZ0bE7FL+xcCvge1zeWs+RnrfJjdyrLZycvAx694CYL1mVpC0uaTfSpoHPEOq8fwL2A14TYObGZnn38rrFqfZwCBSbQrgjXl+X53t1Et7I/BkRMyrs2w66XiHl9Lv76Kck0mB9TOFtM/kMl7axTpm7vMx68HdwA6SNivWKroiaV3gBlJw+BFwFykAvQIcB3yowf0qzycCV3SRZ14pb6OazQ/wXL3EiPinpCuAAyUdA7wB2AH4fix5XLXZMhx8zLr3O9KX6WeB/2kg/87ARsCnI+L04gJJ36mTv6sL7R7I88URcU0P+6wFxbfUWVYv7SHgo5KGRMT80rKtSLW9f/ewz6JJpP6ivYF35DQ3uVm33Oxm1r1fkZqujs6P/l6GpHdKOjK/XFxLLuX5MPX7exYCr8nXzhT9nVTrOkLSZnX2uZqkoQARUXvs89hiXkmrA1+os8+LSZ/9r5W2uSspeFwaEa/UO9YuXE4aiXc4cAhwU0Tc28T6thJyzcesGxHxnKQ9SF+wF0u6CriaNArutcBOwEeAk/MqfyINRZ4oaQRpqPXbgYNITXDFjnmAm4E9gJ9K+jMpeE2LiNmSDiINtb5T0q9J/THrAG8CxpOa8abk7Rydy/VnST8njTbbF1ijdiiFfU4hBYljcxlvyNs8Eniaxmp4xfdosaTTgeNzUlPr20qq3cPtPHlaESbSl/6XSMFlHvAS6Yv6clJgWbWQdxtSP01twMH1wAdJX/pR2u4gUhPV06TAE8DowvJNgV8CM4EXSUHvdtJItf8obetDpGC2KG/vx6TaVgDH1NnviaQmuxdJAwTOAjYt5RtNaVh3F+/Pprn8C6gz1NyTp/Lke7uZDWCS9iFdSLp/RPy2D/fzetKFp5Mj4vC+2o8NHO7zMRsAlKxVSlsd+DLwMqn21Zc+R7rotJk7QdhKzH0+ZgPDmsCjkn5DGiAxDNiP1AR4UkQ81Rc7lfQJ0vDqrwJXRsTtfbEfG3jc7GY2AEhalXTftR2B15NG290HTIrCTU/7YL9B6mO6EfhURDzRV/uygcXBx8zMKuc+HzMzq5yDj5mZVc7Bx8zMKufgY2ZmlXPwMTOzyjn4mJlZ5f4/uNowhf/KZwAAAAAASUVORK5CYII=\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"category_bar_plot(vic_police_df, \"Victim a Police Office Breakdown\", 0)"
]
},
{
"cell_type": "code",
"execution_count": 147,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" count \n",
" category \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" 245 \n",
" 35-45 \n",
" \n",
" \n",
" 1 \n",
" 188 \n",
" 18-34 \n",
" \n",
" \n",
" 2 \n",
" 133 \n",
" 45+ \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" count category\n",
"0 245 35-45\n",
"1 188 18-34\n",
"2 133 45+"
]
},
"execution_count": 147,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"age_df = get_value_counts(death_row, \"age\")\n",
"age_df"
]
},
{
"cell_type": "code",
"execution_count": 148,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 148,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ8AAAEtCAYAAADX4G3qAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deZgcVb3/8feHXRJIIEFkURaVRUBRRL2KElYviBBAUQQlCKggiKACeuES+SGrXAFXUDSAyKaERZDdyKJhR/adgOxLNgKEJXx/f5zTpFKpnumezFTPTD6v56mnZ06dqjpdVV3fOqdOVSkiMDMzq9MCnS6AmZnNfxx8zMysdg4+ZmZWOwcfMzOrnYOPmZnVzsHHzMxq5+BjfUbSOEmDoi+/pJGSTpP0lKSQNKHTZepvJE3yemmNpAmSJs3jPAb0+nbw6SFJS0mamQ9EO3e6PD0habSksS3mHZu/ayvDuL4teUccB3wJ+A3wVeAnzTJKWrmFdbRiXQXvTXk/GN3pcjTTOOEpDVMk3S7pAEnv6HQZLVmo0wUYwHYCFgEeBXYD/tjZ4vTIaGAXYGwLec8DHiql/Sx/7ldKfzh/7gF8q6eF62c2Ay6LiMPamOYK4LQm4ybPe5E64lDgVOD8inGrA/2lprsnMCP/PQLYBjga+FT+2zrMwafndgP+DlwAHC/pvRHxcDfTDFgRcQdwRzFN0uF5XGXgjYg3gDf6vnS1eBftB4wHmq2bwSgiXut0GQr+HBEvNP6RdCJwE7C1pKUiYkqzCSUtDCwYETNrKOd8y81uPSDpI8C6pDPAM0gH2F2b5F1Q0iGSHsvNdHdI+lKhGWvlUv7lJP1a0uOSXs/XGE6W9M4Wy/ax3PTwgKRXJL0k6XpJ25byTSDVeig1UYxpb210WZa5rvkUmkVG5L9fyGU8X9K7cp5vSLo3r6/7JFWeqeb1eF2e/hVJN0j6QhvlGyLpSEkPS3pN0jP5us5KhTxj83cQsEtvrydJe+X5HVJKX17S83k9LF5IX1TSjyTdndfPVEkXSfpwxbwlaY+8Xmbk4U5JhxXyVO6Hedzb1xQaTYl5VHE9RFX+0nxG532wUYbrq7ZpY3pJa0i6OG/XaZL+3Ng3eirSc8Seyf++fUJU+P5rSfo/SU8AM4FPFPJsKunyvK4bv+G5avSSNpd0tqRHJL2a818uacNWyph/E//K33mTQvq7JZ2T06fn7f3eLuazu6Rbcxmm5TJsUMoz1zUnSV/J6+L2UvqeOf1j+f9Rjd+ApF3zvvia0jHugFa+KwAR4aHNAfglqUo/JP9/HvAfYIGKvL8mNUVcDewDHAa8CNyc01cu5H0P8CTwPHAUqdnqaGA68CAwrIWyHQlMBA7P0x8E3JuX9ZVCvs2Aa3L6zoVh1TbWwyRgUhfjx5F/9+U00lnoeGAv4P+AN4F/AT/I3/Ug4LvAI6SDxSql+Rye5/O3nO87pJpoAN9uoewLAdfl/OfmcvyMdOB5Blgx5/tgXi+R11e36wlYOef/HTCyYhheyv+X/P03yP8vkPeXmcCHCvkWzt/xtTzvPfN6ehh4Bfhoab5/zOWYCPww5z8BuKeQZ2x5Pyxt3wn57yFN1sPOVfkLaXvlae7NZT2wsD9+o2J5D+b1/2tSk+2vgbeAy1vcJxv712qF9b0a8P28jv9Yyt/4/reT9r/98v60eh7/jbz8f5L2zb1I+20Ax5bm9SdSU+tYYHdSE+V/8nI/Xco7gcJvJ+8z9wNPAesW0oeTmvbfBH6Rl3828DjpOFFe30fnst2Qv8v/Ak+QfkNbFvL9b8733kLa74BZ+fsuU0g/F5hGqg0CjGL2fvUocDCwd/5/juNMl9uq1QONh7c3xGKk5pdxhbRt8krfopR3rZx+KYXABKyTN3I5+FwAPEc+8BXSP5p3vrEtlG9IRdriece+p5Q+jlJwaHNdTKLnweeXpfT/y+mPA0sW0j+Y048spH0kpx1RsczzScF6iW7KvkeexzGl9M/l9NNL6VHc5t3Me+Wcv9lwVyn/UnldPp7/PiTn27uUb7+c/tlS+pJ52gmFtB0a34PSSVFpXxxb3g9L23dCq+uhnD9/lxmka4VLlsr7MPAShUCcpw9gh9J8f5nT12hh3Tf2r6rhJGChUv7G959QMW450gnAnyqWcwLpN1w8eFf99pYFXgAuKaVPIP92SK0oTwP3lbcDcEQu366l9OMb5S6krU4KHNcBixTSlwem5vXbCCAb5On3KOR7JO8vb28DUo3/eeDCQr5ROc9Tpe23eM77r1Z+J252a992pB/VqYW0i0lB4+ulvFvlzxMi4q1GYkTcCVxWzChpWM5/ITBTqWvvSEkjSTvNQ8Dm3RUuIl4uzHNxSSNIO8XVwJqSlmzlS9bg+NL/1+bP0yJieiMx0rWm6cD7C3l3Iu38pxbXU15XFwJLAP/VzfK3Jf1QjywmRsTFpLPgbSTN6+/jAlINszzsXlrmFOArpIPd30hnzBdGxC9K89uZdIC6pfSdFyGdcW+g2b25dsqf3y/ue3l5c/zfhzYj1ZhOLG3T6cDPgaHApqVpnoqIc0ppV+fP97Wx7O2Zvb6/DPyedMJxcpP8x0fEm6W0LwCLAqdU7GcXkWqobzePlX57Q/NvbxapFvLxqoVK2pRUk5wEfCoiJpWyjAaeZe6OK0dXzG4bUrA4JiJeL5TrKVJQXgloNM/eALwMbJzLsRKwCnAmcFfhe61Dqj02tkHRHyJiamE5r5BqP++vyDsXdzho326k6P6EpOKP4Qrgi5JGxuwLnavkz/sr5nM/sEXh/9VJO/NueajySHeFU7o2dDhpR6y6TjScdDDvtPJ3aVwAfrQi7xRSj6WGNUk/svu6mP+y3Sx/FdKBrurC892ks9GRpJOKnnoiIq5sJWNE/FPS0cD/kJqdyicykL73O0j7XzMjSU097weejohn2ytyr2rs/3dXjLsrf65aSq/ax1/MnyMqxjVzTeF3CHC2pNeBb0k6JyIuLeV/oGIea+bPrrbh2/tZvg7zE+CzpN9ZUTSZ9hLgHmCTfPAuWxW4KSJmzTGziKclTS3lbXV93xwRb0i6Dtgop29Cal25hhRotszpG+fPquDTbFu1tJ0cfNogaRXSxhLVOyuks9PGWb3amX3+/CNz1qqKXu2mfAIuJ/1oGr17ppHOvnYlnV33i9pu+cdU0Cxdpb+DFLyb5a/6ATabX8dJWoR00AJYmnT978VyNuBOYP8uZvV8IW/VAa+sqzzzenzoyTputj17Or+iy0jXkTYmNYUXVR34G8v7GqlZrMojkGo6pAP3ENLv/05Ss+JbpOttG1dMOxm4ldTUuxPw2ybLaLaNyuuj3fVzNfBZSWvl8t0UETMkXQ18R9J7cvoLpO9T1tW26paDT3t2JW3gPUhtqGWHk2otjeDTOItfnbnPElYv/f8QaSdbpNWz5QofBD4EHBYRhxZHSNq9In8rB6f+6EHgv4HHI+LeHs7jYeC/JQ0vNh1kHyDVDl+Ye7I+cyTp2t4BeThL0keKTTmk770McHULTWf3k5oOl+2m9tPoPr40qekHAEmLkZoBy/d2taNx68FawFWlcR/In93W5nvRwvlziRbzP5g/X2jhN7kJ6drK1yPiD8URyrckVHiD1Ix/NnCSpIUj4lelPI8Aq0lasHjCJmk5YFgpb3F9l2/7qFrfjdrMJqQgc0r+fwIpsGwGfIbU2aPXjxX94ix4IMjt/2OAOyPidxHx5/JAai9dW9L6ebKL8ue+xesHktZh9lkuABHxIqkKvp2kT1CiZJluitnYOec4A5K0NukaR9mMPH7pbubb35yeP4+QtGB5pFrrln4+af8/qDTtFqR28QvrujaSl7kfcGpEHEvaz1Yj9W4qOo10v1FlzUdSsanxjPx5TPnaVa4hNzRq8OVrL/tRfXyYQQpUrbiCdF1hH0lvH/Dz3/vkeV3R4rx6Q+PJDLe0mP8cUs/CH6viyQiShklaNP/b7Le3OU2u98Db98LtAPwZ+KWkfUtZLiA1z32tlH5gxewuJJ1Q/kDpXqVGGZYjnTg/BtxWyH8rqUn7W6QTjatzmablcfuTAlxVk9s8c82ndZsD72b22UGVv5B6z+xGqsLeLelkUnfNKyWNJ525fpu0E6zHnLWPPUk9Va6RdFrOswCpnXYb0sFnbBfLv5fU3HSA0r0h95MOYt8ktfl+pJR/IqmL5K8kXUw6E7shIqquu/QbEXGTpEOBHwO3SzqX1PNmOdI63ZJ0Eb4r40j3OR2odI/LNaQL2nuRLvD+qBeKupqaP3rpyoh4Jh8YTiWdZe8NqdODpBNIJy2XRcRZeZoTSGejx0ramHRQmE5qotuE1DNrozyPcyWdTTpovV/ShaQDzWqkE5+1G+UgXTs7LF8gf5TUE+oTVNf8JgKbSjqQ1MMuCuWbQ0RMzfd9/BK4QbMfuzSGtK6/mQ90feELkhpPOFia9Pv9HKn5qKUbfyPiCUl7krog3yvpdNIBfBnShfjRpBrFJNLv9hnguLw/PUG6bvjVvMx1uljOm5J2JP3+jpe0UEQcl0cfQ2ou/62k9Ui/71GkDjUvlOZzv6RjSTXna/L2X4J0/BkK7FSsPUXEW5KuIR1bZpK6kzdczewA1yfBp9vucB7e7kZ4LilQrNNNvvtJTXLvyP8vSOq99DjpLOoO0pnOT/P83lmafiRwLOmMdGae152kA88HWijnSrmsz5PasW8k1XrGMnfX7gVyOZ5gdtfvMW2sk0n0sKt1Rd5RzZZPRZffnP45Ujv+5Lxu/0PqLbZni+UfQmruegR4ndS54HRgpYq8vdnVOkg1jQVIB/+ZwIdL81iEdPY5jcI9TqQTxu+Qrue9nIcHSTWdzUvzWIB0onNr3hdeyvvfoaV8q5GugbyS97dzgBWq1jupI8PlpKAXxW3ZxXbalnRga5T3n8DoNrZz032j2T5XGl4j/Z6OpnSvHF10NS/k+RTp3p7n8n7yFOl+q+8BixXyfTCvxyl5XU8APk3172ACpd9O3l6N8v+wkP4eUs1oep7vRcB7u1hfe5BOXGfmaa6gdJ9RIe8+eXlXldI3y+lPtPlbneu7NhuUJ7CaSbqI1M66ZDS/+G5mNij5mk8fa9JW/EFST62rHXjMbH7kmk8fU3oG1NdIN6I+D6xBaoNdgHRT2W1dTG5mNig5+PSx/DC+/0e6+Lg0qc32OuDHEdFqrxszs0HFwcfMzGrnrtbdkPQmqYmsPzySxsxsoFgSeCsiKuNMx2o+Su+r+Cqpv/q7Sd1lbyR1A72zkG8CsGHFLM6OiC+X5jmU9BTYL5KerXQ36W7/C+ehnG8BGjasfDOxmZk1M23aNEjdris7tnWy5vMt0gPofka6OXJZ0s1RN0kaFRETC3kfZO47fKtugBtPupHyANLNcmOA8ZI+HxGX9LCc04cNGzZs6tSqp+mYmVmV4cOHM23atKYtRp2s+bwzIp4rpTVenHR1RGyf0yaQ3hmxbjfz25LUo2y7iBif00R6VP+IiFizq+m7mO9UBx8zs/bk4DMtIspP+AY6eJ9POfDktKmkWs6KPZjltqS7wS8ozC9Ijy5ZQ9IHmk1oZmb16lc3meYHZ67N7HdPNKwuaYqkNyU9KOng4oPzsrVJb+osPwzyjsJ4MzPrB/pNb7fcRHYys5831nAtcBbp4YdDSQ/zO4z0AMnik5pHUP2OncmF8VXL7a49zT0NzMx6Wb8JPqSHaY4mvav87Xe0RMQhpXx/lfQs8CNJG0TEdYVxXV3A8g1NZmb9RL9odpP0E9ITYveNiHEtTNJ40+d/FdKavb618e6RyRXjiIjhXQ2k60hmZtaLOh58JB1GenfKARFxYouTNcpdvL5zN7Bm+cVZzH6PRvk6kpmZdUhHg09+IdghwCGR3uDYqsY9P8V7gcaTbiz9fEXe+yPinh4X1MzMelXHrvlI+h7pRU5/Jb3ls/jq6Nci4jZJnya95vgvpDcIDiG9dW9X4NyIuL4wzSWkFzydUngj4y6ktzJu08dfxwaJL467stNFGPTOHVN+Y7fNjzrZ4aBRQ9kqD0WPkd4G+XT+/zDSGz7fIr0pdH/g58UJIiIkjSY9XucIUi3oHtJNpxf1QfnNzKyHOhZ8ImJUC3keIr0qudV5Tgf2zoOZmfVTHe9wYGZm8x8HHzMzq52Dj5mZ1c7Bx8zMaufgY2ZmtXPwMTOz2jn4mJlZ7Rx8zMysdg4+ZmZWOwcfMzOrnYOPmZnVzsHHzMxq5+BjZma1c/AxM7PaOfiYmVntHHzMzKx2Dj5mZlY7Bx8zM6udg4+ZmdXOwcfMzGrn4GNmZrVz8DEzs9o5+JiZWe0cfMzMrHYOPmZmVjsHHzMzq52Dj5mZ1c7Bx8zMaufgY2ZmtXPwMTOz2nUs+EjaRNI4SfdLekXSE5LOk7RORd7NJE2U9Kqk5ySdJGl4Rb6hkk6U9HTOe7Okrev5RmZm1qpO1ny+BbwH+BmwBbB//v8mSZ9oZJI0CrgE+A/weeD7wNbAxZLK5R8P7AQcDHwOuAcYL2nLPv0mZmbWloU6uOxvR8RzxQRJlwOPAj8Ats/JxwB3AV+KiLdyvqeBy4EvAmfntC2BTYHtImJ8Tvs7sCpwHCmAmZlZP9Cxmk858OS0qcCDwIoAklYA1gdObwSenO8K4ElmByiAbYFpwAWFfAGcCqwh6QN98DXMzKwHOlnzmYukZYC1gTNz0tr5866K7HcWxjfy3lMMUtkdxfEVy5zaTbGGdTPezMza1G96u0kScDKpTD/NySPy5+SKSSYXxjfyNstHKa+ZmXVQf6r5HAuMBnaNiHtL46LJNOX0ZvmajouIuXrNFeWakWs/Zma9qF/UfCT9BPgesG9EjCuMejF/VtValmbOms6LXeSD6lqRmZl1QMeDj6TDgB8BB0TEiaXRd+fPtZnbOsx5LehuYM2K7teN+4aqrhuZmVkHdDT4SDoUOAQ4JCKOLY+PiCeAm4GdikFF0ibACsB5hezjgeGke4GKvgbcHxFzdTYwM7PO6Ng1H0nfA8YCfwWuLN5YCrwWEbflvw8k3dNzpqSTgeWBo4EbgHML01wC/B04RdII0v1CuwAbANv04VcxM7M2dbLDQaOGslUeih4DVgaIiKslbQX8GLgYeAk4n9RMN6sxQUSEpNHAEXkYTupavV1EXNSH38PMzNrUseATEaPayHspcGkL+aYDe+fBzMz6qY53ODAzs/mPg4+ZmdWuP91kOihsutdBnS7CfOHKXx3V6SKY2TxwzcfMzGrn4GNmZrVz8DEzs9o5+JiZWe0cfMzMrHYOPmZmVjsHHzMzq52Dj5mZ1c7Bx8zMaufgY2ZmtXPwMTOz2jn4mJlZ7Rx8zMysdg4+ZmZWOwcfMzOrnYOPmZnVzsHHzMxq5+BjZma1c/AxM7PaOfiYmVntHHzMzKx2Dj5mZlY7Bx8zM6udg4+ZmdXOwcfMzGrn4GNmZrVrK/hIekTS1l2M30rSI23Mb0VJJ0i6TtIMSSFpVEW+SXlceTiqIu+ykk6V9IKklyVdK+mTLX9JMzPrcwu1mX9lYGgX44cAK7Uxv/cBOwK3AlcBTQMbcA1wYCntyeI/khbL8xkK7AO8CHwXuErSJyPitjbKZmZmfaTd4NOdZYFX2sh/TUS8E0DSaLoOPlMiYmI38/s6sBawXkTcmuf7D+Be4AhgizbKZmZmfaTb4CPpM8CoQtJ2kt5XkXVp4MvA7a0uPCLeajVvi7YF7mwEnryM1ySdCRwoaYmIeKmXl2lmZm1qpeazEXBo/juA7fJQ5SFgv14oV5WNJc0AFgHuB34F/CYiopBnbeDvFdPeASwIrAnc2EflMzOzFrUSfI4HxgECHiFdQ7mglCeAGRExuVdLN9tfgZvz8kcAO5OCz2rMGexGAFVlmFwYPwdJU7tZ9rB2C2tmZl3rNvhExDRgGoCkjYB7I+K5vi5YqQx7l5LGSzoD+I6k4yPisWL2rmbV+6UzM7N2tdXhICL+0VcF6YFTga8AHwMawedFKmo3pOtRUFEriojhXS0k14xc+zEz60Vt93aT9B7gm8D7SQd6lbJERGzSC2XrTuMepWKnhbtJ133K1gFmAff1daHMzKx7bQUfSVsA40kX/V+i+vpKXb5GCjw3FdLGA7+QtG5E3A4gaRHSvURXRsT0+otpZmZl7dZ8jgReAEZHxM29UQBJX8h/rp8/N5Q0Eng5Iv4maUdgG+Bi4AlSE9rOwGjg2Ih4vDC7U4BvA+dJ+iEpOO4LLA/s0BvlNTOzeddu8FkDOLi3Ak92bun/sfnzMdITFR4FRgLHkJr5XgPuBMZExKnFCSNipqSNgWOBXwOLkZ6esFlE3NKLZTYzs3nQbvB5Hni9NwsQEeVrRuXxE4FN25jfM8BX57VcZmbWd9p9qvXpwPZ9URAzM5t/tFvzGQdsJOkC4ARSk9iscqbSdRgzM7M5tBt87iPdqClgqy7yLdjjEpmZ2aDXbvA5DD8lwMzM5lG7TzgY20flMDOz+Yhfo21mZrVr9wkHn2klX0Rc07PimJnZ/KDdaz4TaO2ajzscmFntjrjyik4XYdD70aab9cp82g0+uzaZx3uBMcAk4KR5K5KZmQ127XY4OLXZOEnHkh5lY2Zm1qVe63AQEVOA3wEH9NY8zcxscOrt3m5TgFV7eZ5mZjbI9FrwkbQY6YGez/TWPM3MbHBqt6v175uMWhr4L2AZ4AfzWigzMxvc2u3tNqZJ+mTgAWC/iPjTPJXIzMwGvXZ7u/mJCGZmNs8cTMzMrHbtNrsBIGlJ0ttFGz3bHgGuiIiXeqtgZmY2eLUdfCTtDhwHDCW91wfSI3dmSNo/Ik7pxfKZmdkg1G5vt62Bk0k1nf8F7sqj1gL2AU6W9FxEXNSrpTQzs0Gl3ZrPAcC9wMcjYkYh/SpJfwAmAgcCDj5mZtZUux0OPgSMKwUeAPL1nlNzHjMzs6Z60ttNXYzzK7bNzKxb7QaffwO7SBpSHiFpKOkm1H/3QrnMzGwQa/eaz0+B84BbJZ0I3JPTGx0O3gds13vFMzOzwajdJxycL2lv4Gjg58xuZhPwMrB3RFzQu0U0M7PBpu37fCLiV5L+BGwGrEIKPA+TbjKd1svlMzOzQahHTziIiKnAub1cFjMzm0902+FA0oKSjpL0rW7y7SnpCEld9YYzMzNrqbfbzqR39NzUTb4bSTeY7tjqwiWtKOkESddJmiEpJI1qkvcrkv4taaakJ3JAXKwi37KSTpX0gqSXJV0r6ZOtlsnMzPpeK8FnB+DKiLilq0x5/GW0EXxIveN2BGYAVzXLJGln4AzgemAL4Ajg28C4Ur7F8nw2JPW+2xZ4ifQEhg+3US4zM+tDrVzzWY/0INFW/B3Yv43lXxMR7wSQNBrYupxB0oLAscCFEbFXYzmS3iA9S+5nEXFDTv86qdv3ehFxa57+H6RHAh1BClxmZtZhrdR8lgaea3F+z+f8LYmIt1rI9gngXaRH9xSdAbwBbF9I2xa4sxF48jJeA84ENpO0RKtlMzOzvtNK8HkJGNni/EaQmtB609r5865iYkS8QurivXYp7xz5sjuABYE1e7lsZmbWA600u90NbE5rTW+b5fy9aUT+nFwxbnJhfCNvs3yU8gIgaWo3yx/WXQHNzKw9rdR8zgM2lbRNV5nyu342A/7SGwWr0OyhpeX0rh5u6gefmpn1A60En5OAh4BzJP1E0srFkZJWlnQ4cA7wQM7fm17Mn3PVWkjXlyaX8jbLBxW1oogY3tUA+KkNZma9rNvgExGvAp8DHgV+CDwsaaqkxyVNIV13+VEev1VEzOzlMjaa8YrXdpC0OPBe5rzGc3c5X7YOMAu4r5fLZmZmPdDSKxUi4iFgXWBf4DrgTVIPtFnAtTn9IxHxcB+UcSLwDPDVUvqOwMKkZsGG8cA6ktZtJEhaJOe9MiKm90H5zMysTS0/2y3XaH6eh14j6Qv5z/Xz54aSRgIvR8TfIuJNSQcB4yT9Avgzqdfa0cCfI2JiYXankG4+PU/SD0nNbPsCy5NuljUzs36gRw8W7WXlB5SOzZ+PASsDRMSpkmaRHt+zB/AC8Bvg0OKEETFT0sakm1J/DSwG3Aps1t0TGszMrD4dDz4R0dKDSCPij8AfW8hX1URnZmb9SLuv0TYzM5tnDj5mZlY7Bx8zM6udg4+ZmdXOwcfMzGrn4GNmZrVz8DEzs9o5+JiZWe0cfMzMrHYOPmZmVjsHHzMzq52Dj5mZ1c7Bx8zMaufgY2ZmtXPwMTOz2jn4mJlZ7Rx8zMysdg4+ZmZWOwcfMzOrnYOPmZnVzsHHzMxq5+BjZma1c/AxM7PaOfiYmVntHHzMzKx2Dj5mZlY7Bx8zM6udg4+ZmdXOwcfMzGo3IIKPpFGSosmwRinvZpImSnpV0nOSTpI0vFNlNzOzuS3U6QK06UDgmlLapMYfkkYBlwDnAwcDywNHA2tL+nREvFVPMc3MrCsDLfg8EBETuxh/DHAX8KVGoJH0NHA58EXg7L4vopmZdWdANLu1QtIKwPrA6cUaTkRcATwJbN+pspmZ2ZwGWvA5SdKbkqZJ+quk9Qrj1s6fd1VMd2dhvJmZddhAaXabBhwPTAAmA2sCBwHXS9owIm4ARuS8kyumnwx8pGrGkqZ2s+xhPSmwmZk1NyCCT0TcBtxWSLpW0oWkWs5PgE2L2ZvNpo+KZ2ZmbRoQwadKRDwj6XJg65z0Yv4cUZF9aaprREREl92wc83ItR8zs1400K75lC3A7BrN3fmz6trOOlRfCzIzsw4YsMFH0ruAzYCJABHxBHAzsJOkBQr5NgFWAM7rRDnNzGxuA6LZTdIZwCPArcAUYA3SDafvAH5YyHog6Z6eMyWdzOybTG8Azq2zzGZm1tyACD6krtJfBvYBhpCu70wADo+It5vTIuJqSVsBPwYuBl4iPe3ggIiYVXehzcys2oAIPhFxFHBUi3kvBS7t2xKZmdm8GLDXfMzMbOBy8DEzs9o5+JiZWe0cfMzMrHYOPmZmVjsHHzMzq52Dj5mZ1c7Bx8zMaufgY2ZmtXPwMTOz2jn4mJlZ7Rx8zMysdg4+ZmZWOwcfMzOrnYOPmZnVzsHHzMxq5+BjZma1c/AxM7PaOfiYmVntHHzMzKx2Dj5mZlY7Bx8zM6udg+mQVR4AAA2KSURBVI+ZmdXOwcfMzGrn4GNmZrVz8DEzs9o5+JiZWe0cfMzMrHYOPmZmVjsHHzMzq92gCz6Shko6UdLTkl6VdLOkrTtdLjMzm23QBR9gPLATcDDwOeAeYLykLTtaKjMze9tCnS5Ab8oBZlNgu4gYn9P+DqwKHAdc0sHimZlZNthqPtsC04ALGgkREcCpwBqSPtCpgpmZ2WxKx+bBQdK/SPHmk6X0jwMTgS9FxDmlcVO7me0wgGHDhrVUhpdfndlyea3nhrxjsT6Z7yuvv9kn87XZFl+k7xpcXnvT26+vLbpQa9tv2rRpkI7HlZWcQdXsBowAHqhIn1wY3xMxbdq06T2ctr9rRNVpHS1Fm6a9/lqni9BfDLjtN+3VTpeg3xhw2w6gjdPrJYG3mo0cbMEHoKuq3FzjImJ4H5al32vU/Ob39TBQefsNXPP7thts13xepLp2s3T+nFwxzszMajbYgs/dwJqSyt9rnfx5V83lMTOzCoMt+IwHhgOfL6V/Dbg/Iu6pv0hmZlY22K75XAL8HThF0gjgUWAXYANgm04WzMzMZhtUwSciQtJo4Ig8DCc94WC7iLioo4UzM7O3Dar7fKx983uPm4HO22/gmt+33WC75mNmZgOAaz5mZlY713zMzKx2Dj5mZlY7Bx8zM6udg88AImlFSSdIuk7SDEkhaVRFviUlHSHpgfw21/9I+pOk1Vpczm6Srpf0vKTX8/RndvdKCkmjJL2VyzVf9uBpRtInJV0m6UlJM/O6vVrSFqV8E/L6Kw9n9XC54/L051eMm9RkWUf19HsaSBqb1+PtpfRe3bYD3aC6z2c+8D5gR+BW4Cqg2evBLwA+BowFbgbeAxwK/FPSmhHxfDfLGQlcCRwLTAFWAQ4EbpD04Yh4qDyBpHcAvwOeAZZr72vNF5YC7gf+QFpHSwHfAC6RtGNEFA9AD5KeylH0QrsLlLQZ8AWgqyeyX0PatkVPtrssSyStRVqfzzbJ0ivbdjBwb7cBRNICEfFW/ns06XFCG0XEhEKelUlPdjg8Ig4ppG9CCii7RsS4Hix7DeBe4NCIOKxi/E+BTYCLgf8BloqI7t6VNF+TtBBpWz0YERvntAnA8IhYdx7nPZT0LMOfA/sAt0fE6FKeSVXp1jP5mZL/BG4iPU9yju04L9s2TzspIsb0SmH7ATe7DSCNwNONN/Jn+R0hjf97+iKcxtnZG+URktYnHeC+AfhtXi2KiDdJ22WuddoLjiQ9xf34Ppi3VdsPWJF08mXdcPAZZCLiSeAvwH6SNpI0NF+rOY7U7HNBlzMokLSgpEUlrU5qUnuW9EryYp6FgVOAX0fETb31PQYrSQtIWkjS8pJ+DKwG/KyUbXVJUyS9KelBSQfn9dzqMj4JfBPYIyJmdZN943z98HVJd0raU5La+1YmaVXgMGDviOiqmXOetu1g4ms+g9OXgROBqwtpNwOjIuKVNubzLLPfj/QAqYnvqVKeH5GeoXdwD8s6vzkH2D7/PR3YISIuLYy/FjgLuA8YCowmHdTWA7btbuaSFiWdDPwiIm7pJvtfSfvFI6TtvDPwK1JA3K/F7zPfy8H6t8BlETFXx46ClrZtnt+C5cXkUXMcs3PteWCKCA8DcCDtuEEKKOVxvwaeB/YGPk06qNwH/JvU5gxpZ16oOFTM50PAJ4CvADeSLpSvVRi/FqkZb6tC2thcruGdXkf9cQBWBdYnvfbjTOB1YMdupvlJXqcbdLftSA/UnQQMKaRNAs5vsXxnALOAlTq9rgbKQGpungasUEibQLqe1t20c2zbnDYqp7UyrNzp79/j9dbpAnjo4YZrEnyAz+b0bUrpK5Pep/6/+f8x5R25m+UNBZ4GLiikXU86ex5eGI7K81sJGNrp9dTfB+Ai0rWZBbrIs1pepz/I/1cdnFYG1iRdP/pKaZs8TuoIMhxYpJvybJ7n98VOr5uBMJB6hk4FDiqt8+uAO/Pfi7W6bXPaEsBHS8MteV8pp3e5Pfvz4Ga3wefD+fPmYmJETJL0ItC4V+ci0hl4SyJihqR7SD+WhrWAYaTu2GWTgBtINSdr7kZgK2AZmnfPbVybbXQ4uYW5t91TwJakmtAZFfN4N2k77Qn8povylJdlXVuR9Bs4Mg9lU4CjScGpylzrOyJeovT7lfQS8GJEzJE+kDn4DD6NazIfI3XFBkDS+0hnaU8CRMSLwIutzlTS0qRmuH8Vkrdi7n1oDOkFfp8vlMUq5Lb9UaQz5662ReO+kIlQfXDK87sO2Khi+rOAh0jX5R7oplhfIx0I3XmkNQ9Rvc6PJ7UW7E6qeTYzx7adnzj4DDCSvpD/bJz5bihpJPByRPyNFHAOB34r6T3AHaQmsP8BXgZObmEZtwOnk3rHvUyq7XwHWBz4f418EXFdxbSj8p/Xhe/zeZukM4DHSLWWF0g34u4CbAzsExFvSvo06Qz5LznvENIbeHcFzo2I67taRkS8QLrWUF72TOCFmPN+sB3zvC8GngCWJl0bHA0cGxFdHTAti4gZVK/zxrt6JuT/52nbDkYOPgPPuaX/x+bPx0gXH1+S9AngENK9NyuQOh9MJF0Hur+FZUwk/SjeA7yD1Bz0D+BLEXHXPH+D+dO/gJ1IXaCHkS5Q3wxsHbPfsvt0/jyMVEt9i3QCsD/pZtHe9GhexjGknm6vka5RjImIU7ua0Hqkzm07IPgJB2ZmVjvfZGpmZrVz8DEzs9o5+JiZWe0cfMzMrHYOPmZmVjsHHzMzq52Dj5mZ1c7Bx6wFkhaX9F1J10qaLOkNSc9KukTSmPKj7tuY7xhJ3+3t8pr1d77J1Kwb+bl4F5MeM3QlcDnpETnvBDbNw7ERcUAP5j2B9GSKlXurvGYDgR+vY9YFSe8gvTZiVWD7iDivlOXo/Brxlp8QPtDlB6IOyc81M+sRN7uZdW13YHXguIrAA0BE3BQRv2r8L2lzSWdLekTSq5KmSrpc0obF6SRNAjYEVpIUhWFUIc/7JZ0u6en8qutJko6VNKRcDkkbSvpXXuYzkk6QtFae59hS3iGSjpT0sKTXcv7TJK1UyjcqTz9G0rfzazVmAt+XdKGklyUtWVGWj+XpDul2Ddt8yTUfs641niLe7dPAC8aQnhJ9GumJ0SuQgthVkjaKiGtzvu+S3gEzkjlfW30vgKT1SK9CnwqcRHodxodITxj/lKQNI+KNnHcDUnPgFNIL/aYCOwCfKhcuX5+6LI/7M3Ac8H7Su342l/TRiHiiNNl3SQ8g/S3pjbb/IT0Y9fPAjrl8RV8nPTxzXDfryuZXnX6bnQcP/XkgvWdnepvTDKlIW5Z0neiSUvoEYFKT+fyb9PrzJUrp25LefjmmkHYjqUayaiFtYdLbZgMYW0jfI6cdU5rv53L66YW0UTltMvDOUv4FSe+qubGUvjjpqd2XVH0vDx4iws1uZt1YEpjezgQR8XLjb0lDJY0AZpHe7PrxVuYhaR3gg8CfgEUljWwMpFc0v0x65TWSliVdc7ogIh4plOMN4ISK2W9LqpXM8ebNiLgYuB3YRlL52HBaRDxXyj8L+D2wfi5vwxdI6+2UVr6rzZ8cfMy6Nh1Yop0JJL1X0lmSpgAvkWo8z5Nec71Ui7NZM3/+OE9bHJ4jvYxs2ZxnlfxZ9a6mqrRVgKciour153eTvu/IUnqzN6CeQgqsuxXSdstlvLDJNGa+5mPWjbuAz0hatViraEbSUOAaUnA4nvSCtpdINY0fkt5c2grlz+OAS5vkmVLK26p28wO8UpUYEf+RdCmws6QDSC8g/Azw01zzMqvk4GPWtb+QDqa7Az9qIf8mwPLA1yPiD8URkg6vyN/sRrsH8+esiLiym2U2guLqFeOq0h4G/lvS8Jj7VecfINX2XuhmmUUnk64XjQY+nNPc5GZdcrObWdd+R2q6+r6kbaoySFpP0l7531mN5FKezam+3jMDWCrfO1N0G6nW9S1Jq1YscyFJSwNExLOknmfbFPNKWhjYt2KZ55N++weV5rkFKXhcGBFvVX3XJi4m9cT7JrALcH1E3NfG9DYfcs3HrAsR8YqkrUgH2PMlXQ5cQeoFtwywEfBZ4Jg8yXWkrsjHSVqZ1NV6XeCrpCa44oV5gInAVsAvJP2TFLyujojnJH2V1NX6Dkm/J12PWRx4H7AdqRlvXJ7P93O5/inpV6TeZjsAizS+SmGZ40hB4sBcxmvyPPcCnqW1Gl5xHc2S9Afg4JzU1vQ2n+p0dzsPHgbCQDro70cKLlOAN0gH6otJgWXBQt4Pkq7TNDocTAA+TTroR2m+Q0hNVM+SAk8AowrjVwJ+A0wCXicFvVtIPdXeXZrXxqRgNjPP7wRSbSuAAyqWeySpye51UgeB04GVSvlGUerW3WT9rJTLP52KruYePJQHP9vNbBCTtD3pRtIdI+KsPlzOcqQbT0+JiG/21XJs8PA1H7NBQMlipbSFgf2BN0m1r760J+mm03aeBGHzMV/zMRscFgUek3QGqYPECOBLpCbAoyPimb5YqKQvk7pX/wC4LCJu6Yvl2ODjZjezQUDSgqTnrm0ILEfqbXc/cHIUHnraB8sN0jWma4FdI+LJvlqWDS4OPmZmVjtf8zEzs9o5+JiZWe0cfMzMrHYOPmZmVjsHHzMzq52Dj5mZ1e7/A/NCthGp+fzZAAAAAElFTkSuQmCC\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"category_bar_plot(age_df, \"Age at Time of Execution Breakdown\", 0)"
]
},
{
"cell_type": "code",
"execution_count": 149,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" count \n",
" category \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" 252 \n",
" white \n",
" \n",
" \n",
" 1 \n",
" 204 \n",
" black \n",
" \n",
" \n",
" 2 \n",
" 108 \n",
" hispanic \n",
" \n",
" \n",
" 3 \n",
" 2 \n",
" other \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" count category\n",
"0 252 white\n",
"1 204 black\n",
"2 108 hispanic\n",
"3 2 other"
]
},
"execution_count": 149,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"race_df = get_value_counts(death_row, \"race\")\n",
"race_df"
]
},
{
"cell_type": "code",
"execution_count": 150,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 150,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ8AAAEtCAYAAADX4G3qAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3dd7gdVb3G8e9LhwQTCB2vFEGKgFyK4hUkVKVXEUQgIgooXgSlqUjkCgiIIl4LSAlNQZAAAlKSEEIXpCZ0IVxBIEAKLYQQfvePtTaZTPY5Z+9kn9nnnLyf55lnn7NmzZq1Z5ffXmVmFBGYmZlVab52V8DMzOY9Dj5mZlY5Bx8zM6ucg4+ZmVXOwcfMzCrn4GNmZpVz8LFeT9J8koZKelbS+5IqOX8g7zMkrVzF/qxxkobk12bwXJTh17cbOfj0IZIG5w9LcXlL0gOSjpC0QLvr2E0OAE4AbgW+DuzXWWZJ40vH6L2cdq6k/6iiwr1VB++xd3Pgv0DSWu2uo/UOffXLaF73J+AGQMBywP7AL4C1gG+2sV7dZRtgCnBQNH7W9AvAcfnvxYHBwIHA9pLWi4jXGijjp8DPgGnNVbdPqL3HABYF1gMOAvaQtG5EPN+2mlmv4ODTNz0QEZfU/pH0W+AJ4CBJP4yIV9tXtW6xHDC5icADMKV4jIDfSZoAHAZ8DTi9ow0lLR4Rb0bE+8D7c1TjHkrSosD0/Nw680Dp+CHpaeBXwO7AL7vYz+IR8eZcVdZ6NXe7zQMi4m3gHlJL6OPFdZK2lXR57jaZKmmypJslbV6vLEmr5e6VF3J31b8lXSNpw1K+jSQNl/SapGmSnpT0w2a6/iQdlLsMp0qakuu1aWH94Dy+swWwUqEbaFjjR2cWN+XH1XL5K+fyhkr6sqR/SJoK/Dqvn21MQNKSkn4p6Z+5O+r1vN1Rpee2gKRjJD1WyDdc0rqlfMU67Cjpvpz/JUmn1zueklaXdHHOU+tSPF1Sv1K+YbnspSWdL+kV4G3go3N4/P6dH9/roP6zHcOcZ3lJv5P0f4X31DmSlinVdwVJZ0h6SNKkfBwey8dx/kYqmN+DIenXkubLafNJOk7Sc7nMRyXt20kZ6+XX6vVCHY4u1kF1xpwkLajUDR6S1i+kLy5putKPxFraeEmjJa0p6XpJb+bPwJWSlmvkufZ0bvnMO2pBZ2IpfQiwJHARqStqRVL3yUhJW0TE7bWMkjYCRgILAucBY/O2mwP/Bfwj59seGA48A5yR9/lZ4ERgfeBLXVVW0qnA0cDfgR+Qusa+CdwqaZeIuAF4nDS+80NgKeCIvPk/Gzge9ayeH8tdbrsC/w38Dvg98EYnZVwBfB44G3gYWAxYk9StV2xNXQrsBdySy10O+DZwt6TNIuLBUrnbA9/K+z8f2AX4PjAJOLmWKf8IGAVMznV4EfhUrv/nJG0eEdNLZd8CvAz8D9APeKuT51ezmKSl8t+LAusAJ5GO3V/q5K97DCV9DLgbWIj0nvonKfgfCmwhaaOImJLLWI/Uqhqe8y0IbEfq+lwVOLijyuZA87+53OMi4meF1b8ADgfGkFpsywC/AZ6tU85GwG3A9JznZWAn4FTSca4FrZH5cStgdP77M6Tj+0FOfyinf570XTyqtLsV87bDgaNy+QcDHwG27ei59hoR4aWPLKQvuAB+TPoyXhpYl/QhCeDvdbbpVydtWdKXyA2FNJGCzbvAenW2mS8/LkL6QI4BFijlOSLXY3AXz2MN0gf0DmChQvoKpC/V8cD8hfTRwPgmjtN4UuBaKi+rkLraJpO+VNbJ+VbO9Z0OrFWnnKF5/cr5/wH5/992sf9tcr7LARXS1yN1491eSKvV4e3afkqvx0ulsh8mdbEuXkrfLZczpJA2LKddMgfvsXrLOGDNUv6ujuE1wATgo6X0jfKxGFpIW7R4vArpFwMzgOULaUNq77W83XBSi2z/Dt5rI0vvqQ1y+oevb06/M9drvUKagD/nvFsV0p8B7iz8/2PgVeBvzPrZOiPva6nSezSAvUr1rX2W1ywfh962uNutb/oJ6U0+AXiE9Iv5KmDncsZIXXIASOovaRDpg3wv6ZdazfrAJ4ELIuKROuV8kP/chhS8LgAGSlqqtjBzgLqrX227kD7Qp0XEh104EfFv0hfmSsB/dlFGV9YkHaNXSb9wzycF3F0iYmwp7/UR8XgDZU4lTT74jDqfnrtbfjwp8jcKQD6u1wGbSlq6tM3VETG+kDdIs/uWk9QfIHfZrQf8EVi4dOzvIAWwesf+5w08t7JzSK/1NqRf/seQAvkNklaqk3+2YyhpALAjcC3wbqm+40lf3h/WNyKm1o6XpIVyF+dSpO7S+UgBq2xJUstua2CniLiotL72XvtFRMwo7OuBvF2xvsuQWvjXFj8DuU611uduhU1GARvXXh9gS9JrNgLYTNKCOX0L4JGYfZLLvyPiz6W0WutotTrPtVdx8Ombal8M25O+FCaS+vHfLWeU9HFJl0maBLxJ+gJ+NW+7RCFrrUuq3B1UVptqez4zv9xryxN53bJdlLFKfhxXZ10tMKzaRRldGc/ML8/NgdUjYrVI3XllTzVSYA6U3yV1QT0naVweW9iqlHUV0i/degFtbCFP0WxdQMDr+XFQfqwd+9qPj+IygdTlU+/YN/T8Sp6OiBF5uS4iTiP9uFmF1AXVyD7WIH0Hfb1OfV/N6z+sbx4n+5Gkp0jv5ddzvotzluL7tWYYKWBsFxE31Vlfex89UWfdY6X/O3tfPkZ6TYvvy1GkrsHNlCZybJLTRgH9gU9LWoLUnVbucoPGXvNey2M+fdPTETEi//03SXeQfvn+Hti7lin/IhtD+lI6E3iUFIA+IE1D3rJQpvJjVzPKavmOYmafdtm/O0gvl9Gd3i4co66802ihEfF7SdcAO5CC2p7AYZIuj4jasZ+T5zejk3UqPZ4B3NhB3knlhIho+Pl1JiLulTSFWd83NfX2UavvJcCFHRQ7tfD3L4DvkLorTyIF1OmkLrJTqf9j+nJSl+qP81jh1NL6zt7X5dep2detFlC2zPVcOKc9TQoiW5GC63zUDz6NvOa9loPPPCAi7pJ0MbC/pLMi4q68aivSOMqBEXFBcRtJPy0V82R+7Kq76+n82MyXe1ltwsAnmX3ywNr5sd6vwh4hIl4CzgXOzTOgLgb2kXRGRNxHek5fILVUyl2Ytef33BzsunbsZ8zFsZ9bC5C+ZBvxDOlLf6EG67sfMKYQxIE0A7OTbS4ljedcDFwnaadSsK29v9Zi9vdU+YTZ2vpP1tnPmqQg8mEZETFB0jjS5+x94IWIeCrXeXROX5oUZMZ08hz6JHe7zTv+h/QmP7GQVvtlNcuvKEnbMut4D6SB7HHAgZJm+/BJqpVxE+kX6bGSlqyTb1FJi3dR12tJX0pHFfrFkbQ86Vfs83Td/Vc5SYtJWqyYlscRagGmdjyuzo/HFY4bktYhdV3dEXN2LtaDpG67QyTN1i2Zu61me01aRdI2pFb0PxrJHxGvk8YBd5e0SZ3yVBr7msHs79V+zJzl2NF+LgP2ATYj9QT0L6yuvdeOLE2V3oA0TlQsZwJwF7BTfq0+rCczT1geXtr9KFK32m7M2roZReqG2w64PyI6m0HZJ7nlM4+IiGckXQbsm6fy3k7qinsZOCMPkL9AmliwH6kLbt3C9iHpa6RfkX+XVJtqPZDUvXQj8OuIeFvS/qQv2CclnU/6hTuQ9Otwd9IHcXQndX1S0umkqdZjJF3OzKnW/YF9i4PDPcgngNskDScdm0mkX8+HkloytwNExC2S/kzqAl1C0nXMnGr9LmlKctPya7Qf6YvtkXzsx5Gme69GOvbHkcZB5tYGkr6a/16Y1Br4Bql76UdNlHMo6X04RtJFpAA6H2nsZBfSKQBDc94rgYPz+2EEqcvqQGaOg3QoIq6UNJ00K+0mSdtFxBsR8YSk35BOLh4l6S+kqdaHkX5wlVv6h5OmWt+et3uZNGniC8AfI2JkKf8oUlfhGsAppfSFSKdAlCcVzBvaPd3OS+sWZk6D/X4H69ci/Xq8tZC2Hilw1CYcjCb9QhxGnshTKmMNUh/9y6Spq/8mBZoNSvnWyflezPleIf1qPB5YssHn8w3Sl9G7pPNCbgE2q5NvNM1PtR7bQL6V8/Ec2sH6ocw61XoQ6TyRh0jTtqeSAu+ZFKYB57wLkCaDPE6aITcxH8d1G61Def+F9JVI43vj87F/ndQaOQX4j0K+uq9xg++x4jKD1Nq9Cti4mWOY8yxFOgeqNpFgMunHz6+AtQv5Fsv5ns/5ngaOJXVflaeRD6HOtH7SWNy7pJOuB+a0+Ujnij2fX4uxpPN1Ojq+n8qv1cSc/3HSD6X56zy3gaQutyge+7zuhZy+dQfv0dGdHP8hHR3P3rIoPyEzM7PKeMzHzMwq5+BjZmaVc/AxM7PKOfiYmVnlPNW6C5LeJwXpeW4evpnZXPgI8EFE1I0znu3WBUkfABowYEC7q2Jm1mtMmTIF0lT+uj1sbvl07Y0BAwYMmDx5crvrYWbWawwcOJApU6Z02GPkMR8zM6ucg4+ZmVXOwcfMzCrn4GNmZpVrW/CRtJWkYZKelPSOpBckXZVvBVzMN1pS1Fkuq1Nmf0lnSXpJ0lRJ90ua7dbRZmbWXu2c7XYIM68C/Djp8uhHA/dJGhwR9xTyPg3sX9q+fL9zSPfS2CCX8xzpyrbD8w2k6t0e2czM2qBt5/lIWibSzZmKaQNJQWNUROyR00aTLn2+fhflbQ9cD+weEcNzmkj3UBkUEeW7EjZaz8meam1m1pw81XpKRAyst75t3W7lwJPTJpNaOR+dgyJ3A6YA1xTKC9K94deUtHZHG5qZWbV61Emm+Za56wB/Kq1aQ9Ik0t0snyMFlFMjYnohzzrAYxHxQWnbR4rrW1/rZIsDvtVdRfc6t17423ZXwcx6uB4TfHIX2Tmk1tjPC6tuBy4DniDdQnlX4ERgQ1Jrp2YQ6U6IZRML6+vtt6v+NF9Xx8ysxXpM8CHdHndX4GsR8XgtMSKOL+W7TtIrwA8kbRoRdxTWdTaA5YvYmZn1ED3iPB9JJwHfAw6PiGENbHJhfvxsIe116rdulsyPE+usIyIGdraQxpHMzKyF2h58JJ0I/AA4OiLOanCzWr2L4zvjgLUklZ9T7byhsXNeSzMza6W2Bh9JJwDHA8dHxOlNbFo756d4LtBwYCCwU528T0ZEt002MDOz5rRtzEfS94ChwHXACEmbFFZPi4gHJW0GHAv8BXge6AfsAnwNuCIi7ixscwNwK3CepEGkWXEHAJvmbczMrIdo54SDWgtlx7wUPQ+sDLyU/z8RWIrUzfYkcCTw6+IGERGSdgVOzstA0tTq3SPir91QfzMzm0NtCz4RMbiBPM8AOzRR5hvAYXkxM7Mequ0TDszMbN7j4GNmZpVz8DEzs8o5+JiZWeUcfMzMrHIOPmZmVjkHHzMzq5yDj5mZVc7Bx8zMKufgY2ZmlXPwMTOzyjn4mJlZ5Rx8zMyscg4+ZmZWOQcfMzOrnIOPmZlVzsHHzMwq5+BjZmaVc/AxM7PKOfiYmVnlHHzMzKxyDj5mZlY5Bx8zM6ucg4+ZmVXOwcfMzCrn4GNmZpVz8DEzs8o5+JiZWeXaFnwkbSVpmKQnJb0j6QVJV0lat07ebSTdI2mqpAmSzpY0sE6+/pLOkvRSznu/pJ2reUZmZtaodrZ8DgE+BvwS2A44Mv9/n6RNapkkDQZuAP4F7AR8H9gZuF5Suf7DgX2BHwE7AI8BwyVt363PxMzMmrJAG/f97YiYUEyQdDPwHHAUsEdOPg0YC3w5Ij7I+V4Cbga+BFye07YHtgZ2j4jhOe1WYFXgDFIAMzOzHqBtwacceHLaZElPAx8FkLQisDHwvVrgyflukfQiKUBdnpN3A6YA1xTyhaQLgXMkrR0Rj3XbE7KW2fm0C9tdhR7j2qMPaHcVzLpFj5pwIGlpYB1SS4f8N4X/ix4trK/lfawYpLJHSmWZmVmbtbPbbRaSBJxDCog/z8mD8uPEOptMBDYo/D8IeKqDfMWyyvud3EXVBnSx3szMmtRjgg9wOrAr8LWIeLy0LjrYppzeUb6u1pmZWYV6RPCRdBLwPeDwiBhWWPV6fqzXalmSWVtEr3eSD+q3noiI2aZsl+o2Gbd+zMxaqu1jPpJOBH4AHB0RZ5VWj8uP9cZr1mXWsaBxwFp1pl/XzhuqN25kZmZt0NbgI+kE4Hjg+Ig4vbw+Il4A7gf2LQYVSVsBKwJXFbIPBwaSzgUq2h940jPdzMx6jrZ1u0n6HjAUuA4YUTyxFJgWEQ/mv48hndPzJ0nnACsApwL3AlcUtrkBuBU4T9Ig0vlCBwCbArt041MxM7MmtXPMp9ZC2TEvRc8DKwNExChJOwI/Aa4H3gSuJnXTzahtkM/p2RU4OS8DSVc42D0i/tqNz8PMzJrUzpNMBzeR90bgxgbyvQEclhczM+uh2j7hwMzM5j0OPmZmVjkHHzMzq5yDj5mZVc7Bx8zMKufgY2ZmlXPwMTOzyjn4mJlZ5Rx8zMyscg4+ZmZWOQcfMzOrnIOPmZlVzsHHzMwq5+BjZmaVc/AxM7PKOfiYmVnlHHzMzKxyDj5mZlY5Bx8zM6ucg4+ZmVXOwcfMzCrn4GNmZpVz8DEzs8o5+JiZWeUcfMzMrHJNBR9Jz0rauZP1O0p6du6rZWZmfVmzLZ+Vgf6drO8HrDTHtTEzs3lCq7vdlgXeaXGZZmbWxyzQVQZJnwcGF5J2l7RanaxLAnsDDzW6c0kfBY4CNgTWJ7WctoiI0aV846nfojo1Io4t5V0WOA3YAVgUeAA4JiLuarReZmbWvboMPsAWwAn57wB2z0s9zwBHNLH/1YB9SAFiJNDheBIwBjimlPZi8R9Ji+Ry+gPfAV4HvguMlPRfEfFgE3UzM7Nu0kjwORMYBgh4lvRlfk0pTwBvRcTEJvc/JiKWAZC0K50Hn0kRcU8X5R0IfBLYMCIeyOXeBjwOnAxs12T9zMysG3QZfCJiCjAFQNIWwOMRMaEVO4+ID1pRTsFuwKO1wJP3MU3Sn4BjJC0eEW+2eJ9mZtakpiYcRMRtrQo8c2BLSW9Jek/So5IOlaRSnnWAsXW2fQSYH1ir22tpZmZdaqTbbRaSPgYcDKwODCJ1xxVFRGzVgroVXQfcT+r2GwR8Ffgt8AlmHWMaBNTr+ptYWD8LSZO72PeAZitrZmadayr4SNoOGA4sBLxJ/S/6louIw0pJwyVdCvy3pDMj4vli9s6Kan3tzMysWc22fE4BXgN2jYj7u6E+zbgQ+ArwaaAWfF6nTuuGNA0c6gTLiBjY2U5yy8itHzOzFmr2JNM1gTN7QOCBmXUvTloYRxr3KVsXmAE80d2VMjOzrjUbfF4F3uuOisyB/UmB575C2nBgXUnr1xIkLUQ6l2hERLxRbRXNzKyeZrvdLgb2AM5qVQUk7Zn/3Dg/bi5pKeDtiPibpH2AXYDrgRdIXWhfBXYFTo+I/ysUdx7wbeAqSceRutkOB1YA9mpVnc3MbO40G3yGAVtIugb4FfAcqTtrFqWA0JUrSv8PzY/Pky5k+hywFOmSOYOAacCjwJCIuLC033clbQmcDvwOWIR09YRtIuIfTdTJzMy6UbPB5wnSjDEBO3aSb/5GC4yI8lTt8vp7gK2bKO9lYL9G85uZWfWaDT4n4unKZmY2l5oKPhExtJvqYWZm8xDfRtvMzCrX7BUOPt9IvogYM2fVMTOzeUGzYz6jaWzMp+EJB2ZmNu9pNvh8rYMyPg4MAcYDZ89dlczMrK9rdsLBhR2tk3Q66ZwaMzOzTrVswkFETALOBY5uVZlmZtY3tXq22yRg1RaXaWZmfUzLgo+kRUhXFni5VWWamVnf1OxU6/M7WLUk8FlgaeCoua2UmZn1bc3OdhvSQfpE4CngiIj441zVyMzM+rxmZ7v5ighmZjbXHEzMzKxyzXa7ASDpI6TbHNRmtj0L3BIRb7aqYmZm1nc1HXwkHQScAfQn3dcH0iV33pJ0ZESc18L6mZlZH9TsbLedgXNILZ0fA2Pzqk8C3wHOkTQhIv7a0lqamVmf0mzL52jgceAzEfFWIX2kpAuAe4BjAAcfMzPrULMTDj4FDCsFHgDyeM+FOY+ZmVmH5mS2mzpZ51tsm5lZl5oNPg8DB0jqV14hqT/pJNSHW1AvMzPrw5od8/k5cBXwgKSzgMdyem3CwWrA7q2rnpmZ9UXNXuHgakmHAacCv2ZmN5uAt4HDIuKa1lbRzMz6mqbP84mI30r6I7ANsAop8PyTdJLplBbXz8zM+qA5usJBREwGrmhxXczMbB7R5YQDSfNL+pmkQ7rId6ikkyV1NhvOzMysodluXyXdo+e+LvL9nXSC6T5zWykzM+vbGgk+ewEjIuIfnWXK62/CwcfMzLrQyJjPhqQLiTbiVuDIRncu6aOkVtWGwPpAP2CLiBhdJ+9XSC2rNYDXgEuAoRHxbinfssBpwA7AosADwDERcVej9TLrSw65YkS7q9Bj/P5LW7e7CpY10vJZEpjQYHmv5vyNWo3UUnoLGNlRJklfBS4F7gS2A04Gvg0MK+VbJJezOem8o92AN0nXnvvPJuplZmbdqJGWz5vAUg2WN4gUSBo1JiKWAZC0K7BzOYOk+YHTgWsj4ls5+VZJ00lX0f5lRNyb0w8knfC6YUQ8kLe/jXQx1JNJgcvMzNqskZbPOGDbBsvbJudvSER80EC2TYDlSBctLboUmA7sUUjbDXi0FnjyPqYBfwK2kbR4o3UzM7Pu00jwuQrYWtIunWXK9/rZBvhLKypWsE5+HFtMjIh3SCe3rlPKO0u+7BFgfmCtFtfNzMzmQCPB52zgGeDPkk6StHJxpaSVJf0U+DPwVM7fSoPy48Q66yYW1tfydpSPUl4AJE3ubAEGzE3lzcxsdl2O+UTEVEk7ANcBxwHHSnoTeANYHPgI6RI7TwI7lmeftVBHt2sop3d2Wwff8sHMrAdo6PI6EfGMpPWBbwB7kgb1lyMFoNtJXW3nRsTUbqjj6/lxUOHvmiWB50p5Z2vdMHMG3mytoogY2NnO3foxM2u9hq/tlls0v85LlWoTGNYhdesBIGkx4OPMesvuccw6BlSzLjADeKKb6mhmZk2YkzuZVu0e4GVgv1L6PsCCpAkRNcOBdXMrDQBJC+W8IyLijW6uq5mZNWCOrmrdSpL2zH9unB83l7QU8HZE/C0i3pd0LDBM0v8CV5JmrZ0KXBkR9xSKO4908ulVko4jdbMdDqxAukyQmZn1AG0PPsx+a4ah+fF5YGWAiLhQ0gzS5XW+Qbq8zu+BE4obRsS7krYknZT6O2AR0uV1tunq2nRmZladtgefiGjoFgwRcQnpem5d5avXRWdmZj1IbxjzMTOzPsbBx8zMKufgY2ZmlXPwMTOzyjn4mJlZ5Rx8zMyscg4+ZmZWOQcfMzOrnIOPmZlVzsHHzMwq5+BjZmaVc/AxM7PKOfiYmVnlHHzMzKxyDj5mZlY5Bx8zM6ucg4+ZmVXOwcfMzCrn4GNmZpVz8DEzs8o5+JiZWeUcfMzMrHIOPmZmVjkHHzMzq5yDj5mZVc7Bx8zMKufgY2ZmlXPwMTOzyjn4mJlZ5XpF8JE0WFJ0sKxZyruNpHskTZU0QdLZkga2q+5mZja7BdpdgSYdA4wppY2v/SFpMHADcDXwI2AF4FRgHUmbRcQH1VTTzMw609uCz1MRcU8n608DxgJfrgUaSS8BNwNfAi7v/iqamVlXekW3WyMkrQhsDFxcbOFExC3Ai8Ae7aqbmZnNqrcFn7MlvS9piqTrJG1YWLdOfhxbZ7tHC+tnIWlyZwswoMXPwcxsntdbgs8U4Ezgm8AWwFHA2sCdkj6T8wzKjxPrbD+xsN7MzNqsV4z5RMSDwIOFpNslXUtq5ZwEbF3M3lExHZTd6Uw4t37MzFqvt7R8ZhMRL5MmEmySk17Pj/VaOEtSv0VkZmZt0GuDTzYfM1s04/JjvbGddak/FmRmZm3Qa4OPpOWAbYB7ACLiBeB+YF9J8xXybQWsCFzVjnqamdnsesWYj6RLgWeBB4BJwJqkE04XBY4rZD2G1BX3J0nnMPMk03uBK6qss5mZdaxXBB/SVOm9ge8A/UjjO6OBn0bEh91pETFK0o7AT4DrgTdJVzs4OiJmVF1pMzOrr1cEn4j4GfCzBvPeCNzYvTUyM7O50WvHfMzMrPdy8DEzs8o5+JiZWeUcfMzMrHIOPmZmVjkHHzMzq5yDj5mZVc7Bx8zMKufgY2ZmlXPwMTOzyjn4mJlZ5Rx8zMyscg4+ZmZWOQcfMzOrnIOPmZlVzsHHzMwq5+BjZmaVc/AxM7PKOfiYmVnlHHzMzKxyDj5mZlY5Bx8zM6ucg4+ZmVXOwcfMzCrn4GNmZpVz8DEzs8o5+JiZWeUcfMzMrHJ9LvhI6i/pLEkvSZoq6X5JO7e7XmZmNlOfCz7AcGBf4EfADsBjwHBJ27e1VmZm9qEF2l2BVsoBZmtg94gYntNuBVYFzgBuaGP1zMws62stn92AKcA1tYSICOBCYE1Ja7erYmZmNpPSd3PfIOluUrz5r1L6Z4B7gC9HxJ9L6yZ3UewAgAEDBnSa6a13pjZd376q/2KLztX2b097r0U16f36LbzQXJcxdfr7LahJ37DognPf2TNtho9nzcLzd3w8p0yZAun7uG4jp091uwGDgKfqpE8srJ8TMWXKlDfmcNuq1KLjlLbWApgypU8Ejx5xPKe82yd+1PSIYwnQJ96ZPeh4vtv56o8AH3S0sq8FH4DOmnKzrYuIgd1Yl8rUWnB95fm0m49n6/hYtlZfOZ59bczndeq3bpbMjxPrrDMzs4r1teAzDlhLUvl5rZsfx1ZcHzMzq6OvBZ/hwEBgp1L6/sCTEfFY9VUyM7OyvjbmcwNwK3CepEHAc8ABwKbALu2smJmZzdSngk9EhKRdgZPzMpB0hYPdI+Kvba2cmZl9qE+d5zMv6yszYHoKH8/W8bFsrb5yPPvamI+ZmfUCbvmYmVnl3PIxM7PKOfiYmVnlHHzMzKxyDj69iKSQdGYD+YZKilLasXkaep9Ue86SOp0BlPMM7aY6DMnlr98d5c+NnnB8uoOk0ZJGt7serV3DWwgAAA3VSURBVCBpk/w6zfYaNfrZ700cfPqmc4HPltKOBfps8LGW+Szp/dNbfCsvfcEmwAmk8xP7vD51kqklEfEC8EK762G9T0Tc0+46NMOXzGodSQtHxLSq9ueWTxtI+lRuRu9USNsyp91WyvuApMtLaUMkPSHpHUkPS9qxtH6Wbrf89wDggLyPkDSssH4tSVdIek3SNEmPSPpKi592VVaRdL2ktyS9Lul3kvp3lFnSapKGSfqnpKmS/iXpSkmr1cn7UUnnSnpB0nuSXpT0J0kd3mlQ0kqSHsvH9KOtepJzYXlJl0t6Q9Irks4v1r/c7SZpaUl/yMdlmqQJkm7LN2is5Rkv6WpJe0t6XNK7+f25b3HHuazf5TxvS3pJ0t8kbVDKNzjXYy9JP8v53pA0QtIapbyzdbtJWkLSLyU9m+v8sqRrJK3UmkM4ZyRtkY/d23kZLWnzvG4o8Muc9bnC53TlUhmdfvZzni4/z5rZRbyNpEskTQSe6I7n3RG3fNrjEeBVYGugdtmfrYCpwCaSFouId5SuT7c+8PvCtruQmufHA28BRwPDJa0REc92sL/PArcAY4D/yWmvAkhaD7iT9Mb7Dum2FF8CLpW0aESc14LnW6WrgEuBM4HPAD8GPgbs0EH+FYAJwPdJz31Z4FDgXklrRcQEAEn/AdyXtzmJdAX1ZXK5/alzY6/8pXp9zrt7RPSEGxJeBVwO/AFYj3QZKoADO8h/CfBx4IfAeNItSz7DzNuU1GyUyzsBmAQcDFwiaXrh7sFLAjNIr8kE8g8i4C5JG9RpxZwK3A58Pec9Ffhrfl1m1KtsDqR3ASsCp5BeswGkz9oywPMdPM9uJWkr4CbSHZX3z8nfA0ZI2pbU1TkA+C6wO/BSzvNSoZguP/tz8Hm+APgL8GVg7m5B3KyI8NKGBbgMGFf4/x7SL5/3gC/ktL1IN8D7eP4/gBeBfoXtliV9oI8rpA1NL+0s+5sMDKtTj5tJF2DtV0ofDrwMzNfuY9Xg8Ryaj88ppfRjcvpnC8dwaCflzA8sRvpwH15IvwCYBqzeybZDcvnrA9vnMi4CFuxBx+eIUvpvSD96aiecz3J8ysehg7LHk+5YuVYhbT5S0H2yi2O9IOnuw78spA/O9bimlP9Lxdcyp40GRhf+PyHn+Xy7j3mp7veSusIXKaQtCvwbuDv//91c95XrbN/oZ7+hz3PhvfqHdh0Td7u1z0hgbUnL519rGwHXkILQ1jnP1sDzEfHPwnajIuLt2j8R8QrpV2TTXQqSFgG2IP0aniZpgdpCukL4ssCazT+1trqsg/83r5dZ0kKSjpI0VtJbwPvA20A/Zn3uXwRGRMTTDdTh66TX8syI2D8ipjf1DLrXtaX/HwEWIb3W9dwLHCPpe5LWlzR/B/kejojHa/9ExAfAn4FPSFoOQMlBku5Xuj7Z+6QfW6tT/31Wr67Q+Xv9i8BjETGmkzyVktQP2Bi4MiI+vPN0REwFrgA+LWmxBorq9LM/h5/n4XP+zOaOg0/7jMyPW5N+6U0jdReMJHXB1daNLG33ep2yppG+QJo1iNT1eiQwvbSck/MsNQflttPLpf9fyY/17nALqbV5CulDuBvwadIXxavM2g2xFI1P4tgbeAMY1mD+KpXfP7UB5o7eP18mfUEeDjwITJD0G80+Hbh83GH2Y/99UnffPcA+pO67jYGHqd/l02xdobnXqSpLAKL+MXqJ9D28RAPldPXZn5PP80u0icd82iQinpU0nhRgpgB3RMR7kkYCJ0jaGFgF+FE3VmMSqbvkAmYdVyp6shv33x2WY+aXHsz8RV/vgwvwFeCiiDi+liBpIWYf03gVaHTCwD6k8YkxkrYqtgh6m4h4jRR4Ds/jXnuSgvXizBy7gHTcy8rH/ivArRFxWDFTHtuc3KIqN/M6VWUSqYur3jFanvQZnNSi/TT7eW7bxT3d8mmvWitnK2BETruX1O1zUv5/VIv2NY3Sr8uIeAe4jTRG8VBE3F9nebNF+6/K3h38f1s5Yxakrp+iA0njEUU3Alurziy4Ol4DtiSNhdwm6VMNbNPjRcS/IuKXwN1A+TmtJ2mt2j9Kt7LfC3gqImq/+Gc71pK+SGuDxY2k7uzPt7DMuZK7yu4F9sxdY8CH3WR7APfmz2KtZTdHA/+97fPslk97jSSND6xIDj4RMV3SGNKA9bjCB3dujQU2l7QDqWXwWkSMJw1y3g6MlnQ28H+kk9zWBD4dEXu0aP9V2VvS+6SZfZ8mDUDfEBF3d5D/emCIpCeAR0l3vT2Y2X+Jn0B6Te6QdBLpeA4CdgR+GBEvFjNHxJQ8i+la4FZJX4iI++hF8ljkKOCPpNlTb5OOz6bAGaXsLwHXSarNdjsEWJvUbVdzPfDDPK14DCmAHUsaSG+VM0ktz+sknUya7bY46QfehRFxfwv31YwfkCYDjJB0Bqkb7kjSDLzaNOix+fEwSZeQusseiYjyj6PO9JrPs4NPe40i/RqcCDxUSB9J+qIrj/fMjSNJTfErSX3EFwJDIuIRSRuSpr+eSuoTngg8Thow7m12I00fPoL0K/sC0pTWjvw3acbQD0m/OO8GvsDMKfBA+tUv6dPAiTnvkqTB3tuAur8mI+ItSduTprKOkLRDRNwx50+tcu8CfyfNjFqJ1BocT5rqe3op7/2kyR0nAKvmfPvFzGnWAD8lTUv/Jmma8EOk1tFPWlXhiHhD0udymd8mdf1NJI0zTWjVfuagXrdK2ibX65KcfB+wVUTcnvPcLulnpON9CKlnahXSsWx0P73m8+z7+ZjZXMljlw9FhC/fZA3zmI+ZmVXOwcfMzCrnbjczM6ucWz5mZlY5Bx8zM6ucg4+ZmVXOwcfMzCrn4GPWAEmLSfqupNslTZQ0XelmbDfkG3PN0Qnbedvvtrq+Zj2dZ7uZdSFfz+164BOkyyDdTLp+2zKkC8NuDZweEUfPQdmjSfdvWblV9TXrDXx5HbNOSFoUuI50yZg9IuKqUpZT8xXIN668cm0iSaSblb3V7rpY7+VuN7POHQSsAZxRJ/AAEBH3RcRva/9L2lbS5ZKelTRV0mRJN0ua5YZ2+bI0mwMrSYrCMriQZ3VJF0t6SdJ7ksZLOj3foIxSeZtLujvv82VJv5L0yVzm0FLefpJOkfRPSdNy/oskrVTKNzhvP0TStyU9Rrrm2/clXSvpbUkfqVOXT+ftji+vMwO3fMy6smd+PKfTXLMaQrrw6EWkG5utSApiIyVtUbuQJOkKxKeQLv54RGH7xwHyBSJHka6wfTbp6s+fIl0M9XOSNq/dJVXSpqTuwEnAz/I2ewGfK1cuj0/dlNddSbpC9erAocC2kjaKiPIN2b5Luor3H0g3RfsX6WKiO5GuIn12Kf+BpHvLDOviWNm8ql337/bipTcspBuhvdHkNv3qpC1LGie6oZQ+GhjfQTkPk25lsHgpfTfS1dCHFNL+TmqRrFpIWxC4M+cdWkj/Rk47rVTuDjn94kLaYGZeeX2ZUv75SZfs/3spfTHSDRJvqPe8vHiJCHe7mXXhI6RbYjcs0s3DAJDUP9+pcwbphmKfaaQMSesC65HupbOwpKVqC3AH6d462+a8y5LGnK6JiGcL9ZgO/KpO8buRWiWnlOp9Pek2B7vkm8EVXRQRE0r5ZwDnAxvn+tbsSTpu5zXyXG3e5OBj1rk3SDcja5ikj0u6TNIk0r1+XiPd3nl7YIkGi6ndFfQnedviMgHox8zbVK+SH+vd8rxe2irAvyOi3q2bx5Ge71Kl9Kc6qOd5pMD69ULa13Mdr+1gGzOP+Zh1YSzweUmrFlsVHZHUn3SXzn6ku2o+SgpAHwDHkW6v3QjlxzNIt4auZ1Ipb6OazQ/wTr3ESDfZuxH4qqSjgY8Bnwd+nlteZnU5+Jh17i+kL9ODSLdC7spWwArAgRFxQXGFpJ/Wyd/RiXZP58cZETGii33WguIaddbVS/sn8EVJAyOifLvwtUmtvde62GfROaTxol2B/8xp7nKzTrnbzaxz55K6rr4vaZd6GSRtKOlb+d8ZteRSnm2pP97zFrBEPnem6EFSq+sQSavW2ecCkpYEiIhXSDPPdinmlbQgcHidfV5N+uwfWypzO1LwuDYiPqj3XDtwPWkm3sHAAcCdEfFEE9vbPMgtH7NORMQ7knYkfcFeLelm4BbSLLilgS2ALwCn5U3uIE1FPkPSyqSp1usD+5G64IoD8wD3ADsC/yvpLlLwGhUREyTtR5pq/Yik80njMYsBqwG7k7rxhuVyvp/rdZek35Jmm+0FLFR7KoV9DiMFiWNyHcfkMr8FvEJjLbziMZoh6QLgRzmpqe1tHtXu6XZevPSGhfSlfwQpuEwCppO+qK8nBZb5C3nXI43T1CYcjAY2I33pR6ncfqQuqldIgSeAwYX1KwG/B8YD75GC3j9IM9X+o1TWlqRg9m4u71ek1lYAR9fZ7ymkLrv3SBMELgZWKuUbTGladwfHZ6Vc/zeoM9Xci5fy4mu7mfVhkvYgnUi6T0Rc1o37WZ504ul5EXFwd+3H+g6P+Zj1AUoWKaUtCBwJvE9qfXWnQ0knnTZzJQibh3nMx6xvWBh4XtKlpAkSg4Avk7oAT42Il7tjp5L2Jk2vPgq4KSL+0R37sb7H3W5mfYCk+UnXXdscWJ402+5J4JwoXPS0G/YbpDGm24GvRcSL3bUv61scfMzMrHIe8zEzs8o5+JiZWeUcfMzMrHIOPmZmVjkHHzMzq5yDj5mZVe7/AWw7Bv9v7rYdAAAAAElFTkSuQmCC\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"category_bar_plot(race_df, \"Race of Prisoner Breakdown\", 0)"
]
},
{
"cell_type": "code",
"execution_count": 151,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" count \n",
" category \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" 128 \n",
" Harris \n",
" \n",
" \n",
" 1 \n",
" 59 \n",
" Dallas \n",
" \n",
" \n",
" 2 \n",
" 46 \n",
" Bexar \n",
" \n",
" \n",
" 3 \n",
" 42 \n",
" Tarrant \n",
" \n",
" \n",
" 4 \n",
" 15 \n",
" Montgomery \n",
" \n",
" \n",
" 5 \n",
" 14 \n",
" Jefferson \n",
" \n",
" \n",
" 6 \n",
" 13 \n",
" Nueces \n",
" \n",
" \n",
" 7 \n",
" 12 \n",
" Lubbock \n",
" \n",
" \n",
" 8 \n",
" 11 \n",
" Brazos \n",
" \n",
" \n",
" 9 \n",
" 11 \n",
" Smith \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" count category\n",
"0 128 Harris\n",
"1 59 Dallas\n",
"2 46 Bexar\n",
"3 42 Tarrant\n",
"4 15 Montgomery\n",
"5 14 Jefferson\n",
"6 13 Nueces\n",
"7 12 Lubbock\n",
"8 11 Brazos\n",
"9 11 Smith"
]
},
"execution_count": 151,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"county_df = get_value_counts(death_row, \"county\")\n",
"county_df.head(10)"
]
},
{
"cell_type": "code",
"execution_count": 152,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" count \n",
" category \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" 284 \n",
" 10+ \n",
" \n",
" \n",
" 1 \n",
" 281 \n",
" 10_or_less \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" count category\n",
"0 284 10+\n",
"1 281 10_or_less"
]
},
"execution_count": 152,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"time_spent_df = get_value_counts(death_row, \"time_spent\")\n",
"time_spent_df"
]
},
{
"cell_type": "code",
"execution_count": 153,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 153,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAaIAAAEuCAYAAADMeRbMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3dd7gdVb3/8feH0AMkJBQpVyKiEgyIghWFUMK9IB0bAhKEe7GgIEoRRaM/RSByUUSUXIEgAhYkgBKlJZFmkCYtEJqgQCCQBoQQIPn+/lhry2Qy55y9T8nknPN5Pc88+5w1a2bWnr1nf2eVmVFEYGZmVpcV6i6AmZn1bw5EZmZWKwciMzOrlQORmZnVyoHIzMxq5UBkZma1ciDqJpKGSQpJY+oui1kVSaPzd3Rk3WWxJUkamT+b0V1YR6/9fB2I2pA/0GanYXWXtxmS9pR0raQnJS2UNEPSLZJOk7RO3eUrk7S1pDHL8/4tHPyN6TVJsyTdKennkrZbxuXp0X1WOOEqTgsk3S/pO5JW74ntdlYb5X1V0hOSLpX0/rrLaLBi3QVYjh1c+v8jwP8A44AbS/OeA14GVgNe7/mitU7SqcBxwD3A2cCzwIbAu4EvA78Fnq+tgNW2Br4NTAEer7UkHTsTuI10cjcIGAHsBxwh6WLg0Ih4dRmUY1nts2uBX+a/1wX2B74FfBDYtQe321nF8q4CvJ10PO8tabuI+FttJTMHorZExK+K/0takfTF/Wt5XsErPV6wTpC0HvA10g/ldhHxWmn+IGBRHWXrQ26MiEuLCZKOBs4DPg28AHy+joL1kIeKx4GkM4GpwChJ20TEHfUVrdJDFcf0zcAVwIFAu4FI0poR8WIPlq9fc9NcN6nqIyqmSfqEpL/nZoxHJB2a87w5NxHMlvSipF9JWrNi/RtI+pmkf+amhacljctBpiObkj7rG8pBCCAi5kXES4VtNZqbdsllfyI35d0j6VNtvP9tJU2Q9HzOO13SN3IAL+abIulxSRtKukTSHEnzJV0t6e2FfGOA8/O/kwvNKuM7erOStsplmSXpFUnTJB0naUAp3/i8zkF5387M+W/ujiabiFgAHAI8Bvx3ubms2c8076vT8/dnTuE9HV98Ty3ssxUkfU3So/mzekjSIV18r4tItTCAt5XnS9peqVl4Xj4G7pR0WCnPmFzetxTSNshpiyQNKaQPz+nHdaHYT+fXJWqqjX0maWdJN0l6CfhDYf4gSafm43ihpOfyd3nT0nrWlPQ9SbcWjotHJJ2iJpswJR2i1Nx7qaRVCumHS3qwsM6jALWxjmGSLpT0bM7/qKSTi2VQG31U+bsRkvYppT8jaWLh/6aO67a4RrRs7AF8jtQkNhs4DDhP0qvAycAk4ETgvcBnSTWrwxsLS3oz8FdgZeBc4FFgM9IZ9o6Sto2Iee1s/7FGOST9b0Q83U7eolOBgcDPgAAOBS6RtGpEjC+Ub3dgAvAIcHp+jx8EvktqKvp4ab0DgRtIZ9AnAm8BjgKukDQi/6hdBmxAqoWeDDyQl320vQJL2hb4C/Aa8FPgGWDP/F7eRTr7Lbua1Lz6XWAocAwwUdKwrp4FR8Srki4kNZf9J3BOLmcrn+lWpGa+CTnfSsBuwCmkk4wjcr5m99nJpGbkc4CFeZvjJT0SETd34e2+Nb/OLiZK2jOX/RnS9+NF4FPALyRtGhHfyFknkfbTTqR9ArAzsJh0IrUj8PucvlNhmWasqjf6QVcmNc39gNSkfmFF/m1JzY3/B1xQeC+DgFuAN5Nqu/eT9vkXgFvz5/ZEzr4R6Tj+PXAxqdl+B1IT+btJ34c2SToR+D7pe/zliFic048GzgDuJh0/qwPHAjMr1rEJqbY3iHQcPwSMBL4ObCdp54h4nfRdXEDa3+PzshuRTioW5/TLc/o7gfVZet83c1xXiwhPTUzAaNKP8eg25g/L88dUpM0HNimkr0sKNouBY0rruYx0hrZGIe2K/CXbuJR3W9KXe0wT5f9JLsvC/GU5DfgYsHY77/UJYFAhfVBOmw2sltNWJf3A3ACsWFrPV/J6RhbSpuS040p5j83p/1lRjpEdvb/CMjfnfbJVIU2kPrAAdi6kj89pZ5fW8fGcfkQL34uPtZNnv5zn9M58pqSgoYr1XkhqUt2gmX1WmHcXsHIhfaP8vbikiffb+E7/AlgnT5uT+ocC+BewSiH/gPydmQtsWEhfOX9Wi4C3FdLmAxcV8p0H3AFMK35OpB/3OcAKTZa3avoX8KGKZRrzd6mY92PSD/a7SumbkJpfx5fe40oV6/h/ef3vK6SNzGmjSUH3p/n/E0vLDs77aBqweiF9Y+Cl8mcPXJTTdi+tZ2xOP6yQdh3wZOH/z+TP52JgWiH9S3nZ93TmuK6a3DS3bFweb5wlERHPAdNJgeinpbw3ks54h8G/z8D2AK4EXpG0TmMidUY/QnOdw18mfbFuAd5H+oL8DpiRmxkGVCzzsyjUtPLfPwfWJh04AKNIZ0fnA4NL5WtU3cvlW0zq3C9qnF0t1azTrNyk9SHgyoi4p1DuINUCAPatWPSM7i5LyQv5da1czpY+04hYEI2IKq0saUjOezXpR2vbFstzdhQGTkTEU6Qz5Vbe72GkWuRzpJrXd4DJpEC/sJBvG3LtIQo18bz9sbn8exfSbibVfBp2BK7P084AkkSqWfwlci2hCVeQvqujgN1Jx8OrwJWS3l2R/+6IuK6YkLd7IOmk66nS5zafVBMofm6vRm4Kl7SipLVz3sZ6q5p/VwUuJdVqR0fEyaX5u5JqQD+NiJcL23qSFHSK5V0B2Au4KyImsqQfkI7D4vEwCdhI0jvy/zuRTgJ+DwyXtEFO35F0EvD30jo7fVy7aW7ZeKwibQ4wo3TQNtIhNREBvIN0sB6Wp2bXv4T8Q3YhcKGklUnNPbsCR5OaCuaSvpxFD7C0afm10R4+PL+e187m1y/9/3RElAd2zMqvQ+m8Rt/C/RXzppEOlE0r5i2x/yJiVvrN6VJZitbKr42A1NJnqtTPdgLpRGIzlu4LWLvF8lR9X2aRzuqbdQVwFqnG8zbSd+g/SDWrovY+k/vya/EzmUQa8DA8r2tYTlsNODI3F61L+myabZaDdKZfDixXkk4IfwZ8oJT/oYp1NLa7KykAV1kiMEr6AqlZ/p0s3Sdf9bmdBqwJHBgRF1fMb+yrByvmTSv9vy6wBhX7PiJmS5rB0vseUgCaTgo4l5BOMALYSdIlpJOAKRUnAZ0+rh2Ilo222kbbG6mm0uuvKLRVlyxopTD5zPN24HZJvycFnMNYOhBVPayq/CPY+P9Ylj5Daij3STXzvjujU8tG223XXSlL0Vb5dXppvc1+pv9Lag75DanPYCapD+w9pL6vVls2uuP9Fn/Yr5b0J9KlAb+W9KFGDa7FdcKSP4YLSe/zRlIzV6OvYp1S3k6JiCckPQi8X9LAiJhfmP1yxSKN93Idab+3S9IxpD6xa0g1hadJtbCNSM3CVZ/b5aS+qWMlXR0Rs0rzG2Vo5dhs1m2kk6WdJF1LqslOykHrbtK+fwAYQvW+7/Rx7UC0/HuE9KVbuXxG1x0iYrqkOaSDo2wLUvNRUaMG1Dirfji/zu+B8rX61MZGmd5ZMW9z0oHfYe2xO+Xa58Gkg/TqnNzqZ3owacTjEiMWJW1WkbeWJ11GxKOSfkjqKzqA1K8AbwyUqPpMtsivxc/kDmAe6UdvIXBrDhDzJd2V04eQgnFVLatVK+XXNUjNa+15jtRysFYLn9vjwG7F2oOk/2pnmUmkgRpXkUY+7hIRxUEIjf05nKWDwfDS/zNJA0OW2veS1iYNsvj3yWNELJJ0I6kmtAspaN6UZ19P6jtt7PMunQSUuY9oOZfPiCYC+0kqNx+gZN321iHpTZK2bmPeR0gHdrlaD/D53J/RyDuI1MwwlzQyDdKP60zgBBWG1xaWWU0Vw9Gb1BhSvtR6q+QD9hZgT0kjCmUQaZQQpNFby4Sk1UhnvpsC5zT6CTvxmS6idEYpaSBpMEhZS/usm51BCiLfLvQ53gn8EzhU0psaGSWtxBsd2Vc00nPt9AZS88+OLPmDN4kUiLYHJhdqXZ0iaQvS6LmnIuLZjvLnYHIR8D5JH2tjncWh94tI70+F+Y1m1va28xfgv0jNklOK+410Ye4C4Itacvj1xqTr1crl/QPw7orgdwLp9798PEwiNaN9GZha6IeaRKohfRZ4JiKqfi86zTWi3uHzpDOTGyT9kjTqaQXSD9zepCvGx7Sz/MbAbZJuJZ3ZPEa6urwxnPk10nDLsudJQ1LPIx1Mh5K+jIc3vqARMV/SZ0hNCtNz3kdIo3s2J40Y25c3rjFpxW2k5phv5DO4+cA/IuLWdpY5ihQkb5TUGL69B2mo7MURcX0nytGMj0halbSfindWWJfUBHd0KX8rn+mlpDs0/IbULLQ+6Qeh3GwDndtn3SIi5ko6C/gG6UfxwnyWfSTpB+82SeNIZ+mfJPXLnBwRD5dWNYk05L7xdzH92Ir0Zrxd0kH575VIQ82PIP0GHt/Cer4BbAf8VtJvSQMUXiX1r+1OqtGNznkvJTV3/0nSZaS+wk+Tjrd2RcRNknYF/kwKRjtFxNMRMUfSScAPgVvyd2d10gniw6Rh4UUnkgZoXC7pbNKxuT1p/9/A0k3Djf06nNQU3HADaTTnFqR+o+7V3pA6T5VDX0e3MX8YbQ/fHlORfwrweDvbGVlKX4c0yugh0tDvucC9pOGkW3RQ9jVI1zk0rkN5idTs8TjpR/LdbZRhF9JoqH/m/PcBn25jGyPyup4iHZjPkmonJwFDmnjflfuKdEHotLzOoDA8tp33+y5SYJydy/0AqTN9QCnfePI4jop1NLutxr5qTK+TBpzcRRphuNTw4FY/U9IPzVjSMOhXSD84J5BqB0t9J9vaZ219t9r7XNr5nM5qY/5QUqB5uLi/STWca0l9EK/k/XN4G+vYMm/jZZYcZj6w8J42a/K4bZS3OC3O342rgVGtfvb58zgpf1YL8vt9gHTN0fsL+QaQauKP5O/hE6TBCMPL33UKw7dL29o2l/Vh4D8K6UeQ+hwX5vUfTTpRrPrteAtpoNLMvP8eI40iXb3ivYnUBBnAR0rzbs7pS31ubX1/aOc3sDgpZzb7N6Wrq88HdoyIKfWWxsz6OvcRmZlZrRyIzMysVg5EZmZWK/cRmZlZrTx8uwOSXifVHF/oKK+Zmf3bWsDiiOgwzrhG1AFJiwENGjSow7xmZpbMmzcP0uURHXYBuUbUsRcGDRo0aO7cuXWXw8ys1xg8eDDz5s1rqiXJgxXMzKxWDkRmZlYrByIzM6uVA5GZmdXKgcjMzGrlQGRmZrVyIDIzs1o5EJmZWa18QatZP3fsldfWXQRbDo3da9Qy25ZrRGZmVivXiJaR3b95Rt1FsOXQxO99pe4imNXONSIzM6uVA5GZmdXKgcjMzGrlQGRmZrVyIDIzs1o5EJmZWa0ciMzMrFYORGZmVisHIjMzq5UDkZmZ1cqByMzMauVAZGZmtXIgMjOzWjkQmZlZrRyIzMysVg5EZmZWq9oCkaSdJY2XNF3Sy5KelHSZpC1L+aZIiorp1xXrXEPSmZJmSFog6XZJey27d2VmZq2q8wmtnwOGAmcADwDrA8cBt0kaGRFTC3kfBj5TWv75inVOAN6T1/MPYDQwQdKeETGxe4tvZmbdoc5A9MWImFlMkHQNKYAcC+xfmPVyKTAtRdLuwC7AfhExIadNBjYFTgcciMzMlkO1Nc2Vg1BOm0uq/WzciVXuC8wDriisL4ALgM0lbdHJopqZWQ9argYrSFoXGAHcV5r1DklzJL0u6WFJ35S0UinPCGBaRCwupd9TmG9mZsuZOpvmliBJwDhScPxhYdaNwK+BB4E1gH2A7wLbkGpBDUOBhypWPbswv2q7czso2qCOym5mZp233AQiYCwpyBwaEQ80EiPipFK+P0p6FjhR0ocj4qbCvGhn/e3NMzOzmiwXTXOSvg98FTgqIsY3scgF+fWDhbRZVNd6huTX2RXziIjB7U2kficzM+shtQciSd8FTgSOi4gzm1ysUe5if9D9wHBJ5ffUuC6p3O9kZmbLgVoDkaRvAycBJ0XE2BYWbVxTVBzSPQEYDOxZkXd6REzrdEHNzKzH1NZHJOmrwBjgj8B1kj5QmL0wIu6S9BHgBOD3wBPAQGBv4FDgdxFxc2GZicBk4FxJQ0nXIx0CfDgvY2Zmy6E6Bys0ai575KnoCWAYMCP//11gHVJT3HTgGOAnxQUiIiTtA5ycp8HANNIFrn/ogfKbmVk3qC0QRcTIJvI8Any0hXW+AByZJzMz6wVqH6xgZmb9mwORmZnVyoHIzMxq5UBkZma1ciAyM7NaORCZmVmtHIjMzKxWDkRmZlYrByIzM6uVA5GZmdXKgcjMzGrlQGRmZrVyIDIzs1o5EJmZWa0ciMzMrFYORGZmVisHIjMzq5UDkZmZ1cqByMzMauVAZGZmtXIgMjOzWjkQmZlZrRyIzMysVg5EZmZWq9oCkaSdJY2XNF3Sy5KelHSZpC0r8o6SNFXSAkkzJZ0jaXBFvjUknSlpRs57u6S9ls07MjOzzqizRvQ54M3AGcBuwDH5/9skfaCRSdJIYCLwL2BP4GvAXsBVksrlnwAcCHwT+CgwDZggafcefSdmZtZpK9a47S9GxMxigqRrgH8AxwL75+TTgPuAT0bE4pxvBnAN8HHgNzltd2AXYL+ImJDTJgObAqeTgpmZmS1naqsRlYNQTpsLPAxsDCBpI+C9wIWNIJTzXQs8xRvBCmBfYB5wRSFfABcAm0vaogfehpmZdVGdNaKlSFoXGAFckpNG5Nf7KrLfW5jfyDutGLCye4rzK7Y5t4NiDepgvpmZdcFyM2pOkoBxpDL9MCcPza+zKxaZXZjfyNtWPkp5zcxsObE81YjGAvsAh0bEA6V50cYy5fS28rU5LyKWGn1XlGtMrhWZmfWQ5aJGJOn7wFeBoyJifGHWrPxaVZsZwpI1oFnt5IPq2pKZmdWs9kAk6bvAicBxEXFmafb9+XUES9uSJfuO7geGVwzpblyXVNXPZGZmNas1EEn6NnAScFJEjC3Pj4gngduBA4sBRtLOwEbAZYXsE4DBpGuNij4DTI+IpQYqmJlZ/WrrI5L0VWAM8EfguuJFrMDCiLgr/3086ZqhSySNAzYETgVuBX5XWGYiMBk4V9JQ0vVIhwAfBvbuwbdiZmZdUOdghUbNZY88FT0BDAOIiEmS9gC+A1wFvAhcTmrKW9RYICJC0j7AyXkaTBquvV9E/KEH34eZmXVBbYEoIka2kPfPwJ+byPcCcGSezMysF6h9sIKZmfVvDkRmZlYrByIzM6uVA5GZmdXKgcjMzGrlQGRmZrVqKRBJeqy9R29L2kPSY10vlpmZ9Ret1oiGAWu0M38gsEmnS2NmZv1OdzfNrQ+83M3rNDOzPqzDOytI2h4YWUjaT9JmFVmHAJ8C/t49RTMzs/6gmVv87Ah8O/8dwH55qvII8JVuKJeZmfUTzQSiHwHjAQGPAUcDV5TyBPBSRPjhc2Zm1pIOA1FEzAPmAUjaEXggImb2dMHMzKx/aOnu2xHxl54qiJmZ9U8tPwZC0puBI4C3AUNJTXZFERE7d0PZzMysH2gpEEnajfRI7pVJD6hzn5CZmXVJqzWiHwDPA/tExO09UB4zM+tnWr2gdXPgRw5CZmbWXVoNRM8Br/ZEQczMrH9qNRBdCOzfEwUxM7P+qdU+ovHAjpKuAH4M/ANYVM4UEf/setHMzKw/aDUQPUi6i4KAPdrJN6DTJTIzs36l1UD0XVIgMjMz6xat3llhTHduXNLGwLHANsDWpOcZ7RgRU0r5Hqf6OUenRsQJpbzrA6cBHwVWA+4Ejo+IW7qz7GZm1j1avrNCN9sMOIAULK4H2nz6K3ADcHwp7aniP5JWzetZA/gSMIt0k9brJX0oIu7qpnKbmVk3afXOCts3ky8ibmhylTdExHp53fvQfiCaExFTO1jfZ4F3AttExJ15vX8BHgBOBnZrslxmZraMtFojmkJzfURNDVaIiMUtbr8j+wL3NoJQ3sZCSZcAx0taMyJe7OZtmplZF7QaiA5tYx1vBUYDjwPndK1IbdpJ0kuk+9xNB84Gfh4RxcA4Aphcsew9pOA4HPhbD5XPzMw6odXBChe0NU/SWFJfT0/4I3A76cF8Q4GDSIHo7Sz5RNihVN+IdXZh/hIkze1g24NaLayZmTWv2wYrRMQcSb8AjgPaDFidXPeRpaQJki4CvizpRxHxRDF7e6vqznKZmVnXtXqLn47MATbt5nW25QJS+d9XSJtFRa0HGJJfl6otRcTg9iby02nNzKxndFsgykOnDwae6a51dqBR9uKAh/tJ/URlW5JuRfRgTxfKzMxa0+rw7fPamDUE+CCwLukC1WXhM6QgdFshbQJwlqStI+LvAJJWJl2rdF1EvLCMymZmZk1qtY9odBvps4GHgK9ExMWtrFDSx/Kf782vO0haB5gfEX+SdACwN3AV8CQp6B0E7AOMLd1g9Vzgi8Blkr6ey3UUsCHwiVbKZWZmy0aro+a6u08J4Hel/8fk1yeAYaQ7fK9Dum3PUGAhcC8wujyKLyJekbQTMBb4GbAqaSTfqIi4owfKbmZmXVT3LX6ICHUwfyqwSwvre4bUV2VmZr1ApwKRpLVIwaExQu4x4FrftcDMzFrVciCSdDhwOunGoo3aTAAvSTomIs7txvKZmVkf1+qoub2AcaQa0LeA+/Ksd5Ludj1O0syI+EO3ltLMzPqsVmtEx5HuZP3+iHipkH69pPOBqaRHNTgQmZlZU1odBfcuYHwpCAGQ+4cuyHnMzMya0pnh2O2NcvO93MzMrCWtBqK7gUMkDSzPkLQG6YLXu7uhXGZm1k+02kf0Q+Ay4E5JZwLTcnpjsMJmwH7dVzwzM+vrWr2zwuWSjgROBX7CG01xAuYDR0bEFd1bRDMz68tavo4oIs6WdDEwCngLKQg9Srqg1Y9MMDOzlnTqzgoRMZel7xFnZmbWsg4HK0gaIOkUSZ/rIN/nJZ0sqd17x5mZmRU1M2ruINIzhm7rIN/fSBezHtDVQpmZWf/RTCD6BOmhcu0+RiHPvxoHIjMza0EzgWgb4Lom1zcZ2LbzxTEzs/6mmUA0BJjZ5Pqey/nNzMya0kwgepH0hNRmDAWWug+dmZlZW5oJRPcDuza5vlE5v5mZWVOaCUSXAbtI2ru9TPlZRaOA33dHwczMrH9oJhCdAzwC/FbS9yUNK86UNEzS94DfAg/l/GZmZk3p8M4KEbFA0keBPwJfB06Q9CLwArAmsBbpNj/TgT0i4pUeLK+ZmfUxTT0GIiIeAbYGjgJuAl4H3gQsAm7M6e+JiEd7qJxmZtZHNX2vuVzT+UmezMzMukVnntBqZmbWbWoNRJI2lvRjSTdJeklSSBrZRt5PS7pb0iuSnsw3Yl21It/6ki6Q9Lyk+ZJulPShHn8zZmbWKXXXiDYj3ZvuJeD6tjJJOgi4CLgZ2A04GfgiML6Ub9W8nh1IT4zdl3RB7vWS3t39xTczs67q1POIutENEbEegKR9gL3KGSQNAMYCV0bEF3LyZEmvAeMknRERt+b0z5IeW75NRNyZl/8L8AApeO3Wo+/GzMxaVmuNKCIWN5HtA6QReheU0i8CXgP2L6TtC9zbCEJ5GwuBS4BRktbsWonNzKy71V0jasaI/HpfMTEiXpb0aGF+I+/kinXcAwwAhpOem/RvkuZ2sP1BLZXWzMxaUncfUTOG5tfZFfNmF+Y38raVj1JeMzNbDvSGGlFDNJneVr7KeRExuL2N5hqTa0VmZj2kN9SIZuXXqtrMEJasAc1qJx9U15bMzKxGvSEQNR4rUewLQtLqwFtZsu/o/nK+bEvS7Yge7IkCmplZ5/WGQDQVeAY4uJR+ALAS6TEVDROALSVt3UiQtHLOe11EvNDDZTUzsxbV3kck6WP5z/fm1x0krQPMj4g/RcTrkk4Axks6C7iUNPrtVODSiJhaWN25pAtdL5P0dVJT3FHAhsAnlsHbMTOzFtUeiIDflf4fk1+fAIYBRMQFkhYBxwP/DTwP/Bz4dnHBiHhF0k6kC2B/BqwK3AmMiog7eqj8ZmbWBbUHoohQk/l+BfyqiXxVzXhmZrac6g19RGZm1oc5EJmZWa0ciMzMrFYORGZmVisHIjMzq5UDkZmZ1cqByMzMauVAZGZmtXIgMjOzWjkQmZlZrRyIzMysVg5EZmZWKwciMzOrlQORmZnVyoHIzMxq5UBkZma1ciAyM7NaORCZmVmtHIjMzKxWDkRmZlYrByIzM6uVA5GZmdXKgcjMzGrVKwKRpJGSoo1p81LeUZKmSlogaaakcyQNrqvsZmbWvhXrLkCLjgduKKU93vhD0khgInA58E1gQ+BUYISkj0TE4mVTTDMza1ZvC0QPRcTUduafBtwHfLIRdCTNAK4BPg78pueLaGZmregVTXPNkLQR8F7gwmLNJyKuBZ4C9q+rbGZm1rbeFojOkfS6pHmS/ihpm8K8Efn1vorl7i3MNzOz5UhvaZqbB/wImALMBoYDJwA3S9ohIm4Fhua8syuWnw28p2rFkuZ2sO1BnSmwmZk1p1cEooi4C7irkHSjpCtJtZ/vA7sUs7e1mh4qnpmZdUGvCERVIuIZSdcAe+WkWfl1aEX2IVTXlIiIdod25xqTa0VmZj2kt/URla3AGzWd+/NrVV/QllT3HZmZWc16bSCS9CZgFDAVICKeBG4HDpS0QiHfzsBGwGV1lNPMzNrXK5rmJF0EPAbcCcwBNidd3Loa8PVC1uNJ1wxdImkcb1zQeivwu2VZZjMza06vCESk4defAr4EDCT1B00BvhcR/25yi4hJkvYAvgNcBbxIusvCcRGxaFkX2szMOtYrAlFEnAKc0mTePwN/7tkSmZlZd+m1fURmZtY3OBCZmVmtHIjMzKxWDkRmZlYrByIzM6uVA5GZmdXKgcjMzGrlQGRmZrVyIDIzs1o5EJmZWa0ciMzMrFYORGZmVisHIjMzq5UDkZmZ1cqByMzMauVAZGZmtXIgMjOzWjkQmZlZrRyIzMysVg5EZmZWKwciMzOrlQORmZnVyoHIzMxq5S8VPEYAAAvGSURBVEBkZma16nOBSNIaks6UNEPSAkm3S9qr7nKZmVm1PheIgAnAgcA3gY8C04AJknavtVRmZlZpxboL0J1ysNkF2C8iJuS0ycCmwOnAxBqLZ2ZmFfpajWhfYB5wRSMhIgK4ANhc0hZ1FczMzKop/U73DZL+Soo9Hyqlvx+YCnwyIn5bmje3g9UOAhg0aFCXyjb/lYVdWt76poGrrlJ3EXjl9dfrLoIth1ZdsWsNZvPmzYP0e9xhhadPNc0BQ4GHKtJnF+Z3RsybN++FTi5rS2pE9Hm1lmI5MW/hK3UXwd7g72ZBN5w6rwUsbiZjXwtEAO1V8ZaaFxGDe7AsVtKogXq/2/LG38369LU+ollU13qG5NfZFfPMzKxGfS0Q3Q8Ml1R+X1vm1/uWcXnMzKwDfS0QTQAGA3uW0j8DTI+Iacu+SGZm1p6+1kc0EZgMnCtpKPAP4BDgw8DedRbMzMyq9alAFBEhaR/g5DwNJt1ZYb+I+EOthTMzs0p96joiW/55ZJItr/zdrE9f6yMyM7NexjUiMzOrlWtEZmZWKwciMzOrlQORmZnVyoGoD5G0saQfS7pJ0kuSQtLINvJ+WtLdkl6R9KSkUyStuoyL3JT8PsbUXQ7rHfrqcdCXORD1LZsBBwAvAde3lUnSQcBFwM3AbqRrrr4IjO/5Ipr1OB8HvUyfuqDVuCEi1gPIF/buVc4gaQAwFrgyIr6QkydLeg0YJ+mMiLi1pwsqaZWI8EOarCf0+HEg6XFgfESM6e7C90euEfUhEdHMsz8+ALyJ9NTaoouA14D9W9mmpE0l/UbSLEkLJd0n6X9KeUbm5pEDJZ0l6VmgSw/ikTRc0u8kPZ+3e4+kT5fyrC7pdEn/yE0vsyRNlbRHIc97JF0laWZez5OSLpe0dlfKZ/Wp4ziwrnGNqP8ZkV+XuBN5RLws6dHC/A5JehOpWWMxcCwwA/gkcI6k9SLie6VFTgMmAaOBNTtV+rTdrfJ2HwS+RHr8x8eBiyStFhHn5qxnkB4ff1LOOwh4F/lRIZLWAK4F7gT+B5gDbAiMAtxP0Ld123FgXedA1P80ntdU9Wym2bT2FNuvAOsDW0fEPTntT5IGASdKOisiio9inxYRB7dc4qX9EHgeGBkR83PaNZLWAb4v6fx8VrwdcFFEnFNY9srC35uTnlX1tYi4u5B+STeU0ZZvTR8HkgQMqMi3gqQlfkMjws9d7wQ3zfVfbd1So5VbbewI3FMIQg2/BFYjNX8UTWhh3ZXyiKYdgcuAhZJWbEyku6+vTwowALcCh0r6lqT3S1q5tLqHSbWgX0g6RNJbulo+63WaOQ4OITXXFadNSDXtcrp1ggNR/zMrv7b1JNtWnmI7BHimIn1GG9uYUc7YCUNJNfljWPpHYFzOs05+/TLwE+BAYCowS9KvJG0EEBHzgB1Ijwv5EfCYpMckfTWfBVvf1cpx8AfgvaVpBvB/FenWCW6a63/uz68jgIcaiZJWB95KOuiaNYvU4Vu2QWF+UXfc2HAOqU/qfODnbeSZDpCb7U4CTpK0HumBiacBbwa2z3nuBT6RA89WwOdITX9zgPO6oby2fGr6OIiIWZS+y5JeBZ6OiNt7vqh9n2tE/c9UUi2m3FdzALASqcmrWZOArfLggaKDgAV5W90qIl4G/gJsDfw9Im6vmF6sWG5mHsRwJWnAQnl+5H6iI4HXq/JYn9Kdx4F1kWtEfYykj+U/G80EO+RO/PkR8aeIeF3SCcB4SWcBlwLDgVOBSyOileBxBqn9fKKkbwFPA58A9gNOLA1U6E5HAzcCUySdA/yT9BDEzYH3RcT+AJKmAn8E7gXmkoLL/qS+JPIw7s8Dl5Oa5waQmvEGAH/uobLbMrCMjwPrqojw1IcmUvNX1fR4Kd9BpB/ohcBTpCar1TqxvWHAr0lNFwvzOg8v5RmZy7BPF97TmFLaZqRBEU8Dr5LObicDny/kOQW4ndTMtoA0OOEUYGCe/w7SCLlH8/w5pGHh+9f9OXrq2tTTxwHwePk76anzk59HZGZmtXIfkZmZ1cp9RLaUdi7gK1oUXaxOly8GrLA4mrtdi5n1Yq4RWZUdWPoanfJ0SDdsp6NtePi0WT/gGpFVuYOOL877Rzdsp6NtPN8N2zCz5ZwHK5iZWa3cNGdmZrVyIDIzs1o5EJmZWa0ciMyakJ/2erSkGyXNlvSapGclTZQ0uomh6G2td7Sko7u7vGa9iQcrmHVA0mbAVcDbgeuAa0gj+tYDdsnT2Ig4rhPrngIMi4hh3VVes97Gw7fN2iFpNdKNUzcl3YOufFfmUyX1q2fR5AueB0bES3WXxfoGN82Zte9w0s1RT68IQgBExG0RcXbjf0m7SvpNfsjeAklzJV0jaYficpIeJ108vImkKEwjC3neJulCSTMkvSrpcUljJQ0sl0PSDpL+mrf5jKQfS3pnXueYUt6Bkn4g6VFJC3P+X0rapJRvZF5+tKQvSpoGvAJ8TdKVkuZLWquiLO/Ly53U4R62fs81IrP2NR4nMK7dXEsaTXrK5y+BJ4GNSAHtekk7RsSNOd/RwA9IT5T9SmH5BwAkbUN65tNc4BzS3aHfRXry7HaSdoiI13LeD5OaDOeQ7jA+l/RIju3Khcv9WVfneZcCpwNvIz0SY1dJ20bEk6XFjiY9zfT/SHc6/xfpzuZ7kp7hc04p/2dJDzAc38G+MvNjIDx5am8iPd7ihRaXGViRtj6pX2liKX0KpUcTFObdDTwIrFlK35f0SIPRhbS/kWoqmxbSViI91mKJx2gA/53TTiut96M5/cJC2sicNhtYr5R/AOlZUH8rpa8OzCu/V0+e2prcNGfWvrWAF1pZINIjygGQtIakocAi4Fbg/c2sQ9KWpEeXXwysImmdxgTcBMwHds151yf1UV0REY8VyvEa8OOK1e9Lqq38oFTuq4C/A3tLKv82/DIiZpbyLyLdD/C9ubwNHyPtt3Obea9mDkRm7XsBWLOVBSS9VdKvJc0BXiTVhJ4DdgfWbnI1w/Prd/KyxWkmMJBUywJ4S36dXrGeqrS3AE9HxJyKefeT3u86pfSH2ijnuaQge1gh7bBcxivbWMZsCe4jMmvffcD2kjYt1jbaImkN4AZSoPgR6emfL5JqIF8Hdmpyu8qvp9P2Y8vnlPI2q9X8AC9XJUbEvyT9GThI0nHAm4HtgR/mGplZhxyIzNr3e9IP6+HAiU3k3xnYEPhsRJxfnCHpexX527qQ7+H8uigirutgm40A+Y6KeVVpjwL/JWlwRMwtzduCVAts5c7n40j9S/sA785pbpazprlpzqx9vyA1b31N0t5VGSRtI+kL+d9FjeRSnl2p7h96CVg7X5tTdBepNvY5SZtWbHNFSUMAIuJZ0gi2vYt5Ja0EHFWxzctJx/4JpXXuRgokV0ZrDyS8ijSi7wjSc6pujogHW1je+jnXiMzaEREvS9qD9GN7uaRrgGtJo+nWBXYE/hM4LS9yE2l48+mShpGGb28NHExqpit26gNMBfYAzpJ0CymQTYqImZIOJg3fvkfSeaT+m9WBzYD9SE194/N6vpbLdYuks0mj1j4BrNx4K4VtjicFjONzGW/I6/wC8CzN1fyK+2iRpPOBb+aklpY3q33YnidPvWEiBYCvkALNHNITZJ8lBaiDgQGFvFuR+nUagxWmAB8hBYAorXcgqRnrWVIQCmBkYf4mwM+Bx4FXSQHwDtKIt/8orWsnUmB7Ja/vx6RaWADHVWz3B6RmvVdJgwsuBDYp5RtJaah4G/tnk1z+F6gYvu7JU3uT7zVn1odJ2p900eoBEfHrHtzOBqSLXM+NiCN6ajvWN7mPyKwPULJqKW0l4BjgdVKtrCd9nnSBayt3oDAD3Edk1lesAjwh6SLS4IqhwCdJzYSnRsQzPbFRSZ8iDdk+Frg6Iu7oie1Y3+amObM+QNIA0n3gdgA2II3amw6Mi8INWXtgu0Hqk7oRODQinuqpbVnf5UBkZma1ch+RmZnVyoHIzMxq5UBkZma1ciAyM7NaORCZmVmtHIjMzKxW/x/hAmQo/NkPuAAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"category_bar_plot(time_spent_df, \"Time Spent on Death Row Breakdown\", 0)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Visualizing the last statements "
]
},
{
"cell_type": "code",
"execution_count": 154,
"metadata": {},
"outputs": [],
"source": [
"from collections import Counter \n",
"import numpy as np\n",
"from wordcloud import WordCloud, ImageColorGenerator\n",
"from PIL import Image"
]
},
{
"cell_type": "code",
"execution_count": 168,
"metadata": {},
"outputs": [],
"source": [
"#What the function does: to be creating a list of reviews, then joining the reviews together to a string and \n",
" #getting a count for each word in the string\n",
"#Input: df and column \n",
"#Output: a dictionary with each word and the count of the word\n",
"def creating_freq_list_from_df_to_dict(df, column):\n",
" reviews = df[column].tolist() \n",
" review_string = \" \".join(reviews)\n",
" review_string = review_string.split()\n",
" review_dict = Counter(review_string)\n",
" return review_dict"
]
},
{
"cell_type": "code",
"execution_count": 156,
"metadata": {},
"outputs": [],
"source": [
"#What the function does: creates a word cloud that is in the shape of the mask passed in\n",
"#Input: the location where the mask image is saved, the frequency word dictionary, and the max # of words to include\n",
" #and the title of the plot \n",
"def create_word_cloud_with_mask(path_of_mask_image, dictionary, \n",
" max_num_words, title):\n",
" mask = np.array(Image.open(path_of_mask_image))\n",
" #creating the word cloud \n",
" word_cloud = WordCloud(background_color = \"white\", \n",
" max_words = max_num_words, \n",
" mask = mask, max_font_size = 125)\n",
" word_cloud.generate_from_frequencies(dictionary)\n",
" #creating the coloring for the word cloud \n",
" image_colors = ImageColorGenerator(mask)\n",
" plt.figure(figsize = [8,8])\n",
" plt.imshow(word_cloud.recolor(color_func = image_colors), \n",
" interpolation = \"bilinear\")\n",
" plt.title(title)\n",
" sns.set_context(\"poster\")\n",
" plt.axis(\"off\")\n",
" return plt"
]
},
{
"cell_type": "code",
"execution_count": 157,
"metadata": {},
"outputs": [],
"source": [
"#What the function does: creates a df with two columns: word and count of the top 12 words\n",
"#Input: the word frequency dictionary \n",
"#Output: a df with the top x words \n",
"def word_freq_dict_to_df_top_words(dictionary, number_of_words_wanted): \n",
" df = pd.DataFrame.from_dict(dictionary,orient='index')\n",
" df.columns = [\"count\"]\n",
" df[\"word\"] = df.index\n",
" df.reset_index(drop = True, inplace = True)\n",
" df.sort_values(by=[\"count\"], ascending = False, inplace = True)\n",
" df = df[:number_of_words_wanted]\n",
" return(df)"
]
},
{
"cell_type": "code",
"execution_count": 158,
"metadata": {},
"outputs": [],
"source": [
"#What the function does: creates a bar graph\n",
"#Input: the df and title of the graph \n",
"#Output: the bar graph\n",
"def top_words_bar_plot(df, title): \n",
" with sns.plotting_context(\"talk\"):\n",
" graph = sns.barplot(y = \"count\", x = \"word\", data = df, \n",
" palette = \"GnBu_d\")\n",
" plt.title(title)\n",
" plt.xlabel(\"Word\")\n",
" plt.ylabel(\"Count\")\n",
" plt.xticks(rotation = 90)\n",
" return plt"
]
},
{
"cell_type": "code",
"execution_count": 159,
"metadata": {},
"outputs": [],
"source": [
"#What the function does: creates a df with two columns: word and count \n",
"#Input: the word frequency dictionary \n",
"#Output: a df\n",
"def word_freq_dict_to_df_all_words(dictionary): \n",
" df = pd.DataFrame.from_dict(dictionary,orient='index')\n",
" df.columns = [\"count\"]\n",
" df[\"word\"] = df.index\n",
" df.reset_index(drop = True, inplace = True)\n",
" df.sort_values(by=[\"count\"], ascending = False, inplace = True)\n",
" return(df)"
]
},
{
"cell_type": "code",
"execution_count": 160,
"metadata": {},
"outputs": [],
"source": [
"#What the function does: Returns 2 statements: One with the total number of words and the other with the number \n",
" #of unique words \n",
"#Input: the frequency count dictionary \n",
"#output: 2 statements \n",
"def total_words_unique_words(dictionary): \n",
" eda_reviews_all_words = word_freq_dict_to_df_all_words(dictionary)\n",
" print(\"The total number of words is\", sum(eda_reviews_all_words[\"count\"]))\n",
" print(\"The total number of unique words is\", len(dictionary)) "
]
},
{
"cell_type": "code",
"execution_count": 181,
"metadata": {},
"outputs": [],
"source": [
"def creating_freq_list_from_df_to_dict_2(df, column):\n",
" reviews = df[column].tolist()\n",
" reviews = [review if (type(review) == str) else 'number' for review in reviews]\n",
" review_string = \" \".join(reviews)\n",
"# print(review_string)\n",
" review_string = review_string.split()\n",
" review_dict = Counter(review_string)\n",
" return review_dict\n",
"\n",
"last_statements_dic = creating_freq_list_from_df_to_dict_2(death_row, \"last_statement\")"
]
},
{
"cell_type": "code",
"execution_count": 184,
"metadata": {},
"outputs": [],
"source": [
"#http://www.transparentpng.com/details/scroll-transparent-image-_4493.html\n",
"# create_word_cloud_with_mask(\"scroll3.png\", last_statements_dic, 750, \"Word Cloud Prior to Cleaning\")"
]
},
{
"cell_type": "code",
"execution_count": 185,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" count \n",
" word \n",
" \n",
" \n",
" \n",
" \n",
" 1 \n",
" 3085 \n",
" i \n",
" \n",
" \n",
" 18 \n",
" 1608 \n",
" you \n",
" \n",
" \n",
" 3 \n",
" 1569 \n",
" to \n",
" \n",
" \n",
" 8 \n",
" 1325 \n",
" and \n",
" \n",
" \n",
" 5 \n",
" 1177 \n",
" the \n",
" \n",
" \n",
" 26 \n",
" 837 \n",
" my \n",
" \n",
" \n",
" 10 \n",
" 760 \n",
" for \n",
" \n",
" \n",
" 15 \n",
" 725 \n",
" that \n",
" \n",
" \n",
" 29 \n",
" 705 \n",
" love \n",
" \n",
" \n",
" 33 \n",
" 659 \n",
" all \n",
" \n",
" \n",
" 39 \n",
" 616 \n",
" me \n",
" \n",
" \n",
" 111 \n",
" 598 \n",
" of \n",
" \n",
" \n",
" 45 \n",
" 489 \n",
" am \n",
" \n",
" \n",
" 23 \n",
" 460 \n",
" have \n",
" \n",
" \n",
" 51 \n",
" 451 \n",
" is \n",
" \n",
" \n",
" 94 \n",
" 432 \n",
" a \n",
" \n",
" \n",
" 123 \n",
" 423 \n",
" in \n",
" \n",
" \n",
" 21 \n",
" 377 \n",
" it \n",
" \n",
" \n",
" 20 \n",
" 373 \n",
" this \n",
" \n",
" \n",
" 7 \n",
" 325 \n",
" family \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" count word\n",
"1 3085 i\n",
"18 1608 you\n",
"3 1569 to\n",
"8 1325 and\n",
"5 1177 the\n",
"26 837 my\n",
"10 760 for\n",
"15 725 that\n",
"29 705 love\n",
"33 659 all\n",
"39 616 me\n",
"111 598 of\n",
"45 489 am\n",
"23 460 have\n",
"51 451 is\n",
"94 432 a\n",
"123 423 in\n",
"21 377 it\n",
"20 373 this\n",
"7 325 family"
]
},
"execution_count": 185,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"top_words = word_freq_dict_to_df_top_words(last_statements_dic, 20)\n",
"top_words"
]
},
{
"cell_type": "code",
"execution_count": 186,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 186,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAakAAAFmCAYAAADXkmU6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdd7xcVbn/8c+XJk0SCSrC/Sl2ULDABRtKaPeK0q0ICliu2MUCdhAFC6KIFRQBEVEpoUiRFqrSbFRBunRISOgteX5/PGuSnTlT9pwzJzOHfN+v17zmnL3XWrP2tGdW2WsrIjAzMxtGiw26AmZmZu04SJmZ2dBykDIzs6HlIGVmZkPLQcrMzIaWg5SZmQ0tBykzG3qS/iHpH4Ouhy18DlK2SJAUPdxWG0D9lpf0EUknSbpZ0iOSrpP0a0kvapNnWUnfKekfk3StpM9LWrzG432uHOu7Wuz7UNl3dZu8t0q6o/ejNOvdEoOugNlC8t6m/98I/B9wEHBe0757FkqNFrQ68BPgHLJOdwIvAXYB3i5po4i4sJFYkoDjgY2BA4G/AhsA3wWeB3y8y+NNL/cbAr9v2jcVeBJYXdLKEXFn5XFfDKwKHNn7IZr1zkHKFgkR8Zvq/5KWIIPUX5r3DcitwFoRcWV1o6Q/ABcD3yaDR8M7gE2AvSJij7Ltl5IeBj4q6RcR8c8Oj/d3YFZTmQ0bAIcDO5X9v6vsa6Q/u8vx1Cbp6RHxQL/Ks6cWd/eZtSFpBUnfk3SjpMcl3S7pYEmrNKXbvHSPvaN0t11fut+ulvShOo8VEXc2B6iy/a/AdcCaTbveA8wFDmjavj8gYPsujzcXOBd4qaTnVI6l0VI6BriKbGlVTS3306sbJf2vpLMlPSDpYUkXS3p38+M2xpYkrSHpREn3AbdU9j9b0uGS7itlnSbp5a2OQdJGks6QdLekR0s35AmSXtnp2G1icUvKrAVJS5NfxGsDvwUuANYgu9/+R9I6EXF3U7YvAFOAXwKPADsAB0laISL2G2U9lgKeBdzetGtd4N8RMaO6MSKuljS77O9mOrAlGXga3XdTgTnA+WTX4yZNeTYAbouIf1fquD3Z8rqJbPE9Rh77kZL+X0Ts21TGSqXsU8jnbMVSzrLAWeTzfDDZ2nttqedjwLxjlbQ2cCpwPfA94F7gOaX+awCdWpE2kUSEb74tcjeyKyuAndrs37Xs/1rT9neV7T+rbNu8bJsBPKuyfRngcjJgrTTKeu5eyt6tsk1kK+rMNnmuAq6tUfYrS9kHVbYdAVxa/n5H2b9K+f/F5f/fNB3jvcAdwJSm7f8kg8tzKtv/Ucr4XIv67Fb27dq0fc+y/R+VbV8r214y6PeSb+N7c3efWWvbAI8CC7SAIuL3ZPfbNi3yHBKV1lVEPEJ2xy0NbNZrBSRtDHwTuAj4QWXX0mSgeqxN1keBZWs8xGVkYJ1a2bYB2cqB7A6ksr9xX+3qeyPZevxZVFp15dh/ACwFvLXpcR8DftSiPlsDDwI/bdq+HzmRo2p2ud+mtDbtKcpByqy15wM3RcRDLfZdCTy7dE9VtZqyfVW5f0EvDy7pDcBxZEDcMiKeqOx+lGxFPK1N9qWBh7s9RkQEGZBeLGnVynjUOWX/XcC/mD8uNbXcn10p5vnlfsR4GnBFuW8+9lsiolWAfQH5nC+wL3JSxa1NaQ8G/kx2L84sY1efaR4vtInPQcqsNY0iT6uLs/VcjqTXkeM1dwAbR9PYVwkud5ABpZVVgNtqPlyjVTS13IIFp+Sfw/zgtAHwn4i4vlrdmo9T1S6AitbP4YjHiYgHgfXJltx+wJLAd4BrJG06ijrZkHKQMmvtemC1Fq0lyIH5uyKi+cv2ZW3SAtxQ50FLgPoTcBewYUQ0T5houIRsAU1pyr8GMAm4tM7jseD5UlOByyLivsr+c4AXSdqQDIrTF8xOI2C1moHXeD5qHXsp6/mSFmghSno6LQJypPMjYo+I2LA8nsgxLHuKcJAya+04stvsM9WNkt5BnmQ7rUWenSU9q5J2GeCT5BjMqd0eUNJryQB1NxmgOrWGjiQ/v59s2v7pcv/bbo8HEDnt/W4yQFXHoxoa/+9Z7s9u2n8+Oa61i6QVGxvL7MjPAI8DJ9WpC3ly8vLAR5u2f5ammciSVmqR/wZyrGrFFvtsgvIUdLPWfkZOo/6GpJcAf2H+FPRbgT1a5LkJuFjSL8gZfe8lz2/aPSI6rmJRHuNP5ISHg4GpuajEAo6qjNccRZ6M/FVJzyRXnJha6vzziPh7D8d6NvDO8vcCQSoibpd0HfCmsml60/5HJH2KnIJ+saSDycC0Azl7cPeIqLuE0o+BnYH9SouwMQV9M0aOSX1P0qvJbtEbye6+t5FdnT+u+Xg2EQx6eqFvvg3iRpcp6CXNCuR4x83kF++dwK+AVZvSNaagvwP4PNlt9RhwDfDhmvVplNHptlJTnuXIZZD+Ux7v3+SU9cV7fC52KeXPbX6Msv+XZf9NHcp4MxngHiQD9MXAdi3S/YPKVPIW+1cmp8HPKmWdRnYlLpCPDFzHkicCP0q25i4Adhj0e8u3/t5UXnAzGyVJmwMnAu+IiKMHXR+zpxKPSZmZ2dBykDIzs6HlIGVmZkPLY1JmZja03JIyM7Oh5SBlZmZDy0FqESVptXKhvj0HXZdBkrRneR5WG3RdmpWLCN406HosbJKmltdkp0HXZSJ7qrx/HKQmmMqXauM2V9JMSaeX83WGmqRPj/eXj9K25cqvd5Sr6s6S9GdJX6wu32MTn6Q3lSvy3lSuiHyXpEsl/VBST6vPTzQL4/M0aF4WaeL6GrkczBLkWnIfBk6UtH1E1Fm37WbywnTN1+kZb58mlw86dDwKLwvC/p5cweEq4CDyWJcnl9j5GnktqPXG4/H77H8Y3SrjiwxJHyGvP3UDcBi5+sYzyeWodiZXdK+7wO1E1Onz9JR4/zhITVynRMS8la4lHUOufP1lOiwuKunpEfFA5LTOR/tdqUb5/S63Bz8nA9T3yHXj5lb2HSDpOcAnBlKzHkXE44OuwzCTtASwD7k00qsj4v6m/cuQP8SGnqQlyeWs+vaZfKq8f9zd9xQREX8l1y97UWNbo09a0gskHS1pJnB/2ddyTErSEpJ2l3SVpEclzZA0TdJaTenm5Zf0Lkl/lfQIra+42sgTwPOADZq6LFerpNla0gWSHiy3CyRtVec5kPQKclHXC8nLrc9tThMRd0TEl2qUNUnSdyRdV7qQ7pF0ZHP3kaSnS/qmpIsk3VvSXifp22q6zEd1rEXSzpKuLOlvlrRbizqMGFOovKarlPrcJ+khSX9SLlLbXMZqko6RdL+k2ZKOl/T8UsbZNZ6HxSR9WdK5ku4sXae3SPqZRl4mpPqe2FzSJeU9dIekfUtQaS5/K0l/L+n+I2kvcrHYOlYCJgOXNAcoyMVvI2Jm0+NJ0kfK+/VhSQ9Imq68FEm7Y9lO0mWljreUbc2rsq8u6aflNX2glP1XSR9qccyNLvuXS/q+pFvJH4yvLfvfpey+vKW8P+6VdFx5f1fL6fh5Gob3Tz+4JfUUobx0wTPIRVCrlicX/ryAbGU9i86OIFfEPp1cCXxl4GPAXyS9MUaurr01ebmIn5GtmBFfFhXvJS8pfi+wd2X7PeUYPgr8hLwa7DcpC8ACx0n6cEQc1KXubyv3v4gxnAAoaRJ51dfnkgvKXgk8h7yExEWS/jsibi7JVwU+CBxDtmCfJC95sRvwauB/WzzELsCzydXOZ5Erhn9H0q01u2qXIy/tfiHwJfLquJ8Cjpe0ZkTMKccxhezuejb52lxNXiRweimjjqXIRXOPIS+l8RCwLvABYH1J67T4xf4W8rn6Ofn8bQV8DriPbPlQ6rdNKfcmYC/yuduZbAnXcRe5CO2bJL00Iq6pkedwYDvgaOAQ8urG2wOnS9o2Ik5oSr8F2aX2E/KztSW5Av7zSl0bppIrxf+R7IZfjlxw+CBJK0XEt1rU5QhyMd79yPd6Y7X4jwMzya7qO4EXkiveXyBp7Yj4d0nX8fPUwcJ8/4zdoFe49a23G3ldnwA2Jn9Jrkx+OM4v279VSXt22fbNFuWsVvbtWdm2adn2e8qJ3mX7K8gvkPNa5H8CWKOH+t8EnN1i+zPIL5zrgBUq21cgVxV/AJjcpexjSp3WHsXzuVpl2w/JL49XNqV9HhmED61sWwpYskW53yjlrlfZNrVsu716LOTlOe4B/tJUxtk0rTxeeU13a9r++bL9fyvbvlu2bd+UtrF9xOvQ4jgELNNi+wdKGe9s8Z54qOn5FHkp+Tsq2xYnu+nupbLyOnnBxpvpskJ9Jf1nS9onyZXXf0gGnZVbpN2mpP2/pu1LkF3lNzbe95VjmVN9P5VjmVb2vbayfbkWj7dYeb1mV98jlffc2cASLfK1KmsNcqX7n9b5PA3L+6cfN3f3TVxnkF9sd5AtpVcD3we+2iLt92qWuU253zvKuxEgIi4jfyGur7x2UdVJEXF1LxVvY1Py19kBUem6KX//iGwRbtKljBXKfafWXEeSRH7JnQvcJmmlxo388r2QHJBu1O/xiHii5F1C0jNK2jNKkte0eJhDImJWpYyHS7kvrlnNucABTdvOKvfVMrYg3x9HNqWt+34g0iMAkhaXNLkcX+PxWh3fcRFxU7UM8tf3ypKWL5vXAf4f+VzcW0k7m/zVXrd++5Gtm9PIK/N+EvgNcKukg7Vgl+sO5I+d45pe18nkKvarMfI1OD0i/tZ0LN8t/25T2f5Q429JS5dWyIqlXisAq7eo/v4RMWLiUqOs0jW5QqnjPeSlX1o9371aaO+ffnB338T1MeBa8g03C7i68WXS5J7qF2IXzy/ltQo6V5DdNs9nwe6Ea2vXuPtjQ3attXpsgG7TiRvB6eljqMczgSlkIGrXbbLAWFfpptyFvO5R8w+/Z7TI32q22YzyuHXcHiMH2GeU+2oZzwcujqaxuYi4W1Ld9wSS3km2WF7NyPGiXo6vUb8Hmf9a/qtF2qvq1g0gIk4kZ7YuTgaqjcnuq/eTLawPl6RrkO+NuzoU92wWfE+3+iw06jfv/ViC755kV/n/a5Gn1fPU8rOjvJjjN8iWd3O32o2t8vRoob5/xspBauK6OCqz+zp4uIcyRzNdtZfy+/3Yza4AtiW/THu5Mm2repwBfKdrYukz5JjCaeSv09vJCySuSk4LbtVbMWeUdauTv69TjiVtS3b/Xkx+8f+HHORfHDiV3o9PTfetxg5HdQyRYymXA5dLOoK8COSOkj5a9on84fGeDsVc0fR/3bHN35JjaQeRrfCZZIB8C7ArrZ+nEZ8dSc8t+e8nA9U1ZAs+gP3JHoWxWmjvn35wkLKq68mB/jWAy5r2vazcj/WXXLsP/fXl/uXAmW0eu9v5LseQ50F9QNIh1S7LHtxDtkxXiIgzuiUmB69vAjar/uKU9OZRPHa/3QS8SNJiTXV7FtnFVcd7yaC0YemWbJTRqvuqF43Xe40W+1pt60lE3CPpemBtcuz2LjJovQS4MCIerFnUyzpsuwFA0mQyQB0eEbtUE0rq1kXdbBsyEG0ZEdObyppCjktVjecK4Tcx9vfPmHlMyqqOK/dfLGMzAEhak+z3Pz8ius0c6uZBsq++2enkL8ZPSJrXXVf+/kTJd3qngsvY2eHA64FvVY+hUt7KkvYZkXl+GXPJWVfrSXp7qzTlQ9owh/yiqD5fSwBf6FTXheREclbidk3bP9dDGY3jm/ddUZ7Xr4yxbn8FbgV2LmMujbJXILtOu5K0rKQN2ux7MRlM7mV+t+2vyeNoNdMOSc9usXlTSWtX0oicuQnzPy+NlskC7zflOXkf7H4kC2hX1ofISVLN2n2e+qEf758xc0vK5omI0yX9AXg38AxJf2T+FPRHyUHpsbqQbOl8g+zvnwucGBGzlOcK/YSc5n1oSb8Tee7Xh8ugeje7kP3/uwNvVZ7k3FhxYj2yO/DyLmV8GXgD8IfyfFxIduE9j+y++WupF+RU5m8Bp0g6lhwkfw8563HQvkPW5RBJ65HjP+uTx3Yv9X6FH01O7T9L0q/JMamtyRmJoxYRcyTtCvwBuFjSL8jusfeT4yPPrVHMssDZkq4gux7/TX65rw68D1ga+FijFRARR0s6BPh4CTx/JJ+H/wJeR77Pmsc9/0ke+0/ISQRbkRN4Do+Iv5RyH5B0GrCD8lzBS8j3yofJnoe6Y40Ap5DdgIdL+jE5bf8N5PvuekZ+Z7f7PD3E2PXj/TNmDlLWbHvgb+SX8H5k6+Yc4KsR0e3LvY4vk7/8PkZ2GYgcoH0oIn4q6Q5yOuweJf0/gW0i4rhWhTWLiIclbUkGo53JoDWlHMeV5Pk4B3YpY7akN5CTBd5JfjE9Sf7yPx/4ZSX5vuUYPkBOf76THMM5hB4nAPRbRNwraX3ydXw/+aUyHdiQ/CJtNdGmuYzfldbsruSsrvvIX9hfYP5g+2jrd3RprX6NnHRwNzmOdy45xtfNLPK4/ods6T+HDEz3kO/ZHzV3mUXE+yVNJ887+iJ5CsGd5Hv+iy0e4wRyXOiLwEtLHb9RblU7AN8mZ8TtSAbML5M/Vg6pcSyN+l0vaTPyfLIvkS2rC8hz735MzkCsavt5qvuYHeoy5vdPP/iih2aLmDK2cS9wYPMYiiXlqg03Al+PiD0HWpkhs7DfPx6TMnsKU65f12z3ct9xjM9sGN4/7u4ze2o7RdLN5IoKi5PnEG1OLvtUqwvVFmkDf/84SJk9tZ1ITiLYmlwR/FZyjOHr5dwhs04G/v7xmJSZmQ0tt6T6SNKT5DjfqNeOMzNbBK0AzI2IkZdzcUuqfyTNBTRp0qRBV8XMbMKYPXs25Pq9IybzuSXVX/dPmjRp0qxZC23tRTOzCW/y5MnMnj27ZQ+Up6CbmdnQcpAyM7Oh5SBlZmZDy0HKzMyGloOUmZkNLQcpMzMbWg5SZmY2tBykzMxsaA3sZF5JrycvbLcmeVG6B8grpu4bEac0pd2UvMjYK0u6acDuETGrKd3y5MXC3kFeAOxKYK+IOKHF49cqczRe86YNR5XvonOnd09kZrYIGWRL6hnkFS8/C7yZvFLmY8DJkt7dSCRpKnAy8B/yqpefI6/CeZKk5vpPI68s+xXgreSVUadJeks1UY9lmpnZgAzV2n2SliCvhvnviNiobLsYWBJYJyLmlm2bkpeXfndE/L5sewtwErBtREwr2wScB0yJiDUqj1OrzFHUf9akSZMmvfQVrx5NdrekzGyRVJZFmh0Rk5v3DVWrISKeBGYDTwBIWhVYFzi8EUxKutOB24C3VbJvU/IeX0kXwGHA6pJeNooyzcxsgAYepCQtJmkJSatI+jrwEuAHZfea5f6KFlkvr+xvpL2qGniKy5rK6qVMMzMboGFYBf0PzG+93A+8MyJOLf9PKfczW+SbCaxd+X8KcG2bdNWyeilzAZK6TarwNTrMzPpo4C0pYDdgPXLiwsnAHyRt15Sm3cBZ8/ZOA2x10w7PIJ2Z2SJu4C2piLgBuKH8e6KkE4GfSPo9MKNsn9Ii64os2Bqa0SEdlbS9lNlc1xGDelWlpeXWlJlZnwxDS6rZxeT09GeS5zlB63GitVhwXOlKYI0WU8jXKvdXVNLVLdPMzAZoqIJUmTI+FZgFzIiIW4FLge2rwUfSxsCqwLGV7NPIE3i3aCr2fcA1EXEVQI9lmpnZAA1yxYkjgJuBvwL3As8BdgQ2Aj5RpqMD7E6ev3SkpIOAVYDvABcBR1WKPBmYDhwsaQp5vtWOwPrAVk0PX7dMMzMboEGOSf2FXB3iw+Q4zmyyhbNlRJzYSBQRZ0naHPg6ebLuA8BxwG4RMaeSLiRtTS6LtA/ZqrqKPLl3Xnm9lGlmZoM1VCtOTHReccLMrHcTZsUJMzOzKgcpMzMbWg5SZmY2tBykzMxsaDlImZnZ0HKQMjOzoeUgZWZmQ8tByszMhpaDlJmZDS0HKTMzG1oOUmZmNrQcpMzMbGg5SJmZ2dBykDIzs6HlIGVmZkPLQcrMzIaWg5SZmQ0tBykzMxtaDlJmZja0HKTMzGxoOUiZmdnQGliQkrSxpEMlXSPpYUm3SjpW0lpN6c6WFC1uv2tR5vKSDpB0h6RHJF0qacs2j7+ppAtLurslHShp8ngdr5mZ9W6JAT72LsAU4AfA1cCzgd2ASyRNjYgLK2n/DbyvKf+9LcqcBqxdyrkR2AmYJmmLiDi5kUjSVOBk4DjgK8AqwHeANSW9MSLmjvnozMxszAYZpD4WEXdXN0g6jQwunwfeVtn1cFPQGkHSW4BNgG0jYlrZNh14AbAfGZQavgtcAbyrEZAk3QGcBrwD+P0YjsvMzPpkYN19zQGqbJtFtpr+axRFbgPMBo6vlBfAYcDqkl4GIGlVYF3g8GqLKSJOB25jweBoZmYDNFQTJyQ9E1iTbOVUvVTSfZKelPRvSV+RtGRTmjWBq1p01V1W2V+9b34MgMsr+83MbMAG2d23AEkCDiID5/cqu84Dfgf8C1ge2BrYC1iHbD01TAGubVH0zMr+6v3MNmnX7lDHWR0PAiZ12W9mZj0YmiAF7EsGoJ0j4urGxoj4alO6P0q6C/iSpPUj4vzKvuhQfvO+dmk7lWFmZgvRUHT3Sdob+CzwqYg4tEaWw8r96yrbZjC/lVS1YrmfWUlHh7StWlgARMTkTjdyTMzMzPpk4EFK0l7Al4DdIuKAmtka9a6OP10JrCGp+Zga511dUUkHrcee1qL1WJWZmQ3AQIOUpD2ArwJfjYh9e8jaOGeqOi19GjAZ2KJF2msi4iqAiLgVuBTYvhrQJG0MrAoc29NBmJnZuBnYmJSkzwJ7An8EzpD02sruxyLi75LeCHwBOAa4GVgO2ArYGTgqIi6o5DkZmA4cLGkKeb7VjsD6JU/V7uQ5UUdKOoj5J/NeBBzVz+M0M7PRG+TEiUaLZ/Nyq7oZWA24o/y/F7AS2b13DfAZ4EfVDBERkrYG9im3ycBV5Mm9JzalPUvS5sDXgZOAB8jVJ3aLiDn9ODgzMxs75fmu1g+SZk2aNGnSS1/x6lHlv+jc6X2ukZnZ8Js8eTKzZ8+eXSagLWDgEyfMzMzacZAyM7Oh5SBlZmZDy0HKzMyGloOUmZkNLQcpMzMbWg5SZmY2tBykzMxsaDlImZnZ0HKQMjOzoeUgZWZmQ8tByszMhpaDlJmZDS0HKTMzG1oOUmZmNrQcpMzMbGg5SJmZ2dBykDIzs6HlIGVmZkPLQcrMzIbWwIKUpI0lHSrpGkkPS7pV0rGS1mqRdlNJF0p6RNLdkg6UNLlFuuUlHSDpjpL2Uklbtnn8WmWamdngDLIltQvwXOAHwGbAZ8r/l0h6bSORpKnAycB/gC2AzwFbAidJaq7/NGB74CvAW4GrgGmS3lJN1GOZZmY2IEsM8LE/FhF3VzdIOg24Efg88Lay+bvAFcC7ImJuSXcHcBrwDuD3ZdtbgE2AbSNiWtk2HXgBsB8ZlOilTDMzG6yBtRqaA1TZNgv4N/BfAJJWBdYFDm8Ek5LudOA25gcygG2A2cDxlXQBHAasLulloyjTzMwGaKi6tiQ9E1iTbOVQ/qbyf9Xllf2NtFdVA09xWVNZvZRpZmYDNMjuvgVIEnAQGTi/VzZPKfczW2SZCaxd+X8KcG2bdNWyeimzuY6z2u0rJnXZb2ZmPRiaIAXsC2wN7BwRVzftizZ5mre3S9dL2k5lmJnZQtRTd5+kG9pN6S77N5d0Q6+VkLQ38FngUxFxaGXXjHI/ZUQmWJEFW0MzOqSjkraXMhcQEZM73cgxMTMz65Nex6RWA5bvsH854Hm9FChpL+BLwG4RcUDT7ivLfatxorVYcFzpSmCNFlPIG+ddXVFJV7dMMzMboH5PnHg28HDdxJL2AL4KfDUi9m3eHxG3ApcC21eDj6SNgVWBYyvJpwGTyfOeqt4HXBMRV42iTDMzG6CuY1KS3gRMrWzaVtKLWiRdEXg38I86Dyzps8CewB+BM6on8AKPRcTfy9+7k+cvHSnpIGAV4DvARcBRlTwnA9OBgyVNIc+32hFYH9iq6eHrlmlmZgNUZ+LEhsAe5e8Ati23Vq4Ddq352I0Wz+blVnUz2bVIRJwlaXPg68BJwAPAcWT34JxGhogISVsD+5TbZHLFiW0j4sRq4XXLNDOzwVKe79ohgTSJ/MIXcAPwaSonzBYBPBgRbScdLAokzZo0adKkl77i1aPKf9G50/tcIzOz4Td58mRmz549u0xAW0DXllREzKbMWpO0IXB1q9UizMzM+q2n86Qi4pzxqoiZmVmznk/mlfRc4MPAi8lzjdSUJCJi4z7UzczMFnE9BSlJm5FTvZciJxss0mNQZmY2vnptSX0LuBfYOiIuHYf6mJmZzdPrybyrA/s7QJmZ2cLQa5C6B3h8PCpiZmbWrNcgdTi+KKCZmS0kvY5JHQpsKOl44Ifk0kMjVmiIiFvGXjUzM1vU9Rqk/kWuLiFGLmVUtfioa2RmZlb0GqT2whcFNDOzhaTXFSf2HKd6mJmZjdDv60mZmZn1Ta8rTrypTrqIOHd01TEzM5uv1zGps6k3JuWJE2ZmNma9Bqmd25TxQmAn4CbgwLFVyczMLPU6ceKwdvsk7Qv8bcw1MjMzK/o2cSIi7gN+CezWrzLNzGzR1u/ZffcBL+hzmWZmtojq+aKH7UhaGngvcGe/ylyUvf7NW44q359PPaHPNTEzG5xep6D/qs2uFYHXAc8EPj/WSpmZmUHv3X07tbmtD1wP7BAR+9UtTNJ/SfqhpPMlPSgpJE1tke6msq/59u0WaZ8t6TBJ90p6SNJ5kl7f5vHfI+mfkh6VdKukb5cWoZmZDYFeZ/f1ewzrRcB25KzAM4FOfVznArs3bbut+k8JMGcCywOfAGYAnwbOlPT6iPh7Je0O5KVHflbSrAF8B1gNePeoj2iIvHHb9/Sc57xjfzsONTEzG52+jUmN0rkR8SwASVvTOUjdFxEXdinv/cDLgXUi4m+l3HOAq4F9gM3KtsWBfYETIuKjJe90SU8AB0n6QURcNNqDMjOz/hhVy0jSCpK2lfS5cttW0tN7LSci5o7m8TvYBri8EaDKYzwGHAlsWqnja4GVgebzvo4AnsAXdjQzGwo9t6QkfRDYj+xSUzd4Q7gAACAASURBVNkcwIOSPhMRB/exflUbSXoQWAq4Bvgp8POIqC7TtCYwvUXey8ilmtYALi7pAK6oJoqIhyVdX9lvZmYD1Ovsvi2Bg4AbgK8x/0v+5eQY0EGS7o6IE/taS/gjcGl53CnADmSQegmwayXdFGBmi/wzK/ur9+3STmmxHUmzutRzUpf9ZmbWg15bUruR4zuviYgHK9vPlHQIcCE5uaGvQSoiPt60aZqkI4BPSto/Im6uJu9UVJf/65RhZmYLSa9jUq8EDm0KUABExAPkGM8r+1GxGg4j679eZdsMWreCViz3Myvp6JC2VQuLiJjc6QbM7vkozMysrdFMnFCHfQuzBdKoe3XyxZW0Hk9aC5gD/KuSjua0kpYlV3RfYKzKzMwGo9cg9U9gR0nLNe+QtDx5Yu8/+1CvOt5HBqhLKtumAWtJelWlXkuR52KdERH3l80Xkss3vbepzO2AJYFjx6vSZmZWX69jUt8jv8D/JukA4KqyvTFx4kXAtr0UKOnt5c91y/0GklYCHoqIUyRtB2wFnATcSnbH7QBsDewbEbdUijsY+BhwrKQvkt12nwJWAd7ZSBQRT0r6AnCopB8DRzP/ZN6ja5yPZWZmC0GvK04cJ+nj5Jf5j5jfvSfgIeDjEXF8j3U4qun/Pcv9zeTqDzcCKwHfJceQHgMuB3Zqvr5VRDwqaSPyRN2fAUuTq1lsGhF/bUp7mKQ55ESPDwH3Aj8H9uix/mZmNk56Pk8qIn4q6bfApsDzyQB1PXB6RPQ8cSAiOo1xUVo1m/RQXqtuvHZpfwP8pm7ZZma2cI1qWaSImMXIFpCZmVlfdZ04IWnxsjr4Ll3SfUTSPpI6tozMzMzqqjO7bwfyGlGXdEl3MTm+s91YK2VmZgb1gtQ7yenbf+2UqOz/Ew5SZmbWJ3XGpNYhF5StYzrwmdFXx4bN1B0+3HOes39z4DjUxMwWRXVaUisCd9cs7x7mL0FkZmY2JnWC1APkeUp1TAFGrOtnZmY2GnWC1JXA/9Qsb1Pmr4tnZmY2JnWC1LHAJpK26pSoXGtqU+CYflTMzMysTpA6ELgO+IOkvSWtVt0paTVJ3wT+AFxb0puZmY1Z19l9EfGIpLeSV8f9IvAFSQ8A9wNPB1Ygl0a6Btg8Ih4dx/qamdkipNalOiLiOuBV5Iri5wNPAiuT12g6r2xfOyKuH6d6mpnZIqj22n2lhfSjcjMzMxt3o7kyr5mZ2UIxqlXQzera+P8+N6p8Zx70vT7XxMwmIrekzMxsaDlImZnZ0HKQMjOzoeUgZWZmQ8tByszMhtZAg5Sk/5L0Q0nnS3pQUkia2ibteyT9U9Kjkm4tl7RfukW6Z0s6TNK9kh6SdJ6k14+lTDMzG4xBt6ReRF7J90HgzHaJJO0AHAFcAGwG7AN8DDi0Kd3SpZwNgE8A25CXGjlT0qtHU6aZmQ3OoM+TOjcingUgaWtgy+YEkhYH9gVOiIiPls3TJT0BHCTpBxFxUdn+fuDlwDoR8beS/xzgajIIbTaKMs3MbEAG2pKKiLk1kr2WXCfwsKbtRwBPAG+rbNsGuLwRoMpjPAYcCWwq6emjKNPMzAZk0N19daxZ7q+oboyIh4HrK/sbaRdIV1wGLA6sMYoyzcxsQAbd3VfHlHI/s8W+mZX9jbTt0lXL6qXMeSTN6lhTmNRlv5mZ9WAitKQaoub2dul6SdupDDMzW0gmQktqRrmfUvm7YUXgxqa0rVpBK5b7mZV0dcucJyImd6poaWm5NWVm1icToSV1ZblfYJxI0rLAC1lwXOnK5nTFWuQFGv81ijLNzGxAJkKQuhC4E3hv0/btgCWBYyvbpgFrSXpVY4OkpUraMyLi/lGUaWZmAzLw7j5Jby9/rlvuN5C0EvBQRJwSEU9K+gJwqKQfA0eTs/S+AxwdERdWijuYPCH3WElfJLv3PgWsAryzkajHMs3MbEAGHqSAo5r+37Pc3wysBhARh0maA+wOfAi4F/g5sEc1Y0Q8Kmkj8kTdnwFLA38DNo2IvzalrVWmmZkNzsCDVESoZrrfAL+pka5VN96YyjQzs8GYCGNSZma2iHKQMjOzoeUgZWZmQ8tByszMhtbAJ06YdfO/u+7Vc54//eBr41ATM1vY3JIyM7Oh5SBlZmZDy0HKzMyGloOUmZkNLU+csEXCW77yg57znPzNXcehJmbWC7ekzMxsaDlImZnZ0HJ3n1lNW+zzi57znPilD41DTcwWHQ5SZgvJ1vv/blT5jvv0u/tcE7OJw919ZmY2tBykzMxsaLm7z2wCedtBJ/Wc55j/e+s41MRs4XBLyszMhpaDlJmZDS1395ktYrb79Rk95znyfZuMQ03MunOQMrOefeB3vQe6g9/tQGe9mxDdfZKmSoo2t9Wb0m4q6UJJj0i6W9KBkia3KHN5SQdIuqOkvVTSlgvvqMzMrJuJ1pLaHTi3adtNjT8kTQVOBo4DvgKsAnwHWFPSGyNibiXfNGBtYDfgRmAnYJqkLSLi5HGqv5mZ9WCiBalrI+LCDvu/C1wBvKsRkCTdAZwGvAP4fdn2FmATYNuImFa2TQdeAOxHBjozMxuwCdHdV4ekVYF1gcOrLaaIOB24DXhbJfk2wGzg+Eq6AA4DVpf0soVSaTMz62iiBakDJT0pabakP0pap7JvzXJ/RYt8l1f2N9Je1dT9B3BZU1lmZjZAE6W7bzawP3A2MBNYA/gCcIGkDSLiImBKSTuzRf6Z5PhTwxTg2jbpGvtHkDSrSz0nddlvZmY9mBBBKiL+Dvy9suk8SSeQraa9yfGlecnbFdPl/7r7zMxsIZkQQaqViLhT0mlAY9r4jHLfqhW0Igu2sGZ0SAetW2NExIip7FWlpeXWlFkXHz/m9FHl+/HbNu1zTWzYTbQxqWaLMb/Vc2W5bzWetBYLjlVdCawhqfn41yr3rca1zMxsIZuwLSlJKwObAhcCRMStki4Ftpe0f2UK+sbAqsCxlezTgA8AW1CZ4Qe8D7gmIq5aCIdgZmPw+RN6b43tu+WCLbGvndp7GXu92a25hWlCBClJRwA3AH8D7gNWJ0/sXQb4YiXp7uQ5UUdKOoj5J/NeBBxVSXcyMB04WNIU8mTeHYH1ga3G9WDM7Cnj22eNrtvyCxs50NU1IYIUOYX83cAngOXIMaWzgW9GxLyuuYg4S9LmwNeBk4AHyNUndouIOZV0IWlrYJ9ymwxcRZ7ce+JCOSIzM+CA83tfBxHgk+svGmshToggFRHfBr5dM+2pwKk10t0PfLzczMxsCE30iRNmZvYUNiFaUmZm1t7BF5/Zc54PrLfxAv8f+Y+zei5ju1dt1HOeXrklZWZmQ8tByszMhpaDlJmZDS2PSZmZ2Zgdf/X0UeXbao0NO+53S8rMzIaWg5SZmQ0tBykzMxtaDlJmZja0HKTMzGxoOUiZmdnQcpAyM7Oh5SBlZmZDy0HKzMyGloOUmZkNLQcpMzMbWg5SZmY2tBykzMxsaDlImZnZ0Fqkg5Sk5SUdIOkOSY9IulTSloOul5mZpUU6SAHTgO2BrwBvBa4Cpkl6y0BrZWZmwCJ80cMSiDYBto2IaWXbdOAFwH7AyQOsnpmZsWi3pLYBZgPHNzZERACHAatLetmgKmZmZmlRDlJrAldFxNym7ZdV9puZ2QApGw+LHknXAtdGxOZN218MXAt8NCJ+1rRvVpdiJwEsvvjio6rT8ssvP+/vBx96aHRlLLfc/DIefrj3/Msuu8D/Dz78yCjKWGbe3w898mjP+QGWW2bpShmPjSL/0xb4/6FHR1HG0k1lPPZ472U8balK/id6zp9lLDnv74cff7Ln/MsutWCv/sNPjKKMJRcs45FRlLFMpYzR5G8u49Eney9j6SUWPI6xlvHYKPIDPK1SxuNzRlfGUouPrYxqfoAnRlHGkpUynpg7uuNYcrElmD17NmRn1oiG0yI7JlV0itCjjd4xZ86c+9vsm1TuZ7faWV6obsa1jP7UodaXeecyHq8VVNofx+O1g2P7Mh6rVUbn43i0VpDvUkadIjocR73fGZ3rUKuIzmXUDPHjWkbNnyod69CPMmq+OzuWUfPnY9syxpq/B3XKWAFo7tUCFu0gNQOY0mL7iuV+ZvOOiJg8lgdstMTGUs4wlDEMdRiWMoahDv0oYxjqMCxlDEMdhqWMYajDojwmdSWwhqTm52Ctcn/FQq6PmZk1WZSD1DRgMrBF0/b3AddExFULv0pmZla1KHf3nQxMBw6WNAW4EdgRWB/YapAVMzOztMgGqYgISVsD+5TbZHLFiW0j4sSBVs7MzIBFOEgBRMT9wMfLzczMhsyiPCZlZmZDzkHKzMyG1iK74oSZmQ0/t6TMzGxoOUiZmdnQcpAyM7Oh5SBlZmZDy0HKzHoi6bmSluye0mzsHKQWIZI2lbSPpAPL/cYDqsfqktaXtFz31H17zKUk/UrSG8ZYzpskLd9m3/KS3jSW8ieIG4FXA0g6S9LqA66PjSNJL5a0laRn1Uz//L4+vqeg95+kOcDrIuJiSXPpct2qiGi78oeks7o8XEREx2AjaWngOGBTQOQlcZ5W6nUquRTUiMvkSPpVl8durscHutRjZ2Bv4Nll07oR8TdJRwOnR8SB3R5E0vMj4sYe6lXN+yCweUScPZr8pYx5r22LfesAF0dE7ateSloD2ABYCfhlRNwp6f8BMyLi4aa0fX09KuVOBl5b6nBSRNwnSdHmy0HSI8AmEXFBeX+/ttXzUZekLYD3AM8Dlm7aHRGxTg9lbcb853OviLhF0muBGyPirh7r9WLgZcBfIuLumnlWArYDVgeWadpd+zUZi/I++Uarz4mk5wF7RMT72+TdD1gmIj5a/n8zcDywJHAfsFFE/LPL488BTgF+EhGnjOlgWMSXRRpHewG3Vv4eyy+BxVrkXwl4KXA3eRXhOvXZENgV+HVEzCpfTO8F9gX2BL7YIt9GTY89mbyA2Rzg3lKPxcmLmd3XqQKStgMOJoPlKUA1IF0MvLNpWzvXSRrtB+AS4FXA2T3mq1KHfU8jn5vuhUhLkM/HDqXMIBc9vhP4CXAZ8JWmbM2vRye10kn6OvB5MjgEsC75Wp4u6ayI2KdFthuAT0l6Zvn/jZJWbluRiBM6PP7ngO8C9wDXMcqL65XW7YlkgJpDfm5+CtwCfBq4HfhMh/wdv5wl1flyfiFwEfk+WJb8jKxIfkbuq3tsklYD3kX7oN0t0O0E/Jxs8TZbiVxIu2WQIq8K8e3K/18HLiC/I74N7AFs2+XxdwV2AU6SdCP5OvwqIjp+R7QVEb5NwBvwEuBqYIMaaW8GvtRm35eBm2qU8RrgNvJLdfGybXEy0N0GrNcl/z+BAyv55gJrl/+3BG6vedyfJBcCngtcD3wWeEbNvK8mv2DfDSzdw3P9XOBN5TYX+HDl/8btf4GjgBtqlrkX8HA5npc0PR8fAS5ZCO+hTwFPAN8nW9nVOnwaOL9NvveQrfE55Ta3w21OlzrcBPyi8Z4aw7H8iLyQ6RZkgKgey87AP7vkvxZ4f+X/i4Czymv7Z+DYGnU4CjiDbEHNBdYmg9wu5TPy8hplvLU8t0+SgfXGplvX91d57JafR+AtwEMd8j4AbFj+nlJe3w3K/9vW/ZyW9BsDx5AXVH6I/FG2Ts+v7Xh/EHwbvxv5a+iiGukeAzZus28T4LEaZZwPfLrNvs8AF3TJ/yjZRQQjg9SbgEd7PPaePwDkr9lHKl+u95FXYG7cZrTJt0fjC7fDrbH/kzXrfxOwe5vn483AvQvh/XMN8K02dXgrcFeHvM8E3lDyfIRswbS8danD/WQX0liP5XbgI22OZRPgvi75x/zlTLba3ka24uZW34/A14BTa5TxDzI4PqvH498K+FW5zSVblb9quh1Znqe2n1Wytdf4nG5RPi9LlP/fBDwyitdmVfJH2e3lef0L+WN3iTr53d03sd0ErFkj3Z1kN86ZLfatB9xRo4y1yS/rVi4DvtEl/wNk10crzyW7RmqLiDOBMyWtSrZsPgjsJOlisrvsdxHxZFO24xld1+vvyC8PAccCuzOym/Ux4KqIuKVmmc8huzlbeRwYMalE0nNrlg1AjbqsBpzeZt+DZNduu7LvAe6RdBj55XtjGft8BhkQHq1ZzXPIq2F3G3vtZkXgX232ieyC62QuGdwAXk++BheU/+8lj6ublcjAPlfSQ2T3eMP5wOdqlPFicoy41hhYxerANuXvYH63Z9Vj5BXH23Z7ks/hFmSLcAcyoDU+R6vS4+e0mEUGqJnAyqWcXwNfl/TuiLikY+6x/oLxbXA38sv43zXS7Uf+IvoIsELZtgLwUbLL6bs1yrgD2LvNvm8Bd3TJfxTZhbI083/pvpr81XkecOgon4PlyO6UK0qZtzC/K3DdcXjOdwSm9KGcm4Bdyt/Nv/w/SV4dujlPt9bcArcadbgdeF+bOnyQnGxQ51g2IL/QnyiP/UR5Td9QI+8Lymu3HTB5DM/ntcDn2hzLF+je3XcR8MPy9++BMyr7tgP+U6MO1wFblr8vB/as7PsUHVqmlXRXA28b43trLvCaUeZ9R3kNZ5T7LSv7fklOrKlb1suAH5NB6jGyJff6sm9t8kfaP7qV45bUkGszo+tpwCvIN8FuNYr5KhkQfgL8WFJjdp/IX0xfq1HGb4DdJC0G/JZsna0MbE+OC/2gRh0uBq4kWyNBBs1Xkb8ed6xRh3kkvYwMsjuQYwDHAv8XEX+WtDY5cPyLUn7fRMRhfSrqOOArks5jfgsgSstwV/ID3ez9jG0STrNTgS9JOpX8UmrUYXkyUJ7UrYAy5f50cuLDT8gfM6uQXWRnlgkHf+5QxK3AheT7C2nEvJSIDrNfK35XjuVy8j3dOJZXkc/nfl3yfw/4naQdyBbQNpV9G5O9Bd2cR7bCTiBbCnuX1/MJcjLD72qU8W3gs5JOivqt0QVExKhPLYqIoyTdTs72vCgizq/svo38nHUk6Z3kZ/ON5PviAOBnETGvxyZyVu/nad+Sn19eiWo2pCTdxMgvpkfJX+K/iYgjapTxXDKobAxMJbtGZpBdLGcDK0eXrqFy8uavyKBUrY/IL5j3x8juteYyXkF+GUwlZ5bOJbt7Ph0Rl3c7jlJG8wfgIJo+ACXdBuS09qWatr+UDMobkmMPM8hu0L0i4t816zDmacZlduX55KSJfwDrlPsXkQPkb4iIh+rUZ7TKF+glZOv2TDKwnEx2vy0G/Hd06XaSNJ2cHLBJ9Uu1dP2dATweERt1yP8L4APk+/BqspttARGxa41jeVqp+1TyNV2JfM8/C5gObFbj/fkGWnw5lxmQF0XEyV3yvxBYJSLOK5+X/cn3SZAB/xMR0XGGn6Tvk+NLS5GfzxlNSSIiPtsiX99Oexmr8viXkpNZfh8RI17Tku55ZGtz547lOUg99fXz3J5y4uZU5n/Bnx0R7cYC2pXxtJL/voh4pMe8o/4ASFqL7JZanPwFdwc5NrQJOZvqDRFxZZfH7zrNOCJeUPNYliO7gTYjzx27l5ye/4OIeLBOGWMl6TnkNOPmOnw1Im6vkf9B4L0RMa3Fvm2BwyLi6R3yzwL2jYi9R3kI1bIWI2duNh/LbyOi1qkBg1be351Eq8+qpD2AX0TE7ZL2pEuLOyK+PvpadibpdRHxl76V5yD11NfphMtyouN5ETEhlrkZywdA0olkS2XDiLizsv3Z5K/W6yJiqy5lHEUOom9Bzir8b3L84QNkl+b/dAt0/TIkJ44+COwQEce12Lc1cHiXIDUTeHtEjHXiRM+GqfUxSMP+PDwln/SnmvJltCsju6j2j4jm7oBGnhVYcHbRyi1mhy1DjunUnklUvtCfx8iTDImIc7vkXY2xnaRIRPyldBtu16Gct7XJ/kZyssKdTRnukvQNchyrm9eQr0VjhQ5FxBPAz5XLxuxHTiHvSNJPgEMi4tIaj9kqf79OHB3tc9lwKbBrGUN5olLuUuRYZbfjO5Hshh5TkJJ0EnAIcHy1Hl3086T7iWzMz0ObsfN2evoB5ZbUkCvdVheQ3VKXM7+Lai3yjfWGiLi1Rb49qDchQuS5Ml/uUo/nAIeTgbKRD/INLdp0Q1Tyv5UcdF2cDIrNyzBFnW6yMrB9GDmedTcjxzDaliPpYeAdETFiQkCp31ERsWyXx3+YbC2dL+kBYOvI6fBI2gg4LiJWqHEc95MzE68mv1x/Ez0s29OPFl15Lg8lX8OenstKGRsCp5Hvy6OZP6Hm7WSX26adfryU/L8g3xsnk9OUmyvRddKCpH8DLyz5jyRni/61W75hMOwtmTrajJ23U+uzPq9sB6nhJum35BTft0RlWZbyC/hkckxohxb5XkMOAotcUWB/cuWJqseAK5pm8LSrxzHkWNS3yJlOI9b6i4hzOuT/B/kF8u5ug/Fd6nEt+cW+U/S4zIqkS8ipxCOWdZF0HPCciHhNlzKuAz4TESeUmWTHRMSeZd+nyJU9nt2pjJJ2afLEz53IwD+XnG13CHBijUH+W8gW3TRyPG3dxpeypK+RU307tujG8lw2lbMxsA8ZKBtLPF1EPhdnd8lbHYNp/jLq+uOnqaw3kM/n28lTLK4iJ/scMZb33HgbpvGkYeQgNeQk3QPsFhGHtNj3fuA7EfHMkTkXSDfvQzCGetxb6tFLs76a/yHyJMU/jbYOpZwHydbLGV0Tj8z7duAP5FT45mn0/02enzJibKWpjEPI812+UKbQ7k227OZNM442i3d2KHNVcgr+e8k1GWeQg/2f6pBnzC26sTyXbcpblvkn8z7cLX3J0/XUg+hx2n/5AbAt+ZxuTP4AOKXbeKOlfnTL99PQNRtthKeT5ye0chvQ8rIRVX365RXkibKjdQs16lrDpeQKFbWUcbg7IuKJiDi6BPZ9yJZlw+3Ajt0CVPFN8jwgShmrMX+a8dFk66YnEXFbqVPj8imHAB8nZ/61czvzV/C4iRxva6woshZ58nY3PT2X3ZTAVCs4VfL067yzapmPkj9Cfivp9eT5SZv3+3Geiup0y7fJN+9z1mLse4SovzKLV5wY9hs5zvCLNvsOBi5bSPX4OfD9MeTfkVyos/bCrm3KWYc8+fV1NdPPoSy2SQ7Or052I61Brj23OqVHYcCv8xvL6zmb/OX/9y7pDwG+Xf7+PDme9AtyxemHyVWn+/pcTpQbOSHovWTQfpL8op026HpNhBujXzuw+jnrujJKL2W7JTX8fgL8tMzWO4L5XVQ7kGMauyykehwB/Eq5IsCJjDzJkGga4C4nJlatDPxbeY2sWicptvA38sTIRjdX80B7RMQLK/8/Tp5sCjmmtkLkJ+nqGo81rsovzh2B95HLA80gg88h0eWyEPSnRdfrczku+jWVXtIbmT8m9XRy5f3PkZNSRrPm3KJotGsHvp9ciqzxd9/GkTwmNQGUwdTdmL9IpshVJ/aOPpwEWbMOPQ9w1zgxsWpE/jb12Idci+1GshXQaoWCbSrprySXYvot2Y3xeaDtyhLR4dpHlTJXY4x99pLOZP4ioKeQs+z+GF0mTPRTr8/lONWhLydHS7qeDNQzyNe6TqC3JpKuBr4SEccMui4NDlJDTtLyEfGgchmd15MD0zPIq4WO6gJxo6zHmAa4y1T6O6LFChHKJWRWiYjm2YetyrmbnFTw6W5pS/r3kK2TRq9Bp4sWdg2UfZxK/3dywsXAfuX3+lyOUx36cnJ0mZ15KAs50D/VlM/5h8nLp4xq7cB+c5AacuV8ml+TV6IdeBfVaJVzQV4bLZblVw9LM5XnY+voYYUC5RVkX0IuAPoxcmpyS9FhGn0pqy9T6YfBaJ7LcajDmKfS29i06JbfmuwiH3W3fB9OEp/HY1LD75fkuMVHJJ1DjlEdFxNkLbIK0b4VsyQ52FrHWeSv7dpfrNHi2kd187Yw2j77liRtStNKIlGmki8EPT+X46Af12BaQPlR0jy2RfQyo2zR0q4l/d4W24JcSaStOieJ91I5B6khFxGfkfQl8lyeXcjrMt0u6UBy1t+dHQvoo14HuDU+SzN9Ffh9Ocen3QoF97fKGF1WW66pL1Ppy7k8x5GXbRfZbfg0YHflpTO2jYgRJ0z32aifyz7qx1R6lDN69iRbyu0uUFjrpOBFTVQu7VGnW75GkV8jJ+TsFGM4SbxaQd8m0I1cReLX5Ie3cSGx9RfC476QHNR+gBzsv4s8gXUu2QK4oUWePah3gb65tLmgYosy59Jlius4Pw/9mkr/3fL6fZJysT8yoH+CnBTzrYXwmg70uSx1GPNU+pJ3l/Le/HI5pm+U203ANcDO430sT4Vbed1bXiyUPGWhzsU0H6Rcgr4fN7ekJpiIuFDSM4Dnk+f5bAu8U9JfyBNSr+9YwOh9mzyHojHAvRkLDnBv0SLPqeRVOfuyNFOx0BcCHaep9O8Cvh4RB1QyzgJ+VFqgHwK+OIZq1zEMi6r26+ToD5eyvkcGp2mRF9bbm7ye1Mp9rPNTWT+65ft6kvjAI7dv9W5kl8jnyEtUzwH+AryH7CLatmw/fxwf/xbyvKzFyht1ncq+r5FjPZ3y70HO4Bv4czmKY5/bw61W64MMzhu32bcJ8Nigj3si3chW1IbkF+yT5CSdxr530KKl79u852eFElSeW97DW1b+b9xeSl4K/rYa5fX1JHG3pIacpPXIK9G+kwwQfwC2iwVnyR1bxhW6nuMzBmMa4I4JvChm9L/PHvKk7HWZP/5StR65qrjV9wiweESEpLvIFtmFZd/95Irs1tquzL9iQpAzLVsRucB0N309SdxBavhdSH5hfQs4MNrPKruJbF2Nl74McD8F3ECOC46YSg+8gly8ts4A/dHAHpJmk6t031+6+XYAvkL+arX6/kUGJsiTg3eVdB45brobHU7gtr53y+9NBr62J4n3wkFq+G1PXueo4wmKEXEt86/1NB7OI08mPoGcuLF3Wb173urf4/jYw6RfU+m/CryaPKXgx5Ias/sEnEG9a4HZfL8ju6Qgx6bOgZ4DygAABixJREFUZf6CyE+SSyVZCxFxERnYkTSJMV4xAfggcED06SRxn8xrtZTla1aJiPNKt9b+zB/gPgn4RCzEFTAWpqap9DeRJzv+oynZMuTMvG0iYtWa5Yq8iu+GzF9J5KyIOK0P1V6klW7ZrckfDadHxL8GXKVFRr9PEneQMutCfb7KsY0vSc9i5CoHhE/mXSjKElV/jojv9qM8d/eZddeXPnt1vzR4VcQQXiZ8WJXW7vfJ1v2IAFX4ZN6Fo68nibslZdaDsVzluM6lwasm8ozIhU3SweQpGQcDlzFy4V9iHC6waCNVrn7Q9r0eNdbpnFeeg5SZTXSS7iRXrti/a2IbV3V+jPXyA8xByswmvDKVf5t+Ddbb8FisexIzs6F3CrD+oCth/eeWlJlNSGWyRMMqwDHAgcCJjFxTsafBehubcprKm2l/xYRv1C7LQcrMJqIWsyVFnwbrbfTKKQDnAy8iX4/Gye/zXpteXgtPcTWziWoYVnG3kb5Frpf4PPJUjdeQLdv/A7YhF1CuzS0pMzPrG0nXU86VIpdNWzci/lr2fR/4r4h4Z93yPHHCzMz66TnALRExh7yA59Mr+06mx5aUg5SZmfXT3eRalAD/Adau7Ov5YogekzIzs366EHgVOcvyD8CekpYhu/4+T14puTaPSZmZ2ZhIei55MdAnJK0DrBYRx0h6OnkZlTeTs/zOJy/aelvtsh2kzMxsLCTNIS8Xf7Gks4CPVi+PUq5TNTciHui1bHf3mZnZWD1OXvQTYCpQPdGasVxrzkHKzMzG6gbgU5KeWf5/o6SV2yWOiBPqFuzuPjMzGxNJ7wEOYX7DRx2Shy/VYWZmC1VpRb0EOA/4GHBVu7QRcU7dct3dZ2ZmYxYR9wD3SDoMODUibuxHuW5JmZnZ0PKKE2ZmNrQcpMzMbGg5SJnZqEj6jaQnB10Pe2pzkDIbIpLeLCkkjbhyqaTXlX2PSVq2xf4/SZoraaWFU1uz8ecgZTZczgeeBDZssW9q2bcU8PrqDklLlG1XRMS941xHs4XGQcpsiETEg8AlwHotWktTgdOBO8rfVesCywNn96MekpaR5Mut28A5SJkNn+nkOmhvaGyotJTOAc5lZEtraiVvI8+rJB0vaaakRyVdKemzkhb43DfGliQ9S9Khku4GHiIvXtcIWPtJukPSI5IuktTThevMRssn85oNn+nAl5jfcoL5LaVzgPuBH0paLiIeKvunAlH2I+k1pZzHgJ8AdwFbAd8DXgHs2PSYAs4AbgX2Ko/1cNn3B2Bz4PhSnxcBxwF9OVnTrBMHKbPhcwG5qnS1tTSVbN1cCsxmfkvrtEor67KImFnSH1DSrBcRVwBI+jFwNPA+Sb9qWppmMeBvEbFTtSKS3kIGqIMj4oOV7RcARwFz+nHAZu24u89syETEI8BFwH9LWq5sngpcEBFPRsTV5CW6/397988aRRDGcfz71PoGBKuoYLQURILFNbYSIa9AsRO7FFaWFipY+QKshWAhgs0ZVA6tFAwWGlsrsfQPxMdiZnU91vPuTDHF99MM98zu7F71Y3bmbke1r5tljQEi4hBwGtjqAqqOm8CN+vHCwKVvDdTWa3tz6h7vA7sLfTFpCYaU1KZuXers1HpUp78uNartk9qu1HZnYNydqWP63g3UVig7Ct8P9L0dqEn7ypCS2tRtgBjx53pUZ5sy0zpYj/lBCS74x2sS/lLfy8xvA/VZY83qk/aFISW1aQJ8pcyWRsAXytb0zjZlTXlEWZt6lZmfa1/3GO7kwLgnavthzvvYrdc5OtB3fM4xpKUZUlKD6qxmApyibFyYZOb33iFvgE/AJnCA3u+jMvMj8BJYj4jVrh4RAVyrH7fmvJUHtd3sFyNiAzgy5xjS0tzdJ7VrTJlJrQHX+x2ZmRHxlN8bG8ZT516ttWcRcZeyBf08cA64N+9L5zLzYUQ8Ai7Vv1t6DBwDLlOCcnXW+dL/ciYltasfPEOh0tX2KG9D/SUzX1AeAz4HrgC3gcOUGdHFBe9jA7gDnKnjrFHC8fWC40gL86WHkqRmOZOSJDXLkJIkNcuQkiQ1y5CSJDXLkJIkNcuQkiQ1y5CSJDXLkJIkNcuQkiQ1y5CSJDXrJ7x0wI1V3MtIAAAAAElFTkSuQmCC\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"top_words_bar_plot(top_words, \"Top 20 Words \\n Prior to Cleaning and Separating\")"
]
},
{
"cell_type": "code",
"execution_count": 187,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The total number of words is 41690\n",
"The total number of unique words is 3098\n"
]
}
],
"source": [
"total_words_unique_words(last_statements_dic)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"It was decided to change all personal pronouns to \"first_person_pronounds\" and all other pronouns to \"pronoun\". The belief is that different types of criminal might speak of themselves versus other criminals. Punctuation will be removed prior to any changes and all words will be converted to lowercase. "
]
},
{
"cell_type": "code",
"execution_count": 188,
"metadata": {},
"outputs": [],
"source": [
"death_row[\"last_statement\"] = death_row[\"last_statement\"].str.lower()\n",
"death_row[\"last_statement\"] = death_row[\"last_statement\"].str.replace(r\"[^\\w^\\s]\", \"\")\n",
"death_row[\"last_statement\"] = death_row[\"last_statement\"].str.replace(r\"[0-9]+\", \"\")"
]
},
{
"cell_type": "code",
"execution_count": 189,
"metadata": {},
"outputs": [],
"source": [
"first_person_pronouns = [\" i \", \" me \", \" mine \", \" my \", \" we \", \" our \", \" us \", \" ours \"]\n",
"pronouns = [\" you \", \" he \", \" she \", \" it \", \" they \", \" him \", \" her \", \" them \", \" your \", \" yours \", \" his \", \" hers \", \" its \"]"
]
},
{
"cell_type": "code",
"execution_count": 190,
"metadata": {},
"outputs": [],
"source": [
"for word in first_person_pronouns: \n",
" death_row[\"last_statement\"] = death_row[\"last_statement\"].str.replace(word, \" first_person_pronoun \") "
]
},
{
"cell_type": "code",
"execution_count": 191,
"metadata": {},
"outputs": [],
"source": [
"for word in pronouns: \n",
" death_row[\"last_statement\"] = death_row[\"last_statement\"].str.replace(word, \" pronoun \") "
]
},
{
"cell_type": "code",
"execution_count": 194,
"metadata": {},
"outputs": [],
"source": [
"last_statements_dic = creating_freq_list_from_df_to_dict_2(death_row, \"last_statement\")\n",
"#http://www.transparentpng.com/details/scroll-transparent-image-_4493.html\n",
"# create_word_cloud_with_mask(\"scroll3.png\", last_statements_dic, 750, \"Word Cloud Prior to Cleaning\")"
]
},
{
"cell_type": "code",
"execution_count": 195,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" count \n",
" word \n",
" \n",
" \n",
" \n",
" \n",
" 1 \n",
" 4732 \n",
" first_person_pronoun \n",
" \n",
" \n",
" 18 \n",
" 2924 \n",
" pronoun \n",
" \n",
" \n",
" 3 \n",
" 1569 \n",
" to \n",
" \n",
" \n",
" 8 \n",
" 1325 \n",
" and \n",
" \n",
" \n",
" 5 \n",
" 1177 \n",
" the \n",
" \n",
" \n",
" 10 \n",
" 760 \n",
" for \n",
" \n",
" \n",
" 15 \n",
" 725 \n",
" that \n",
" \n",
" \n",
" 27 \n",
" 705 \n",
" love \n",
" \n",
" \n",
" 31 \n",
" 659 \n",
" all \n",
" \n",
" \n",
" 105 \n",
" 598 \n",
" of \n",
" \n",
" \n",
" 41 \n",
" 489 \n",
" am \n",
" \n",
" \n",
" 22 \n",
" 460 \n",
" have \n",
" \n",
" \n",
" 47 \n",
" 451 \n",
" is \n",
" \n",
" \n",
" 88 \n",
" 432 \n",
" a \n",
" \n",
" \n",
" 117 \n",
" 423 \n",
" in \n",
" \n",
" \n",
" 20 \n",
" 373 \n",
" this \n",
" \n",
" \n",
" 7 \n",
" 325 \n",
" family \n",
" \n",
" \n",
" 76 \n",
" 314 \n",
" know \n",
" \n",
" \n",
" 135 \n",
" 299 \n",
" be \n",
" \n",
" \n",
" 103 \n",
" 281 \n",
" not \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" count word\n",
"1 4732 first_person_pronoun\n",
"18 2924 pronoun\n",
"3 1569 to\n",
"8 1325 and\n",
"5 1177 the\n",
"10 760 for\n",
"15 725 that\n",
"27 705 love\n",
"31 659 all\n",
"105 598 of\n",
"41 489 am\n",
"22 460 have\n",
"47 451 is\n",
"88 432 a\n",
"117 423 in\n",
"20 373 this\n",
"7 325 family\n",
"76 314 know\n",
"135 299 be\n",
"103 281 not"
]
},
"execution_count": 195,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"top_words = word_freq_dict_to_df_top_words(last_statements_dic, 20)\n",
"top_words"
]
},
{
"cell_type": "code",
"execution_count": 196,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 196,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAakAAAHMCAYAAABvFVeyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3dd7hjVdn+8e9NbzLzAlLEgg1BwQY2FBmaBQEpFlCk6GvDgiiIhVeKiiJgQf2pKAqKICIMRZqUAQEFREVkQKQMIh2GKdQBZp7fH2uFsyeTstNOdjj357py5WSXtVdykjxZXRGBmZlZFS027AyYmZk14yBlZmaV5SBlZmaV5SBlZmaV5SBlZmaV5SBlZmaV5SBlZiNF0tWSrh52Pmx8OEjZhCMpOritNYT8rSDp45LOlPQfSY9KuknSLyW9qMk5y0k6NB8/T9K/Je0rafES19snP9f3Ntj34bzv+ibn3i7prs6fpVk5Sww7A2ZD8IG6xxsDHwGOAi6p23ffuORoYesAPwQuJuXpbmBt4GPAuyRtFhGX1w6WJOA0YHPgJ8BfgU2AbwHPAz7Z5nrT8v2mwIl1+6YATwLrSFo9Iu4uXPfFwJrACZ0/RbNyHKRswomI44qPJS1BClJ/rt83JLcD60fE9OJGSb8FrgS+SQoeNe8GtgAOjogD8rafSXoE2FPSTyPiHy2u93dgdl2aNZsAvwJ2z/t/U9hXO/6iNs+nNEnPiIgH+5WejT5X95mVIGlFSYdLmiHpcUl3Sjpa0rPqjts6V4+9O1e33Zyr366X9OEy14qIu+sDVN7+V+AmYL26Xe8DFgBH1m3/LiDg/W2utwD4I/ASSWsUnkutpHQycB2ppFU0Jd9PK26U9FZJF0l6UNIjkq6UtFP9dWttS5LWlXSGpFnAbYX9q0n6laRZOa0/SHpZo+cgaTNJ50u6V9JjuRrydEmvaPXcrfpckjJrQ9IypC/iVwPHA5cB65Kq394iaYOIuLfutC8AKwM/Ax4FdgGOkrRiRBzRZT6WAlYF7qzb9RrgxoiYWdwYEddLmpP3tzMN2JYUeGrVd1OA+cClpKrHLerO2QS4IyJuLOTx/aSS162kEt880nM/QdJzIuKwujRWyWmfTXrNVsrpLAdcSHqdjyaV9l6f8zkPeOq5Sno1cA5wM3A4cD+wRs7/ukCrUqRVXUT45tuEvpGqsgLYvcn+vfP+r9Rtf2/e/qPCtq3ztpnAqoXtywL/JAWsVbrM53457c8XtolUirqgyTnXAf8ukfYrctpHFbb9Grgq//3uvP9Z+fGL8+Pj6p7j/cBdwMp12/9BCi5rFLZfndPYp0F+Pp/37V23/cC8/erCtq/kbWsP+73kW/9vru4za2974DFgoRJQRJxIqn7bvsE5v4hC6SoiHiVVxy0DvL3TDEjaHPgacAXwncKuZUiBal6TUx8DlitxiWtIgXVKYdsmpFIOpOpACvtr98Wqvo1JpccfRaFUl5/7d4ClgHfUXXce8P0G+dkOeAj4f3XbjyB15Ciak++3z6VNexpxkDJr7/nArRHxcIN904HVcvVUUaMu29fl+xd0cnFJbwROJQXEbSPiicLux0iliKWbnL4M8Ei7a0QqklwMvFjSmoX2qIvz/nuAfzHWLjUl319USOb5+X6R9jTg2nxf/9xvi4hGAfYFpNd8oX2ROlXcXnfs0cCfSNWLD+S2q8/WtxfaaHKQMmtPXZzTaKG2jtOR9AZSe81dwOZR1/aVg8tdpIDSyLOAO0perlYqmpJvwcJd8i9mLDhtAvw3Im4uZrfkdYqaBVDR+DVc5DoR8RDwJlJJ7ghgSeBQ4AZJW3aRJ6sQBymz9m4G1mpQWoLUMH9PRNR/2b60ybEAt5S5aA5Q5wL3AJtGRH2HiZq/kEpAK9edvy4wCbiqzPVYeLzUFOCaiJhV2H8x8CJJm5KC4rSFT6cWsBr1wKu9HqWee07r+ZIWKiFKegYNAnIkl0bEARGxab6eSG1YNsIcpMzaO5VUbfbZ4kZJ7yYNsp3a4Jw9JK1aOHZZ4NOkNphz2l1Q0utJAepeUoBqVRo6gfRZ/nTd9s/k++PbXQ8gUrf3e0kBqtgeVVN7fGC+v6hu/6Wkdq2PSVqptjH3jvws8DhwZpm8kAYnrwDsWbf9c9T1Spa0SoPzbyG1Va3UYJ+NEHdBN2vvR6Ru1F+VtDbwZ8a6oN8OHNDgnFuBKyX9lNSj7wOk8U37RUTLWSzyNc4ldXg4GpiSJpVYyEmF9pqTSIOR/0/SM0kzTkzJef5xRPy9g+d6EfCe/PdCQSoi7pR0E/DmvGla3f5HJe1F6oJ+paSjSYFpF1Lvwf0iouwUSj8A9gCOyCXCWhf0t7Nom9Thkl5FqhadQaru25FU1fmDktezqhp290LffBv2jTZd0PMxK5LaO/5D+uK9G/g5sGbdcbUu6O8G9iVVW80DbgA+WjI/tTRa3VapO2d50jRI/83Xu5HUZX3xDl+Lj+X0F9RfI+//Wd5/a4s03kYKcA+RAvSVwM4NjruaQlfyBvtXJ3WDn53T+gOpKnGh80iB6xTSQODHSKW5y4Bdhv3e8q33m/I/2cz6QNLWwBnAuyPid8POj9moc5uUmZlVloOUmZlVloOUmZlVltuk+kjSk6TAP3fYeTEzGyErAgsiYpEe5w5SfSRpAaBJkyYNOytmZiNjzpw5kMZkL1K753FS/TV30qRJk2bPnj3sfJiZjYzJkyczZ86chjVQbpMyM7PKcpAyM7PKcpAyM7PKcpAyM7PKcpAyM7PKcpAyM7PKcpAyM7PKcpAyM7PKcpAyM7PK8owTA/C6N2/a1XlX/HFa+4PMzCYQl6TMzKyyHKTMzKyyHKTMzKyyHKTMzKyyHKTMzKyyHKTMzKyyHKTMzKyyHKTMzKyyHKTMzKyyHKTMzKyyHKTMzKyyHKTMzKyyHKTMzKyyHKTMzKyyHKTMzKyyHKTMzKyyHKTMzKyyHKTMzKyyHKTMzKyyHKTMzKyyHKTMzKyyHKTMzKyyHKTMzKyyHKTMzKyyHKTMzKyyHKTMzKyyKhWkJB0oKSRd3WDflpIul/SopHsl/UTS5AbHrSDpSEl35WOvkrRtk+uVStPMzIajMkFK0suA/YB7GuybApwF/BfYBtgH2BY4U1L9c5gKvB/YH3gHcB0wVdJWPaRpZmZDsMSwMwCQg8LRwM+A9YH60sy3gGuB90bEgnzOXcAfgHcDJ+ZtWwFbADtExNS8bRrwAuAIUlDqKE0zMxueqpQY9gaeDXy5foekNYHXAL+qBROAiDgPuAPYsXD49sAc4LTCcQEcC6wj6aVdpGlmZkMy9JKUpBcABwPvj4i5kuoPWS/fX9vg9H8W9teOva4YeLJrivs7TLOY19mNthdMarPfzMw6MNSSlFJE+ilwbkSc2uSwlfP9Aw32PVDYXzu22XHFtDpJ08zMhmTYJakPAxsCLy1xbJTc3uy4To5tuD0iWvb8yyUtl6bMzPpkaEFK0iqkzgvfAB4udP1eAlg8P34MmJm3NyrdrMTCpaGZLY6jcGwnaZqZ2ZAMs7rv2aRSxzeAWYXbG0ltQrOAA4Hp+fhG7UTrs3C70nRg3QZdyNfP99cWjiubppmZDckwg9RNwKYNbv8Abs5/HxURtwNXAe8vBh9JmwNrAqcU0pxK6r6+Td21dgVuiIjrADpM08zMhmRo1X0R8RBwUf32Wg+6iCju2480fukESUcBzwIOBa4ATiocdxYwDTha0srADGA34E3AO+suVTZNMzMbkqqMk2opIi4EtgbWAs4Evp3v3x4R8wvHBbAd8BvgEOBs4OWkwb1ndJOmmZkNj9L3uvWDpNmTJk2a9JKXv6qr86/447Q+58jMrPomT57MnDlz5jTqQT0SJSkzM5uYHKTMzKyyHKTMzKyyHKTMzKyyHKTMzKyyHKTMzKyyHKTMzKyyHKTMzKyyHKTMzKyyHKTMzKyyHKTMzKyyHKTMzKyyHKTMzKyyHKTMzKyyHKTMzKyyHKTMzKyyHKTMzKyyHKTMzKyyHKTMzKyyHKTMzKyyHKTMzKyyHKTMzKyyHKTMzKyyHKTMzKyyHKTMzKyyHKTMzKyyHKTMzKyyHKTMzKyyHKTMzKyyHKTMzKyyhhakJG0k6VxJd0h6TNJ9ki6U9PYGx24p6XJJj0q6V9JPJE1ucNwKko6UdFc+9ipJ2za5fqk0zcxseIZZkvof4Abgc8DbgI8A84CzJO1UO0jSFOAs4L/ANsA+wLbAmZLq8z8VeD+wP/AO4DpgqqStigd1mKaZmQ2JImLYeXiKpCWAGcCNEbFZ3nYlsCSwQUQsyNu2BP4A7BQRJ+ZtWwFnAjtExNS8TcAlwMoRsW7hOqXS7CL/sydNmjTpJS9/VTenc8Ufp3V1npnZKJs8eTJz5syZExGL1GZVqtQQEU8Cc4AnACStCbwG+FUtmOTjzgPuAHYsnL59Pve0wnEBHAusI+mlXaRpZmZDtMSwM5Cr1xYDVgU+CqxNqn4DWC/fX9vg1H8W9teOva4YeLJrivs7TLM+r7Ob7csmtdlvZmYd6KgkJemWZh0R8v6tJd3SYR5+Syo53QF8BnhPRJyT962c7x9ocN4Dhf21Y5sdV0yrkzTNzGyIOq3uWwtYocX+5YHndZjm54HXkjounAX8VtLOdcc0azir396qga3ssU3TiIjJrW6k6kYzM+uTflf3rQY80skJEXELUCt9nSHpDOCHkk4EZubtjUo3K7FwaWhmi+MoHNtJmmZmNkRtg5SkNwNTCpt2kPSiBoeuBOwEXN1jnq4EtgaeCUzP29Yj9bwrWh/4U+HxdGBHSYvVtUutn++vLRxXNk0zMxuiMiWpTYED8t8B7JBvjdwE7N1tZnKX8SnAbGBmRDwp6Srg/ZK+W+guvjmwJnBK4fSpwIdI455OK2zfFbghIq4DiIjbO0hzaDZ6W9Omv5b+dM7pfc6JmdnwlAlS3wWOAUSqlvsMCwcBSMHroYgoXVUm6dfAf4C/AvcDawC7AZsBn8rd0QH2I5V4TpB0FPAs4FDgCuCkQpJnAdOAoyWtTBpvtRvwJuCddZcvm6aZmQ1R2yAVEXPIHQIkbQpcHxH39uHafybNDvFRUtftOcBVwLYRcUbh+hdK2ho4iDRY90HgVODzETG/cFxI2g44JN8mk7qc71BMr5M0zcxsuDrqOBERF/frwhHxA+AHJY89BzinxHFzgU/mW1/SNDOz4em4d5+k55JKPy8m9ZBT3SEREZv3IW9mZjbBdRSk8gzlU4GlSFVk7q5tZmYD02lJ6hukTg7bRcRVA8iPmZnZUzqdcWId4LsOUGZmNh46DVL3AY8PIiNmZmb1Og1Sv8JLWZiZ2TjptE3qGGBTSacB3yMNmF1kXFFE3NZ71szMbKLrNEj9izS7hEjz6zWzeNc5MjMzyzoNUgfTejkMMzOzvul0xokDB5QPMzOzRXTaccLMzGzcdDrjxJvLHBcRf+wuO2ZmZmM6bZO6iHJtUu44YWZmPes0SO3RJI0XArsDtwI/6S1LZmZmSacdJ45ttk/SYcDfes6RmZlZ1reOExExC/gZ8Pl+pWlmZhNbv3v3zQJe0Oc0zcxsgupbkJK0DPAB4O5+pWlmZhNbp13Qf95k10rAG4BnAvv2mikzMzPovHff7k22PwD8G9g7Io7vKUdmZmZZp737PEOFmZmNGwcdMzOrrE6r+wCQtCKwBWM9+W4BzouIB/uVMTMzs46DlKT/BY4AViCtKwVpqqSHJH02Io7uY/7MzGwC67R337bAUaSS01eAa/OulwGfAo6SdG9EnNHXXJqZ2YTUaUnq88D1wOsi4qHC9gsk/QK4HNgPcJAyM7Oeddpx4hXAMXUBCoDcHnVsPsbMzKxn3fTuU4t9XlrezMz6ptMg9Q9gN0nL1++QtAJpsO8/+pAvMzOzjtukDgdOAf4m6Ujgury91nHiRcAO/cuemZlNZJ3OOHGqpE8ChwLfZ6x6T8DDwCcj4rT+ZtHMzCaqjtukIuL/Ac8B3gt8EfgS8B7g2RHxo7LpSNpc0jGSbpD0iKTbJZ0iaf0Gx24p6XJJj0q6V9JPJE1ucNwKko6UdFc+9qrcbb7R9UulaWZmw9PVjBMRMRs4qcdrfwxYGfgOqVv7aqQu7n+RNCUiLgeQNAU4CzgV2B94Fqkkt56kjSNiQSHNqcCrczozSG1kUyVtExFn1Q7qME0zMxuStkFK0uLA14FbI+LHLY77OKmE9eWIKNPL7xMRcW9dGn8gBZd9gR3z5m+RBg2/txY8JN0F/AF4N3Bi3rYVaaqmHSJiat42jTR10xGkoEQnaZqZ2XCVqe7bhRQ0/tLmuCtJA3l3LnPh+gCVt80GbgSeDSBpTeA1wK+KpZuIOA+4g7FABrA9MAc4rXBckMZurSPppV2kaWZmQ1QmSL0HOD8i/trqoLz/XEoGqUYkPRNYj7HpltbL99c2OPyfhf21Y69rUFV3TV1anaRZn7/ZrW7ApGbnmplZ58oEqQ2A80umNw3YsJuMSBJpXsDFSF3dIbVZQVpUsd4Dhf21Y5sdV0yrkzTNzGyIynScWAlYpGquifvy8d04DNgO2CMirq/b16yNq357q7awssc2TSMiWvb+c2nKzKy/ypSkHgRWKZneysAi8/q1I+nrwOeAvSLimMKumYV0663EwqWhmS2Oo3BsJ2mamdkQlQlS04G3lExvy3x8aZIOJo21+nxEHNng2tC4nWh9Fm5Xmg6sK6n+OdXGXV1bOK5smmZmNkRlgtQpwBaS3tnqoDxodkvg5LIXl3QA8H/A/0XEYfX7I+J24Crg/cXgI2lzYM2ct5qpwGRgm7pkdgVuiIjrukjTzMyGqEyb1E+AjwO/lXQ48NOIuLW2U9JawP8C+wD/zse3JelzwIHA74HzJb2+sHteRPw9/70fafzSCZKOYmzg7RUsPKD4LFLHjaMlrUwab7Ub8CagPsCWTdPMzIaobZCKiEclvYMUTL4IfEHSg8Bc4BnAiqS5+24Ato6Ix0peu1bi2Trfiv4DrJWvf6GkrYGDgDNJbWSnkqoH5xfyGZK2Aw7Jt8mkCXB3qF8puGyaZmY2XKWmRYqImyS9Evgw8C7SrOerkwLVJaQqvp9FxKNlLxwRUzo49hzgnBLHzQU+mW99SdPMzIan9Nx9uYT0/XwzMzMbuG5W5jUzMxsXDlJmZlZZDlJmZlZZDlJmZlZZDlJmZlZZDlJmZlZZDlJmZlZZDlJmZlZZDlJmZlZZDlJmZlZZpadFstGz8Q7v6/icS045fgA5MTPrjktSZmZWWQ5SZmZWWQ5SZmZWWQ5SZmZWWQ5SZmZWWQ5SZmZWWQ5SZmZWWQ5SZmZWWQ5SZmZWWQ5SZmZWWZ4WyVqasstHOz7nouN+MoCcmNlE5JKUmZlVloOUmZlVloOUmZlVloOUmZlVloOUmZlVlnv32UBt/pF9ujrvgqMO73NOzGwUuSRlZmaV5SBlZmaVNdQgJenZkr4n6VJJD0kKSVOaHPs+Sf+Q9Jik2yV9U9IyDY5bTdKxku6X9LCkSyRt1EuaZmY2HMMuSb0I2Bl4CLig2UGSdgF+DVwGvB04BPgEcEzdccvkdDYBPgVsDzwIXCDpVd2kaWZmwzPsjhN/jIhVASRtB2xbf4CkxYHDgNMjYs+8eZqkJ4CjJH0nIq7I2z8IvAzYICL+ls+/GLieFITe3kWaZmY2JEMtSUXEghKHvR5YHTi2bvuvgSeAHQvbtgf+WQtQ+RrzgBOALSU9o4s0zcxsSIZdkipjvXx/bXFjRDwi6ebC/tqx0xqkcQ2wOLAucGWHaT5F0uw2eZ3UZr+ZmXVg2G1SZayc7x9osO+Bwv7asc2OK6bVSZpmZjYko1CSqomS25sd18mxDbdHxOQWaddKWi5NmZn1ySiUpGbm+0alm5VYuDQ0s8VxFI7tJE0zMxuSUQhS0/P9Qu1EkpYDXsjC7UrT64/L1gfmA//qIk0zMxuSUQhSlwN3Ax+o274zsCRwSmHbVGB9Sa+sbZC0VD72/IiY20WaZmY2JENvk5L0rvzna/L9JpJWAR6OiLMj4klJXwCOkfQD4HekXnqHAr+LiMsLyR1NGpB7iqQvkqrt9gKeBbyndlCHaZqZ2ZAMPUgBJ9U9PjDf/wdYCyAijpU0H9gP+DBwP/Bj4IDiiRHxmKTNSAN1fwQsA/wN2DIi/lp3bKk0zcxseIYepCJCJY87DjiuxHGNqvF6StPMzIZjFNqkzMxsgnKQMjOzyhp6dZ9ZO2/d++COzzn3O18ZQE7MbLy5JGVmZpXlkpRNCFvt/52Ozznra3sPICdm1gkHKbOStjnkpx2fc8aXPjyAnJhNHK7uMzOzynJJymycbPfd33R13qmf2anPOTEbHS5JmZlZZTlImZlZZbm6z2yE7HjUmR2fc/JH3jGAnJiND5ekzMysshykzMysshykzMysstwmZTbB7PzL8zs+54RdtxhATszac0nKzMwqyyUpM+vYh37TeWns6J3GSmOfPPm8rq77gx237Oo8G10OUmY2kvY9vfNAd9i2Cwe5r5zTeRoHv82Bcjy5us/MzCrLJSkzsy5988Luqi2/sJlLY2W5JGVmZpXlkpSZ2RAdeWnnnVAAPv2miTEswEHKzGzEHX3lBR2f86HXbj6AnPSfg5SZmXHC1Rd2fM7Or9zsqb9Pu35aV9d957qbttzvNikzM6ssBykzM6ssBykzM6ssBykzM6ssBykzM6ssBykzM6ssBykzM6usCR2kJK0g6UhJd0l6VNJVkrYddr7MzCyZ0EEKmAq8H9gfeAdwHTBV0lZDzZWZmQETeMaJHIi2AHaIiKl52zTgBcARwFlDzJ6ZmTGxS1LbA3OA02obIiKAY4F1JL10WBkzM7NE6Xt54pH0Z1Jc2qhu++uAy4H3RsRv6/bNbpPsJIDFF1+8qzytsMIKT/390MMPd5fG8suPpfHII52fv9xyCz1+6JFHu0hj2af+fvjRxzo+H2D5ZZcppDGvi/OXXujxw491kcYydWnMe7zzNJZeqnD+Ex2fn9JY8qm/H3n8yY7PX26phStMHnmiizSWXDiNR7tIY9lCGt2cX5/GY092nsYySyz8PHpNY14X5wMsXUjj8fndpbHU4r2lUTwf4Iku0liykMYTC7p7HksutgRz5syB9H28SMFpIgepfwP/joit67a/GPg3sGdE/KhuX5kgFcDcFvshleC6VYU0qpCHqqRRhTz0I40q5KEqaVQhD1VJY7zysCKwICIWaYKasG1SWasIvci+iJjcy8VqQa6XdKqQRhXyUJU0qpCHfqRRhTxUJY0q5KEqaVQhDxO5TWomsHKD7Svl+wfGMS9mZtbARA5S04F1JdW/Buvn+2vHOT9mZlZnIgepqcBkYJu67bsCN0TEdeOfJTMzK5rIbVJnAdOAoyWtDMwAdgPeBLxzmBkzM7NkwgapiAhJ2wGH5Ntk0owTO0TEGUPNnJmZARM4SAFExFzgk/lmZmYVM5HbpMzMrOIm7GBeMzOrPpekzMysshykzMysshykzMysshykzMysshykzEaEpOdKWrL9kWZPHw5SNu4krSPpTZKWb3/0U+csJennkt7Y47XfLGmFJvtWkPTmXtIfsBnAqwAkXShpnSHnx1qQ9GJJ75S0asnjnz/oPI2iCT2Yd7xIWg14HrBM/b6I+OM45mNLYFPS7O8zgQsi4oIWx/+8g+QjIj7U5vp7AF8HVsubXgP8TdLvgPMi4ictEn9c0nuAX3aQp0amAW8Armyw7yV5f3erVrbQp9fycaBWkppCWoOn13xtA7yPxu/PiIgNer1GN/K6bi8F/hwR95Y4fhVgZ2AdYNm63W3fm72SdASwbETsmR+/jbTq95LALEmbRcQ/2iRzk6SzgR9GxNmDzO+g5ff7VyNiRoN9zwMOiIgPlknLQWqAJK0B/IoUGBbZTVqzqtQXoqRnAFvR/Mvkqy3OXQY4FdgyX3cesDSwn6RzSFNBNVq6djMWXldrMmkBs/nA/cAqOf9zgFlt8r8zcHTOx9lAMSBdCbynblsjfwFeCVzU5riWWWmxb2nScyuXkLQusAnpdfhZRNwt6TnAzIioXxa5/rVspdlxtwB7SXpmfryxpNWbJhJxequLSNoH+BZwH3ATPSxsJ+ntjL0WB0fEbZJeD8yIiHvanNvTF7ykFwJXkP5/y5HemyuR3puzyj4vSWsB76X5Z6xVoNsG+Gbh8UHAZcCBefsBwA5tsrA38DHgTEkzgP8H/DwiWn626uVVx88HLgQui4iOl5SWtCywO2P/049HxI2SdgCuiYib2iSxO/BjUum/3iqkeVJLBSkiwrcB3YCTSSWWfYC35H/4QreS6byO9MFb0OQ2v8353yIFpk8Dk/O2ycCngMeAb5TMwx3ALsDiedviwAfy9te2Of8fwE8K5y0AXp0fbwvcWSIPryJ9Ue8ELNPB/+G5wJvzbQHw0cLj2u2twEnALSXSWwI4lhTQFuT72nM5HfjagN5P78v/x/mFa3f1nsjp3Qr8tPb/7DJPK5BKnwuAJ+pei98A3y6Rxr+BDxYeX0H6gn0z8CfglDbnn0T6Ul629r4iBbiP5ffmy0rk4R35tX0SuJP05Vq8tXxfAA8Cm+a/V86vwyb58Q5l3t+FtDYnfXc8DjxM+nG3QQfnn0L63lkAPAKcB3yBVHOhEuevRprHdD5wW93/9GjgxyXSWECT7wTSj+2HSz+ffn2AfGv4z7i/+OHrIZ0/kb7kNwSW6uL8/wBfarLvy8CtJdK4FPhMk32fJf1ia3X+Y8AW+e/6IPVm4LESeZgFPMrYl/Qs0uKUtdvMJucdwFgwaXar7f90iXwcnD/8nwbWrnsuHwf+MsD31DOBN+ZrfpwGP3wo+QMImAts1mN+vp+/ELchlWKKr8UewD9KpNHTF3z+It2R1Ma+gMIXOvAV4JwSebiaFBhX7fJ1mFN4f2+T36dLFN7fj3aR5pr5vXZnfk3+TPqRuESJcwW8FvgScEHhc/MA7YP+sfk1fTnpB1nxf7oLcH2T894J/DzfFgBnFB7Xbifk59Py+6J4c3XfYAXpn92r9YH3RcRVXZ6/OunXaSNXkD7I7bya9GXfyDVA0+rG7EHGVj2u91xSQG/nNMpXmRX9hvQlJHdfOh0AACAASURBVNKvzP1Iv96L5gHXRUSZ/9euwEERcaSk+uraGcAiDeCSnttJhpvlIyLuA+6TdCzpy3dGrs79H2BWRDzWwWUuJr23Luwkb3V2BPaPiDMavBb/Jf1v21nAWLX3RqQSxGX58f2k59bKKsA9EbFA0sOkWoKaS0k1Ge28mFTt3bb9q4l/kYLT+aQv8ssi4sm8b03Kvb/rzSZ9oT9A+gyvSWqTPUjSThHxl2YnRooaV+bbIZLeQKp63JL2SxFtBXwuIq5p8D+9I+ejkXWA7WtZIP1Yqq8+n0daUPazbfLwFAepwTqZ9A8/v8d0unmDF91NKuo36iTxWuCuEmnMIbWrNEpjc9Kv8lYuAj4n6XRStRBA5JWRP0qJ1ygidi+Rz0bn3QDcAE913vh9RMzsJq1sDRp3vID0Bduo1+KtdBZgW7ZVRsQekjaRdBzpf7gYsEDS5cAXIuKyVudnewGnS7oXODsiZneQv5qVSF/QjYjUTtROr1/wdzL2A+hWYGPG3qfrk0oR7dxGqrrs1uHAbyTtQgqS2xf2bU76IVeKpJcCe5Jei2VJP6w+EhF/kvRqUlvPT0nts83SeEG+7haMdZb6N6mdq2lnqWwFUjBqZBma9AqPiEOBQ/P1F5BKls0+J6U5SA3Wr4GfS4JU9F3kizEiyrx5fwh8JKfRjd8BB0iaA/w6IuZKWpH0Idgf+EGJNI4DPp+DyvGkwLc68H7gc8B32pz/f6Qv9umkD12QqqteSfoVu1unT6obEXFsH5K5i7GegPXWo3Hp+YN0VwpsKHeVP4/U6eGHOU/PIlWPXZA7G/ypTTK3A5eT/rfk92lRRES774jbgA1o/FpsANzY5nzo/Qv+ElIJ7HRSSePrktYk/RjanVSSbuebpB9RZ3ZYGgUgIk6SdCfweuCKiLi0sPsO0nu+pdx7dU9SkL0POBL4UUQ89SMyIv4maV/S/75ZOjNIJdg7SaXkfUg9eZsFnno3kkpBjYLZm0jtVS1FRN+GN3kW9AHKvyZq6l9okb4E2vbuk/QZUieHWcCZLBrsIiK+3+L85YDfk7otB2O9+0T69bptuw9mHkT6c1JQKj4Xkb7kPlj49dssjZeTvpCmMFbXfTGpreufrc4tpPESUvXkQl3pST3Kynwh9txdWdJ3gXeROlv8i/RluAFwL6l66YSI+FKZvHRL0jRS54Ativ+7XPV3PvB4RGzWJo2fAh8ilXKvJ5UCFxIRe7dJ42DSemw75+vWXosAzgWOiIhvlXg+b6TBF7ykg/K2s1qc+0LgWRFxSX6ffjfnJ0ifl09FRMsefpK+TaoGW4r0xd7oM/a5ds+jF/n74ipSO9+J0aRXXu7CfWBE7NEinUdJNTnnA+dHxJ0d5GNv0lCRvYETSdWNryfVIPwS2CcifloyrfphLxdGREc1Sw5SAySpbemgzC/7umDXJJnmwS63h9xN+lU6hVQ1MpP0YbwIWL1kWwx5AOkUxt50F0VEs+qeZmksnc+fFRFlqmJq561PaqtYnPRL8i7SB2cLUq+sN0bE9DZptO2uHBEvaJPGZFIwWpvU1rVBvn8RqU3qjRHxcNnn1Q1JDwEfiIipDfbtABwbEc9ok8Zs4LCI+HoP+VgaOIv0nphJah+6G1iVVLp6e7sfL1XQ62esT3l4Q0T8uQ/prEX6TGxOqqJfhVTVd36+TYu04Guz8wUcQ+q5O5/02ZhPquY7NkqMb2ox7CWAVsNeFk3LQar68i+nliLiPy3Onw+8oVH9sKQNgCsH/QHsB0lnkALBphFxd2H7aqSAe1NEtGwUlnQSqSF+G1L33g2Bf5JKFP8HvKVdoMvpLE9q03k7qcvu/aTxX9+JiIdKnN9rae4hYJeIOLXBvu2AX5UIUg8A74qIXjpOkKuAd2LR1+L4iGg47qz4nswBotUXUZlqx3E3Ks8h12BsThrq8WbS8ISlSpz3BlKb+lP/04i4pOQ1v0X6fOwL/DIiZucfdx8ADiN9Tr5YJq3K/eNtUa0CUEmtBrAuSap2K5dQD7Nn9DhYElJd/ceKASqfeI+kr5IalNt5Hakao/YrThHxBPBjpelrjgDe1i6RXFI6JN860qfBp1cBe+c2lFpHFCQtRWojLNMT9AzSl1dPQSoiFpDaKY/v4LSDSW1itb9H8ddyz89BfZ7VpS7tWjf0LfLtDaTvgvqB5s0sIPXKXYrU07CTQcHvJfeArW3IHXO+n9vDPww4SA1biTdgR2+6Dq+9Igt3xV29QTfoZUmdJ8pMO1M/e0Yt8AUlZs+Q9A5S4/Hi+Xr1Rf0yH/ClSB+aRmofpnZ67q4s6YfAL3oYEvBNUvVgrTT3dhYuzW1TIo2DgD8ANytNK1XryPIu0i/fLUukcQzw09yOcxap7WEh7Tr2SDoT+AVwWjFYthMRBxX+PrDsef3Ua0moT8+hHzORLETSJ0hBaQpp6qzHSWOsvkpqv23adT2fvzyps8lWLPwDN/L/e6dYdEaVev0Y9gI4SA1aozfgyqQunrPzra3cW6fdB+iFddv2ZuyNEMAibRe15IFvlMjGD0gzPuxH6m1Vqj654Ouk9qSdovuxKNNJX+RnNtj3YdIXfTv96K78AeBjkq4nfUEfF22m/qnTc2kuIqYpTR90CKlapfZD4Qpg13al2qz2vPchlb6Kyk7btTbwW+ABSScAx0TEX0tcuwqGXpqLiLUGkOz3gL+RahYuAC7tsMfiYaQZcr5IClb3kH747Ex6nQ4n9UJspR/DXgAHqYFq9gaUtBlpvMK7SyZ1MYt+gFYhdbudm/fXO4cUBAV8m9Tjqb7acB5wbV132WY2AfaNiE6qJ4p6HSwJaQzGb/NYoPpu8BuSBpa204/uyqvma+2e8/QNpTkQfwGcUaKjQD8GnxJpcuDX5d6btcG8ZatyIM0I0ZOIeHHumbc7qVS+p6TrSD1Bf93j/3ug+l2a60N1dr+sEt2Neat5D6mqrtgr8zbgUElLkH5gtQtS/Rj2kkQPU6L41v2N1G33wh7TWJn0i+ldbY47gNRFt5dr3Uee9qXL868HduzivOcCSxYe704qDRXnqbud1ImgTHovBDbOfy9JGmP0AKln2i+BSR3mb03S1DPX57zcB3yvzTk3kbr9Qyr9HVjYtxcpgA39PdrF/2oZ0vyC55J6Wz5OqgYcet7G4bl3Nfdf8f2d/2556yJfa5Paotbu4JwHgc2b7NsCmFsijeVIbZ216cYeYWz6sT/Qydybw/7nTtQbqSrwoT6kszPwz3HI748pMVloi/N3I81BWPrNmc+bT56oMr/p1yGVDtclzWG3DiUmzRyn/+nm5Ak52xz3C+Cb+e9985f5T0ml60dIM18P/fn0+FpsVOa1eLrc6HLuv7r3d7v5JUu/lqTahf/WnX8b8N4S5/6eNO6w0b6DgTNL5kGk9tZv5ff3N0m9Zzt6bV3dNzyb0Pt0R+Q0Wo7r6ZOOZ8/IAySLVgdulNTJYMlF1lCK9Am4vtMnMCiSNiaV8N4FPIM0GXArXyPNDgGpGnYtxgaf/o5UnTIueu0KX5fWsqTXYHfG5m1ruVzI00i31dkfBG4u/N1zu1htCAKpluUIxmYjeR9wvKRHIuKMunOKa5PtD5ychxacyFi1+k75VpwRpKn8OT1b0l8pVH/WOnBF2bGZOeLZAEhq1INladLswm8nDaQs1Q2zSfpLkoLHSyNivW7TKXmtjmfPKDFAsmiR83Ma00kdJo4n9Q7clxZT7USbNZRymmvRY9tB/qDtRpps9gWkoHs8qddfuyBVCf0Y2JzTaRSkjyV1KOnHD7HKy51o9o+IkyuQlyuBu6LBmEGluTNXjYjX122v791Y7L1L3faGn9W69J5BmiptZxoMVyElUm4tPQepwWnyJT2P1KvsOOBbUaLbbi551FuaVN+8ErBbRBzXQ1bb6nX2jDwg+a5oMNVLDrbPigbjwSS9j1Q9Viv1txrzVebD07YrfLsvZkkXMFZSOJvUlfv3MQIzKxT1Y2CzpJtJJcGRC9L9lD8fHyUtfdLx3H99zssjwLsjYpFesPn9f1JELFe3/UA6KMVFodNJkzwcTSq5HU2T3sCtvi+KXN03QNG/SRYXY9E30FxS1dBxUW7G656UfUO1cAtp/q9GYzReTpp8dpEAExHHSzqPFJAvAT5BiQkuW+hHV/iVSD3wRr2k0I+Bzf8kdV8fuSDdqz5VZ9en+XJS6aNZKb9MD9ZmM/FDGv7SaI7GA0uk24l3AF+MiO/2mpCD1AiIiCnDzkMfiOaloJazXkSDNZR6yEfPXeEj4lU9XL9Keu4KHxHbDSpzI+AzTbZ/oMG2YNGxaAtRmgX+mHzsvSwaTMqWdC4DviLpwuKPKEnPJJWQS01t1KNl6WB5klYcpAYsT8C5K4vO2v2rRlVfVdZpI3u/Z72IJrM+d6jXdYOeokVneL4g0tilUdGPgc1PyV+C9e+L0g3ko6ZYU1KmOrtEkl8hDVTfPSJm9ZC1L5MC0YxcC1Hr+LAl6cfgzj2kXdbZpGU9eppyC3AX9EHeSF8A/yC9MWaReqTNyo//CkzuIK2XkDpJ3EmqnrmT1IPnxeP0XF5Ialh/kNQWcw9pAOwC0hf0IuNASOOzWnapZWzsxNfH6Xl01RW+Lo1lSIOla3l/lLHuw2cCSw/7vVfyefTcFZ5UOj4ovzd66jY9yrf8XF/TZN8GZV4H4CF6GItYl9ZLST3zap/Tu0lthuuM0+uxDqnD06eB55OmZ1roVjYtl6QG6xukRuXtotDrTNI2pIGjh9B+5HarJSq2B7aR1HaJij7oZr65fs960ZUBtB0cTCpB7U3jGZ4PpOTkmUPWj67wHyUtBf5N0txwtWU/PkD6336zf9mttK6rswuuIg3a7VlEXEfqwTostXbj79B8QVT37hs2pZU6D4mIRaYAkfQpUsNi22qAfixR0StJt5G+tKaSRtW/JvIcbbmr/UYR0bSRXdIBwE+jg8XX+qUfXeHr0vsP8JOIWGQGdElfBj4cg5mTrXIk/Z00ldThpF/sG0ZaPXYZ0npSp0dEmbkhR05ddfatwHakH3JFy5IWLN0+ItZsk94GpNqSPaIP60oNU5negtGmh2CNS1KDtTJp5dZGrmesPaCdfixR0aueGtnLviEHIfrfdtC3GZ6fBl5E6plZm6JqKYCIeCyXYA+l3ATGo6jfkzj/jVRdfKmkB1l0VvqIRSeSbnxB6U2kWSea9RLcvEw63Yo+9hZ0kBqs20hzXTVaLvkteX8Z/Viiold9bWQfoq66wtfp2wzPTwOPAotHREi6h1RleHneN5c0e/bTVb+rs2tLts8g/bjtqmOVpD1I45MeIK3IWz9GqdVYw8pxkBqsY4ED8+Jjv2asl80upHr8/Uum048lKnrVj9nDq6AfbQf9m+F59P2LFJgglSL3lnQJ6X3xeVrMDjLqIuIKcola0iR6r87+X+DIiGjWtb2szwMnkZZs6XRJncpxm9QASVqc9ItmVxadcuRo4CNR4h8g6V2kNXuupMkSFdFgGfF+ylPoPCsiLsnVYt9lrJH9TOBTEVFmRdlxN4C2g+VIk3BOIT3/eaQZQEQqNW8bQ551YLxI2hN4fkTsK+nVwB8Z64b+JGmG/jOaJmBPkTSX1Mmqp27becaJbSOiUQ3OyHGQGgeS1iV9oa1E6k02LSJu6DCN3Um9AVcvbL4T+EIMeEqkUZc7bZRpJxLwjYj4cok0RZqNYVPS1EIzSUuv/KGXvI663Oa3HalEel5ENGuTtTqSTgX+FAuv49RNOn8DDo+I4/uTs+FykBoh+YtxHcaC3Q1lSmITnaTXkdqhhtoV/ukuT6W0yGSi8TQdzNtveajJiaTq4rNYtOMEETG3RDpbkTqsbFnf2WoUOUiNg9xVvFEvG6LcMt/WJ912hW8wS3QrERETor03V6V+mz7Mdj3RFYZKNH2flXktJZ1CGkC8EqnHYKOxgGXmAKyECfFBGhZJa5Bmhdi0tinfR/47KDugLU19vxXNu5R+tecMTwA9dIU/mD6s9fM09B3azHZtpfXrPfZqUnXr/Yyt6ls0Uu9jl6QGSNLJpLaob9B8uvqLS6TzOlLnhGbjqtoOQDUbBEl3k6ZW6nm2a+sPSSu2qhaUtM4otRW6JDVYmwD7RsTPe0znO8AdpIb6axoNRDUbkr7Ndm19c4qkt0bE/Podkl5AmlrtOeOfre44SA1WUH7AbivrA++LiKv6kJZZP/VvtmurzXryNpqvNFCmWn8d4OekyZSLaT+HNAB93Kcm64WD1GCdTGpH6nW8wigvrGdPM7mzRM2BwMmSZgNnsGgjfakeafZU78hLSVNN1dqtYeE2pDJBamvgYklfi4j9c9qrkwLUXOCtfcv0OHCb1ABJ2pj0i+YMmn+A21aVSNoH2CQiGs00bjauGvR0FD32SLOnllx/BWl1g/+QVk6eCXwkb9siIv5bMq23kr5zPgGcQhpkvTiwcaRFREeGg9QA1c2+Xf9Ci5IdHiR9hjQbwixSB4pGXUq/30tezcoqM8N10TAnFx4lkm4mLXtzImlaqeJKA98Gnh0R7+kgvQ8CPyHNBbgEKUDd0feMD5iD1ABJ2q3dMRFxbIl02s0n5959ZiMuT2f0loi4NP+9VURclPdtAfw2Ihr28K2rgi06iDRE4K2kyZWB0aqCdZvUAJUJQCU9v0/pmFl13UuaYgvgv6TxThflx+0WQ5xN89KtSCuBF43Mj1oHqXEiaW3S+lIzI+LfnZwbEfVT+JjZ08/lwCtJbUm/Ja2gsCyp6m9f0iKSzTxtB5u7um/AJL2ftIR2cTG9O0jjp07sMK21SYODV2Zsotqn7VIIZk93kp5LWoTzibwy71oRcXKeYeY3pO7oIvX623kU25R65SA1QJK2I/Ws+RtwHGkxvGeR6ohfTZqWv+0yBpIWI62++yEWXgtpAXBUROzZ56yb2TiQNB94Q0RcKelCYM/ibBB5naoFEdFs0dOnPQepAZJ0JelX0jsb7DsdWDUiXl8inS8CXwO+R1pw8C5gDeADwGdIy3Uc1s+8m9ngSXqU1LX8stxB6vURceWw81UlbpMarPVIvWsa+Qlp9cwy9gC+HRH7FrbdA1yd39j/CzhImY2eW4C9JD0zP944D7xtKCJOH59sVYeD1GA9DizfZN8KeX8ZzwPObbLvXNIYKjMbPV8HfgHsSOr40OrHZulVE55OHKQG6zLgK5IujIinpjbKv5r+D7ikZDoPAGvTeHqldWiwOJqZVV9EHC/pPNLn+xLSDBHXDTdX1eIgNVhfJr3xZuQ34t2k5d+3JHV62LlkOr8HviZpRkScXduYV+A8mPLVhmZWMXmaovskHQucExEzhp2nKnHHiQGT9DLgK6Su47Vl3y8EDi67poukVYCLSaWmOYwFu0nAdGBKRLg0ZWZPOw5SIyIP6tudRYPdLyPiseHlzMxscBykBkTSUsCjwHsj4nc9pLMEsBFw80QcyGdmE9tiw87A01VePfc+oNdBePNJHSZe1nOmzMxGjIPUYJ1Eml2ia5GKuv8hdVk3M5tQXN03QJLeBxxK6txwKmmmiIVe8DKD8yR9mhTsNo+IhweQVTOzSnKQGqB+rQMl6TvAu4GlSUtA1we7iIjPdZ1RM7OKcpAaIEmbtDsmIi4ukY4XPTSzCclByszMKsszToyD3B39lYytA3V17v3XaTqvAzbJ6dwPXOwZk83s6cwlqQGTtA/wJdLsEDVzgK9FxLdLprE8aQG0rVh4PakAzgR2iohH+pNjM7PqcBf0AZK0N/At0rLQe5CCzB7AFcBhkvYqmdRhwFuALwJrAcvm+y8BbwUO72e+zcyqwiWpAZI0g7TE+wcb7DsG2CQinl8inftJ60kd0mDfl4G9I2KVPmTZzKxSXJIarNVJ1XSNnJD3l7E0qfTVyBXAUh3my8xsJDhIDdZ04LlN9j2P8uvGXEzqMNHImym/LpWZ2Uhx777B2g/4haRbI+KpBQslvYW01tTuJdPZHzhZ0mLAiYwt1bFTvm0vacXawRExtz/ZNzMbLrdJDZCkvwNrkrqMzwLuAVYD/ofUhbw4q3lExAZN0ikO5i3+w9RgGx7Ya2ZPFy5JDdYcYHbdtnu7SOdg6gKRmdlE4JKUmZlVljtOVISkxSTdkpebNzMzHKSqRKQBuksPOR9mZpXhIGVmZpXlIGVmZpXlIGVmZpXlIGVmZpXlIGVmZpXlIGVmZpXlIFUdQZpI9sFhZ8TMrCo844SZmVWWS1IDJGlJSftLul7SI5Lm192eHHYezcyqzBPMDtY3gL2Bs4GpwLzhZsfMbLS4um+AJN0G/DwiDhx2XszMRpGr+wbrf0idIczMrAsOUoN1KfCKYWfCzGxUOUgN1l7ARyRtK8ntf2ZmHXKb1ABJmkVaemNpYD7wUN0hERErj3vGzMxGhH/dD9ZpeNl3M7OuuSRlZmaV5TYpMzOrLAepAZP0Ekm/lnSnpHn5/leSXjzsvJmZVZ2r+wZI0vrAZcDiwHnAXcAawBbAk8AbI2L68HJoZlZtDlIDJOkM4EXAphFxd2H7asCFwE0R8c5h5c/MrOpc3TdYGwMHFQMUQETcA3wV2GQouTIzGxEOUoO1FM3Xh3ow7zczsyYcpAZrOvChJvs+DPxzHPNiZjZyPJh3sA4FfivpcuB44G5gdeD9wIbAjkPMm5lZ5bnjxIBJ2h04hBScau4EvhARxw0lU2ZmI8JBahxIErAOsBIwE7gh/MKbmbXlIDUEkiZFxJxh58PMrOrccWKAJO0mae/C45dImgE8IOkySasMMXtmZpXnIDVYewEqPD403x8ErAUcMN4ZMjMbJe7dN1hrAdcBSFoWeCuwa0ScJOl2YH/gU8PLnplZtbkkNVjLAI/kvzcElgTOzY9vJM3jZ2ZmTThIDdZ/gVfnv7cGromIufnxKjSfjcLMzHB136D9CviqpI2BrYAvF/ZtCPx7KLkyMxsRDlKDdQgwH9gI+Drw3cK+9YCTh5EpM7NR4XFSAyJpMeDZwKyIcLWemVkX3CY1OAJuwctxmJl1zUFqQCJiPmmOPjMz65KD1GD9Avh4nrvPzMw65I4TgzUXeAUwXdLpwF1AsREwIuL7Q8mZmdkIcMeJAZK0oM0hERGLj0tmzMxGkEtSg/X8YWfAzGyUuSRlZmaV5ZLUOJC0Lqkr+irAzyLibknPAWZGxCOtzzYzm7hckhogSUsARwO7kMZNBfCaiPhb7khxTUTsP8w8mplVmbugD9ZXgHcDe5OWjy92RT+btHSHmZk14eq+wdoVOCgijpRU34tvBu5YYWbWkktSg7UGcGWTfY8Dy49jXszMRo6D1GDdBbykyb71gNvGMS9mZiPHQWqwTgX2l/SywraQtCapncpLdZiZteDefQMkaTJwKbA2cDWwQb5/EalN6o0R8fDwcmhmVm0uSQ1QRMwGXgccCMwDbs73hwNvcoAyM2vNJSkzM6ssd0EfB5KWAl4JrAzMBK6OiMeHmyszs+pzdd+ASdoHuBv4M3Bmvr9b0meHmjEzsxHgktQASdob+BZwDvAb4B5gNWBn4DBJ8yPie0PMoplZpblNaoAkzQCmRcQHG+w7BtgkIjzrhJlZE67uG6zVSSWoRk7I+83MrAkHqcGaDjy3yb7nAdeNY17MzEaO26QGaz/gF5JujYjzaxslvQX4MrD7sDJmZjYK3CY1QJL+DqxJ6no+i7GOE/8D3A/cUTg8ImKDcc+kmVmFuSQ1WHOA2XXb7h1GRszMRpFLUmZmVlnuOFERkhaTdEvdjOlmZhOag1R1CFgLWHrI+TAzqwwHKTMzqywHKTMzqywHKTMzqywHKTMzqywHKTMzqywHKTMzqywHqeoI4GLgwWFnxMysKhykBkjSfEmvbbJvA0nza48jYkFEbBoRN45fDs3Mqs1BarDUYt/ipNKTmZk14SA1eIsEIklLA28FHhj/7JiZjQ7Pgt5nkg4AvpIfBnC51LRAdfS4ZMrMbER5FvQ+k/RW4G2kqr5PAycCd9cdNg+4FjgxIp4Y3xyamY0OB6kBkvQL4OCImDHsvJiZjSIHqSGQNCki5gw7H2ZmVeeOEwMkaTdJexcev0TSDOABSZdJWmWI2TMzqzwHqcHai4W7oR+a7w8irR11wHhnyMxslLh332CtBVwHIGlZUrfzXSPiJEm3A/sDnxpe9szMqs0lqcFaBngk/70hsCRwbn58I7DGMDJlZjYqHKQG67/Aq/PfWwPXRMTc/HgVPE+fmVlLru4brF8BX5W0MbAV8OXCvg2Bfw8lV2ZmI8JBarAOAeYDGwFfB75b2LcecPIwMmVmNio8TmpAJC0GPBuYFRGu1jMz64LbpAZHwC3AJsPOiJnZqHKQGpCImA/cOex8mJmNMgepwfoF8HG1mAbdzMyac8eJwZoLvAKYLul04C4WXl8qIuL7Q8mZmdkIcMeJAZK0oM0hERGLj0tmzMxGkEtSg/X8YWfAzGyUuSRlZmaV5Y4TZmZWWa7u6zNJtwDbR8Q/8tpRrYqqEREvHKesmZmNHAep/ruYsZnPLxpiPszMRp7bpPpM0nzgDRFxpaQLgT0j4l/DzpeZ2Shym1T/PU5aNwpgCrDi8LJiZjbaXN3Xf7cAe0l6Zn68saTVmx0cEaePT7bMzEaPq/v6TNL7SNMh1X4AtJoSyYN5zcxacJAagFyKWhu4BPgEcF2zYyPi4vHKl5nZqHF13wBExH3AfZKOBc6JiBnDzpOZ2ShyScrMzCrLvfvMzKyyHKTMzKyyHKTMrCuSjpP05LDzYU9vDlJmFSLpbZJC0lcb7HtD3jdP0nIN9p8raYGkVcYnt2aD5yBlVi2XAk8CmzbYNyXvWwrYqLhD0hJ527URcf+A82g2bhykzCokIh4C/gK8tkFpaQpwHnBX/rvoNcAK9GlSY0nLSvJAcxs6Bymz6plGmv/xjbUNhZLSxcAfWbSkNaVwbu2cV0o6TdIDkh6TNF3S5yQt9LmvtS1JWlXSMZLu0+2jmQAAAppJREFUBR4G1sj7l5V0hKS7JD0q6QpJW/T5OZs15MG8ZtUzDfgSYyUnGCspXQzMBb4nafmIeDjvn0Jau+xiAEmvy+nMA34I3AO8EzgceDmwW901BZwP3A4cnK9VW3Lmt8DWwGk5Py8CTgU8SN0GzkHKrHouI82mXywtTSGVbq4C5jBW0vpDoZR1TUQ8kI8/Mh/z2oi4FkDSD4DfAbtK+nndlFyLAX+LiN2LGZG0FSlAHR0R/1vYfhlwEjC/H0/YrBlX95lVTEQ8ClwBbChp+bx5CnBZRDwZEdcD9zJWxVcrZU0DkLQG8Fpgai1A5XQD+EZ+uH2DSx/eYNt2+f6wujz+Dri5oydm1gUHKbNqqrVLvamuPaqm2C41Jd9flO9fkO+nN0h3et0xRTc22PYCUo/Cmxrsu77BNrO+cpAyq6ZaB4gpLNweVXMxqaS1Qj5mASlwQZvlYZpsnx8R8xpsb5VWq31mfeEgZVZNfwYeI5WWpgCPkrqm11xMalOeQmqbujoiZuV9tWq4lzVI96X5/paS+bg5X+dFDfatUzINs645SJlVUC7V/BnYgNRx4c8R8XjhkGuBmcC+wPIUxkdFxF3AlcB2ktatbZck4Iv54dSSWTkt3+9b3CjpXcALS6Zh1jX37jOrrmmkktRGwAHFHRERki5hrGPDtLpzP523XSrp/5G6oG8LbAn8suximxFxpqSzgQ/l6Zb+ALwY+DApUK7b6nyzXrkkZVZdxcDTKKjUts0nrQL9lIi4glQNeBnwSeAI4NmkEtEHO8zHu4DvAq/P6WxECo7/6DAds4550UMzM6ssl6TMzKyyHKTMzKyyHKTMzKyyHKTMzKyyHKTMzKyyHKTMzKyyHKTMzKyyHKTMzKyyHKTMzKyy/j/FBRXFXBk+uQAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"top_words_bar_plot(top_words, \"Top 20 Words\")"
]
},
{
"cell_type": "code",
"execution_count": 197,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The total number of words is 41690\n",
"The total number of unique words is 3092\n"
]
}
],
"source": [
"total_words_unique_words(last_statements_dic)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The last statements will be tokenized and any words less than 3 character will be removed. The last statements will then be stemmed using the snowball stemmer. "
]
},
{
"cell_type": "code",
"execution_count": 201,
"metadata": {},
"outputs": [],
"source": [
"import nltk\n",
"from nltk.stem.snowball import SnowballStemmer\n",
"\n",
"def tokenize_last_statement(statement):\n",
" try:\n",
" return nltk.word_tokenize(statement)\n",
" except:\n",
" return 'error'\n",
"death_row[\"last_statement\"] = death_row.apply(lambda row: tokenize_last_statement(row[\"last_statement\"]), axis = 1)"
]
},
{
"cell_type": "code",
"execution_count": 202,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0 [yeah, first_person_pronoun, want, to, address...\n",
"1 [umm, pamela, can, pronoun, hear, first_person...\n",
"2 [its, on, september, th, kayla, and, david, fi...\n",
"3 [hi, ladies, first_person_pronoun, wanted, to,...\n",
"4 [lord, forgive, pronoun, pronoun, dont, know, ...\n",
"5 [none]\n",
"6 [yes, sir, that, will, be, five, dollars, firs...\n",
"7 [to, first_person_pronoun, friends, and, famil...\n",
"8 [yes, sir, first_person_pronoun, would, like, ...\n",
"9 [yes, sir, dear, heavenly, father, please, for...\n",
"Name: last_statement, dtype: object"
]
},
"execution_count": 202,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"death_row.last_statement.head(10)"
]
},
{
"cell_type": "code",
"execution_count": 204,
"metadata": {},
"outputs": [
{
"ename": "NameError",
"evalue": "name 'df' is not defined",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mdf\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;31mNameError\u001b[0m: name 'df' is not defined"
]
}
],
"source": [
"df"
]
},
{
"cell_type": "code",
"execution_count": 206,
"metadata": {},
"outputs": [],
"source": [
"death_row.to_csv('death_row_discritized.csv', index=False)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}